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Preface

This handbook is designed as a brief but mathematically rigorous introduction to quantum
science and technology for the tech enthusiast. The materials covered in this handbook are
intended to be taught/learned over the course of 2 to 4 weeks with no prior knowledge of quantum
physics required. In order to appeal to both scientists and engineers, there will be several topics
covered with applications as quantum technologies in sufficient but not comprehensive depth so
as to gain literacy of the subject matter. Specifically, we will be exploring a simplified model of
radioactive decay in ionization smoke detectors and the model of quantum computation.
As a means for appealing to a diverse audience and trying to incorporate the best of both
worlds, I have divided the handbook into 2 parent parts. These are namely “understanding the
substrate” and “applied abstractions”. This partitioning is to differentiate between content that
focuses on quantum theory topics pertaining to describing physical systems vs material that
cares only about abstracted utilizable properties (analogous to the distinction between electrical
engineering and computer science).

Some prerequisites to understanding the material in this book would be knowledge of 1) linear
algebra 2) ordinary differential equations 3) classical mechanics 4) basic electrodynamics 5)
basic probability theory. I will also occasionally mention relevant words and topics of study
that will not be expounded on in this book. This is intentional and meant to encourage the
reader to go beyond the contents presented here. Be sure that this will not impede the reader’s
understanding of this book. If you are indeed new to quantum mechanics and learning it from
scratch, I would suggest attempting the given proofs, derivations and worked examples yourself
as practice before looking up the solutions to ensure mastery of the content. This handbook
is organized sequentially and no additional resources are required to understand the material
outside the prerequisites. If you are unsure of certain concepts presented in this book, it would
be useful to take a look at the appendices. There, I have written up additional notes and
elaborations on things I found may be useful to the reader.

If at the end of this handbook you still feel bewildered by the perplexity that is quantum me-
chanics, rest in the comfort that even the best minds have struggled with attaining a true grasp
of this aspect of reality.

“If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.”

– Niels Bohr

Despite this, I am convinced that Quantum mechanics is indeed a beautiful theory of our universe,
and I hope this book expresses that to you as much as it does me.
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Note to the reader:

In this handbook, there are worked examples and exercises which are left to the reader. The
exercises are given not so much as tricky problems, but to elucidate understanding of the material.
Examples tend to be more instructive. All provided problems are a good gauge of understanding
and are mostly non-trivial (worth solving). For easy navigation and clarity of presentation,

• Sharp edged black outlined white boxes contain definitions, laws and principles.

Definition/Principle/Law ...

• Round edged gray outlined white boxes contain theorems.

Theorem ...

• Round edged gray outlined light gray boxes contain proofs.

Proof. ...

• Round edged dark gray outlined gray boxes contain important things to note.

Note: ...

• Rounded edged unlined gray boxes contain worked examples and highlighted segments.

Example ...

• Round edged black outlined white boxes contain chapter summaries.

§ SUMMARY §

• Sharp edged black outlined white double boxes contain exercises.

Exercises
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Introduction:
Why Quantum Mechanics?

Quantum Mechanics is a framework that describes the behaviour of matter and energy at very
small scales and low temperatures. Despite popular belief, quantum mechanics is a ‘determin-
istic theory of probabilities’, meaning that the mathematical formalisms that describe it are
concrete, but it’s experimental outcomes are subject to probability. As such, the mechanics of
quantum phenomena can be used to develop new technological applications such as the model
of quantum computation. This may sound paradoxical, but the chapters ahead will attempt to
resolve this apparent contradiction. We embark on this instructive journey by first giving a par-
tial introduction to the discovery of quantum mechanics, and shed light on a common household
technology that actually utilizes it.

§0.1 Breaking Classical Law

§0.1.1 Young’s Experiment

In 1801, Thomas Young performed the famous Young’s double-slit experiment. This experiment
proved the that the classical theory of light being electromagnetic waves was true, exhibiting
interference and superposition effects. The experiment was performed as follows.

Figure 1: Young’s Double Slit Experiment

As seen in figure 1, the set-up consists of 2 barriers having single and double apertures (slits).

x



xi 0.1. BREAKING CLASSICAL LAW

A plane wave of light is then incident on the 2 consecutive barriers, passing through the single
slit then the double slit. Upon transmission through each aperture, the wave-nature of light
causes a phenomenon known as diffraction1to occur. As a result, the outgoing diffracted waves
overlap, causing a superposition of wave amplitudes at different points in space. This causes an
interference pattern of bright and dark fringes to appear on the screen.

Restatement: To emphasize once again, we expect this interference pattern classically
due to the proposition that light is described as continuous waves.

§0.1.2 Young Revisited

In 1927, Clinton Davisson and Lester Germer re-performed the Young’s double slit experiment.
But instead of light, they had a beam of electrons fired at the apertures. At that time, it
was believed that electrons were simply point particles with (semi)classical behaviour (following
the Bohr model). This essentially meant that electrons were pretty much believed to be little
charged hard spheres, so shooting a bunch of them through slits would have the equivalent result
as throwing billiard balls through holes.

Figure 2: Billiard Ball Double Slit Experiment

The classical expectation of throwing billiard balls through 2 slits would produce a distribution
shown in figure 2. In words, these are basically 2 approximately Gaussian peaks centered along
the slit axes. But electrons, as it turns out, are not just your everyday classical objects. What
was seen by Davisson and Germer was in fact an interference pattern on the screen, exactly as
what Young did for light! Not just that, but they also observed that if a measurement of the
electrons was made at the slits, the electrons would behave just as the billiard balls would!

Cutting a long story short, this bizarre result gave rise to the notion of wave-particle duality.
Matter could no longer be thought of deterministic chunks which obeyed physics as these quan-
tum pioneers previously knew it, but existed in this duality of wave and particle states. This

1

Definition 0.1.1. Diffraction: Diffraction is the phenomenon of waves, which when incident on an edge or
aperture will diverge onto its geometrical shadow.
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revelation, along with the postulates by Einstein that light comes in discrete packets known as
photons, and de Broglie that all matter possesses an intrinsic wavelength, breathed life into the
following equations:

E = hν, p =
h

λ
(1)

Above, h = 6.62×10−34Js is known as the Planck’s constant, for which its origins are elaborated
on in appendix A. It is very common that we instead use ~ = h

2π , which is known as the reduced
Planck’s constant.

The equations in 1 essentially paved the way for the development of a quantum theory of our
universe. Also, it is relevant to know that the term quantum comes from the idea of quan-
tization (or discretization), which is how real quantum systems manifest themselves. (For a
more comprehensive picture of the early beginnings of quantum mechanics, refer to appendix
A.)

§0.2 Fighting Fire with Radiation

Fast forward to 1951, where the first ionization smoke detectors were sold. A smoke detector,
as implied by its name, is used to detect the presence of smoke caused by fires. But how
does it work? Ionization smoke detectors utilize a strange process known as radioactive decay.
Essentially, there is a region between 2 charged plates where the air is irradiated by a radiation
source as shown in figure 3.

Figure 3: Simplified smoke detector

This causes the air to be ionized, allowing for a small current to flow between the plates. As
such, when smoke permeates the air and space between the plates, the ionization of air decreases.
This decrease causes a drop in the current, leading to the detection of smoke.

This in itself seems like a rather clear qualitative picture of how smoke detectors work as a device.
However, can we model radioactive decay quantitatively? Understanding the mechanism for
which radioactive decay occurs would allow us to make even more precise smoke detectors, along
with many other devices. Just from this simple technology, it is evident that classical mechanics
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is no longer a sufficient description of our universe, and the study of quantum mechanics is
necessary. As such, let’s dive into learning some of the fundamentals of quantum theory!

Note: In this handbook, we will be primarily learning what is known as first quantiza-
tion, which is a semi-classical treatment of quantum mechanics where the environment is
expressed with classical potentials.

§0.3 Classical Deviations

There are several key features of quantum mechanics which point toward the failure of classical
mechanics as a comprehensive theory. These properties are fundamental in the study of quantum
mechanics and is essential that we keep them in mind as we progress along.

§0.3.1 Linearity of Quantum Mechanics

Generally, theories in physics consist of 1) Equations of Motion and 2) Dynamical Variables.
These can be broken up into 2 broad categories known as Linear Theories and Non-Linear
Theories.

Linear Theories

Linear theories imply that we can express the equations governing these theories as linear oper-
ators acting on solutions of these equations.

Definition 0.3.1. Linearity: Given an operator L and a set of solutions {ui}, it is linear
if it satisfies the following relations

L(aui) = aL(ui), for a ∈ C (2)

L(ui + uj) = L(ui) + L(uj), for i 6= j (3)

An example of a linear theory would be Maxwell’s Theory of Electromagnetism.

Non-Linear Theories

A non-linear by extension, would be theories that cannot be described by linear operators. This
means that we cannot construct new solutions from arbitrary linear combinations of known
solutions. Examples of such theories would be Classical Mechanics and Einstein’s Theory of
General Relativity. Non-linear theories tend to be mathematically intricate and highly complex,
making solutions difficult to find.
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Fortunately, the governing equation in quantum mechanics is built by linear operators, making
it in fact, a linear theory! (This however, in no way implies that QM is simple!)

§0.3.2 Necessity of Complex Numbers

Since quantum dynamics is governed by the famed Schrödinger’s Equation (i~ ∂
∂tΨ = ĤΨ), we

see that the imaginary number on the left causes the equation to be innately complex. We will
also later see that the operator Ĥ on the right is a Hermitian Operator with real components.
Hence, this enforces the necessity of solutions to carry complex numbers within them. As a
result, all solutions to the Time-Dependent Schrödinger Equation are complex.

§0.3.3 Loss of Determinism

This first became an issue when the quantization of light was discovered. The fact that light
could be thought of as particles seemed to contradict the results of polarized light. Consider a
polarizer aligned along the x-axis, and a ray of light polarized along an axis with an angle α from
it passing through. We can describe the electric field associated to the light ray by,

~Eα = E0 cos(α)x̂+ E0 sin(α)ŷ (4)

By classical electromagnetic theory, the polarizer would then only pick out the x̂ component of
the electric field, E0 cos(α)x̂. We also know that the energy, E of light is proportional to | ~E|2,
this causes the emitted energy, Eemitted to be reduced by a factor cos2(α).

However, knowing that the ray of light is also made up of identical photons, classical mechanics
tells us that whatever happens to a photon under a set of initial conditions must also happen to all
identical photons under the same initial conditions. How then, can only a fraction of the polarized
photons enter the polarizer if this is true? This leads to the idea of the loss of determinism! This
experiment showed that photons either passed through or they didn’t, allowing us to only predict
the probabilities of these photons passing through the polarizer.

§0.3.4 Superposition

As earlier mentioned, we have shown via experiment that matter does indeed possess a kind of
wave-like nature. We will soon come to realize that these wave properties arise from ‘Probability
Waves’ used in describing ‘states’ of a quantum system. These waves of probability do not
possess all the standard properties of the conventional waves we are familiar with in classical
wave mechanics, but do possess the property of superposition. It is now useful to formally define
a quantum states to prevent any future misconceptions.

Definition 0.3.2. Quantum State: A quantum state is defined as an element of a Hilbert
space (F.2.14) H, that carries information on the associated quantum system.

Physicists often refer to quantum states as vectors or ‘kets’, because we can think of them as
having matrix representations.
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§0.3.5 Entanglement (Qualitative Insight)

Entanglement shows up in quantum mechanics because of the loss of determinism in particle
states. This is a weird and unique phenomena that occurs when we allow particles to interact
with each other and become correlated. This causes the particles to form some kind of ‘non-local
bond’ between one another, causing them to affect each other instantaneously no matter how
far apart you make them! Einstein dubbed this ‘Spooky Action at a Distance’ and is in fact
a very real property of ‘quantum states’ as proven by experiment. Entanglement arises also
because of superposition and is an essential property utilized for quantum computation.
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§ SUMMARY §
In this introductory chapter...
• We looked at the Young’s double slit experiment and how waves can undergo diffrac-

tion and interference.
• We saw the break down of classical mechanics when electrons displayed both wave

and particle characteristics, leading to a wave-particle duality.
• We were told that ionization smoke detectors actually utilize radioactive decay (a

quantum mechanical process) to function, something we will get to quantitatively
study.
• We learned that quantum mechanics has several key features, namely:

• Linearity
• Necessity of complex numbers
• Superposition
• Entanglement

Once again, do ensure that you keep these in your back pocket as we traverse
through the quantum terrain of this book.

Exercises

1. Given that visible light has a wavelength of ∼ 500nm, find the energy and mo-
mentum of a photon using the equations in (1).

2. Find the wavelength of a non-relativistic electron moving with velocity 105 m/s.

3. Consider the operators A and B where they perform the following operations on
a continuous function f(x).

A : f(x) 7→ f ′(x) + xf(x)

B : f(x) 7→ f(x2) + 3
(5)

Are the operators A and B linear? Explain why or why not.

4. Write the following complex numbers as reiθ where r and θ are strictly real.

(a) 2 + i
√

3

(b) (
√

5 + i
√

2)(1 + i
√

7)

(c) (
√

3 + i8)/(
√

2− i5)

5. Prove Euler’s identity, reiθ = r(cos θ + i sin θ).



Part I

Understanding the Substrate

1



Chapter 1

A Dive into Superposition

Since superposition is a fundamental and recurring concept in quantum mechanics, it will be
the first quantum morsel on the menu. To illustrate and understand this concept, we turn to
interferometry. Interferometry is a class of experimental techniques that superimposes electro-
magnetic waves and exploits the properties of interference to gather information. Interferometry
is a widely used experimental technique throughout all of physics, being the platform on which
many insightful theories such as Einstein’s Theory of Special Relativity have been realized. For
what we intend to learn, we will look at one specific example of interferometry as performed by
Ernst Mach and Ludwig Zehnder.

§1.1 Mach-Zehnder Interferometry

Consider a set-up of a laser, beam splitters, mirrors and detectors as shown below.

Figure 1.1: Mach-Zehnder Interferometer

As suggested in figure 1.1, a source emits a photon that is split (able to ‘choose’ a path) by beam
splitter 1 (BS1) and ‘recombined’ at beam splitter 2 (BS2). The resulting outgoing photon is
then detected by the either detector, D1 or D2. It turns out that we can model this set-up with a

2



3 1.1. MACH-ZEHNDER INTERFEROMETRY

2-dimensional Hilbert space representation. We define a 2-dimensional basis {|u〉 , |l〉}, where |u〉
denotes the state representing the photon occupying the upper beam and |l〉 denotes the photon
occupying the lower beam.

Before we fully formalize these mathematical objects, we have to look at the fact that these
states are carriers of ‘probabilistic information’, which for now will just be an assertion.
A key feature of probability theory is that the sum over probabilities of all possible outcomes
must equate to 1. This implies that there must be some invariant quantity of the states that is
preserved and equal to unity. This quantity is in fact the norm-squared of the state (‖|ψ〉‖2 = 1)
and it will become clear why in the later chapters. For now, we will just take this to be fact and
also impose the condition that any operation that maps a quantum state to another quantum
state must preserve its norm.

§1.1.1 Matrix Representation

To perform mathematical operations on these states, we can construct a representation of these
states with vectors of a vector space.

|u〉 =

[
1
0

]
, |l〉 =

[
0
1

]
(1.1)

Because this system is simply a 2-level system, the representations appear as these elegant finite,
2-dimensional number arrays. This means that an arbitrary state in this Hilbert space is written
as,

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
, α, β ∈ C (1.2)

Note: Given any quantum system, we can always write the state of that system with a
vector representation. However, if the state is described by a continuous variable (e.g.
x position), then the state vector would be an infinite dimensional array.

Now, we shall model the action of the beam splitters on input states (light beams). It turns out
that these are simply linear transformations on the vectors |ψ〉 and thus, we can construct this
using a 2×2 matrix representation.

Definition 1.1.1. Matrix Representation: Given a linear transformation T : V → U and

the bases for V and U being BV = {~vj}|V |j=1 and BU = {~uj}|U |j=1 respectively, then we have:

T (~vj) =
∑
i

aij ~wi (1.3)

where aij are the entries of the matrix representation of T with respect to BV and BU .

Knowing this, we also have that there are 2 possible input basis states that can enter the beam
splitters, and 2 unique outcomes for each of these 2 inputs. This means that we require 4 numbers
to fully characterize the action of a beam splitter on an arbitrary input state.

BS =

[
a b
c d

]
(1.4)



CHAPTER 1. A DIVE INTO SUPERPOSITION 4

With the condition,

‖(BS) |ψ〉‖2 =

∥∥∥∥[a b
c d

] [
α
β

]∥∥∥∥2

= 1 (1.5)

⇒ ((BS) |ψ〉)†(BS) |ψ〉 = (|ψ〉)†(BS)†(BS) |ψ〉 = 1

⇒ (BS)†(BS) = I (1.6)

Property (2.5) is known as Unitarity and allows ‖|ψ〉‖2 to be invariant as unity. We have now
built-up sufficient formalism to generate valid mathematical models of real physical phenom-
ena.

Example

Consider a ‘balanced beam splitter’ defined by, |a|2 = |b|2 = |c|2 = |d|2 = 1
2 . In order to

adhere to condition (2.4), we are allowed to construct BS1 and BS2 as such.

BS1 =
1√
2

[
−1 1
1 1

]
, BS2 =

1√
2

[
1 1
1 −1

]
(1.7)

To check that BS1 and BS2 indeed adhere to condition (2.4), consider an arbitrary input
state of norm 1.

⇒ ‖|ψ〉‖2 =

∥∥∥∥[αβ
]∥∥∥∥2

= |α|2 + |β|2 = 1 (1.8)

Applying operators BS1 and BS2, we get

‖BS1 |ψ〉‖2 =

∥∥∥∥ 1√
2

[
−1 1
1 1

] [
α
β

]∥∥∥∥2

=

∥∥∥∥∥
[
β−α√

2
β+α√

2

]∥∥∥∥∥
2

= |β − α√
2
|2 + |β + α√

2
|2 = 1 (1.9)

‖BS2 |ψ〉‖2 =

∥∥∥∥ 1√
2

[
1 1
1 −1

] [
α
β

]∥∥∥∥2

=

∥∥∥∥∥
[
α+β√

2
α−β√

2

]∥∥∥∥∥
2

= |α+ β√
2
|2 + |α− β√

2
|2 = 1 (1.10)

Indeed showing that these beam splitter operators do map the initial quantum state to a
new quantum state of norm 1.

Note: Unitarity is an important property of physical operations done on states which
evolve them in time (which we refer to as unitary time evolution). In fact, any physical
operation on a closed system must be unitary.

From this (relatively) simple set-up, we have actually implemented a single qubit quantum com-
puter! We will revisit quantum computers and quantum computation in greater detail later in
the book.
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Exercise

For an arbitrary state |ψ〉 = {α, β}T , the probability to be in the ‘lower’ state is P(|l〉) =

|α|2 and the probability to be in the ‘upper’ state is P(|u〉) = |β|2. Given the beam
splitters presented in the example above,

(a) find the probabilities of detection for D1 and D2 if no amendments are made to
the set-up.

(b) find the probabilities of detection for D1 and D2 if a blockage is added to the lower
arm after BS1.

§1.2 Elitzur-Vaidman Bombs

In 1993, Avshalom Elitzur and Lev Vaidman conceived a thought experiment that could proba-
bilistically predict whether any Elitzur-Vaidman bomb was working. This utilize the properties
of quantum mechanics and was notable because any classical approach would fail with 100%
certainty. An Elitzur-Vaidman bomb is a bomb with a photo-detector used as its trigger. If the
bomb is working, a single photon incident on the photo-detector would cause the bomb to go off.
Else, the photon would pass through unaffected. The experimental set-up is as follows.

Figure 1.2: Elizur-Vaidman Bomb Detection Set-Up

Let’s work through what happens if we use the balanced beam splitter used in the example above
(BS1). Consider an input beam entering from the upper channel |u〉. After passing through the
first beam splitter,

(BS1) |u〉 =
1√
2

[
−1 1
1 1

] [
1
0

]
=

1√
2

[
−1
1

]
(1.11)

From here, let us first assume that the bomb is not working. If so, the interferometry experiment
would occur as though there were no bomb in the first place. Hence after the result in (1.11),
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the split beam continues to pass through BS2.

(BS2)(BS1) |u〉 =
1

2

[
−1 1
1 1

] [
−1
1

]
=

[
1
0

]
(1.12)

The result of a defective bomb is that we will always get a reading from D2. Now let us perform
the analysis once more with a working bomb. Since the bomb is only present after BS1, the
result from (1.11) is exactly the same. This is where things get interesting. Notice that the
probabilities of being either an upper or lower beam after BS1 are equal.

P(|u〉) =

∣∣∣∣−1√
2

∣∣∣∣2 =
1

2
, P(|l〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

⇒ P(|u〉) = P(|l〉) =
1

2

Evidently if the beam does in fact enter the lower path, the bomb detonates and the experiment
is undoubtedly over (not too great a result). So let us consider instead the case where the beam
chooses to enter the upper path. In this scenario, all the probability collapses onto the upper
beam hence the state entering BS2 is simply |u〉.

(BS2) |u〉 =
1√
2

[
−1 1
1 1

] [
1
0

]
=

1√
2

[
−1
1

]
(1.13)

Amazingly, we retrieve the same result as in (1.11) with an equal probability for the beams to
be detected by D1 and D2! A summary of the results is given in the table below.

Detector outcomes Pdefective Pworking

Photon enters D1 1 1/4
Photon enters D2 0 1/4
Bomb is detonated 0 1/2

Table 1.1: Elitzur-Vaidman Bomb Detection Outcomes

Note that the probabilities to be detected by D1 and D2 for a working bomb set-up are 1/4 and
not 1/2 because we had to multiply the initial 1/2 probability of being in the upper beam. In
conclusion, we are able to detect a working bomb without detonating it with a 1/4 probabil-
ity.
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§ SUMMARY §
In this chapter...
• We were introduced to quantum superposition with Mach-Zehnder interferometry.
• We saw how we could represent quantum states as vectors and have matrix repre-

sentations for operations on those states.
• We saw that quantum states must necessarily be unit normalized (‖ψ‖2 = 1) and

physical operations on those states are required to satisfy unitarity (U†U = I).
• We saw that we can retrieve the probabilities of being in each state by taking the

absolute squares of the corresponding state entries.
• We looked also at how defective Elitzur-Vaidman bombs could be detected without

detonation with the help of quantum mechanics.

Exercises

1. Let us now consider the case where the beam splitters for our Mach-Zehnder inter-
ferometer do not reflect and transmit photons with equal probability, but instead
have reflection and transmission coefficients (R and T respectively). Construct a
2× 2 unitary matrix that models this with entries being functions of R and T .
Use the convention that all entries are real and note that R+ T = 1.

2. A defective bomb is now inserted as in figure 1.2. Recompute the probabilities of
detection for each photon detector, D1 and D2.

3. Now let’s say you have a large sample of Elitzur-Vaidman bombs to test for defects.
In terms of R and T , what is fraction the of operational bombs that can be
successfully tested without detonation?

4. Consider an additional apparatus called the phase shifter. It’s matrix representa-
tion is given by

S =

[
1 0
0 i

]
(1.14)

We insert this phase shifter into the lower arm of the Mach-Zehnder interferometer
after BS1 before a working Elitzur-Vaidman bomb. Compute the new detection
probabilities of D1 and D2.

5. Can you think of a scheme/modification such that we can further increase the
detection probability of a live Eiltzur-Vaidman bomb? (Refer to appendix B.)



Chapter 2

Quantum Promotions

In quantum mechanics, the notion of physical quantities gets a little fuzzy. There is uncertainty
in the system that follows not from poor apparatus or human error, but intrinsic properties of
nature. Because of this, we can no longer express the evolution in time of a system with definite
dynamical variables and equations of motion like we did classically. We instead have to turn to
a different mathematical framework.

In this chapter, we will work through building up this framework (at a highly accelerated pace)
through the language of ordinary differential equations and learn how to use it. First, we go back
to address the duality between matter possessing both wave and particle-like properties.

§2.1 Matter Waves

As earlier discussed (0.1.2), matter at very small scales exhibit wave-like properties (diffraction
and interference). The mathematical answer to why this is is actually that matter exists as
probabilistic waves. These waves of probability have their own unique dynamics determined
by the Schrödinger’s equation (More information on wave mechanics is given in appendix
C).

Note: The most common physical interpretation for this is known as the Copenhagen
interpretation. This says that the non-deterministic nature of reality is innate, and ob-
servation forces the system to collapse into a definite state.

Because of this, we no longer look to classical dynamical variables {x(t), ẋ(t)} to determine the
state of a system, but a wave function Ψ(x, t) (Note that as a starting point, we are only con-
sidering single particle systems). Working with a wave function makes extracting information
about the system a little less direct, but is something you can build an intuition in doing. With
the notion that Ψ is associated to probabilities, we know from probability theory that the integral
over all space of some function of Ψ has to equate to unity.∫ ∞

−∞
f(Ψ(x, t))dx = 1 (2.1)

8
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There seems to be no reason to for any restriction on the value of the wavefunction (Ψ(x, t) ∈ C).
This means that Ψ(x, t) could be a purely negative valued function, which would not satisfy

condition 2.1. So a good quantity to look at would be |Ψ(x, t)|2. Sure enough, this quantity
turns out to be the Probability Density of the wave function.

Definition 2.1.1. Probability Density: The probability density ρ(~x, t), of a wavefunction is
the probability per unit volume of locating a particle at some position.

ρ(~x, t) = |Ψ(~x, t)|2 = Ψ∗(~x, t)Ψ(~x, t) (2.2)

The definition above considers general systems in possibly more than 1-dimension (~x vs x).
However, we will only work in 1-dimension for the time being. Combining (2.1) and (2.2) at
some arbitrary time t = t0 gives us, ∫ ∞

−∞
dx|Ψ(x, t0)|2 = 1 (2.3)

This is known as the Normalization Condition of a wave function.

Note: Notice here how this nicely mirrors the unit-norm condition imposed on quantum
states in the Mach-Zehnder interferometry experiment (1.5).

This means that if
∫∞
−∞ dx|Ψ(x, t0)|2 = C 6= 1, the mathematically coherent version of the wave

function needs to be 1√
C

Ψ(x, t0) (where an overall complex phase does not make a difference

to the physics).

§2.2 Operators

We will now see that physically observable quantities will be ‘promoted’ to what are known
as operators in quantum mechanics. First consider the simplest classical wave solution, a 1-
dimensional plane wave.

Definition 2.2.1. 1-Dimensional Plane Wave: A 1D plane wave travelling in the positive x-
direction with parameters {k, ω} (k being the wave vector and ω being the angular frequency),
has the form

Ψ(x, t) = ei(kx−ωt) (2.4)

Now, consider a derivative with respect to x on this plane wave.

∂

∂x
Ψ(x, t) = ikei(kx−ωt)

⇒ − i~ ∂

∂x
Ψ(x, t) = ~kei(kx−ωt)

⇒ −i~ ∂

∂x
Ψ(x, t) = pΨ(x, t) (2.5)
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(We used the fact that p = ~k in the above derivation, which was proposed by Max Planck.)
We have found something interesting here. It is as though acting on this wave function with a
‘differential operator ’ has pulled out the momentum of this wave function. As such we present
the following definition.

Definition 2.2.2. Momentum Operator: The momentum operator (denoted with a hat)
which acts on a wave function described in the position basis is defined as,

p̂ = −i~ ∂

∂x
(2.6)

Remember that in quantum mechanics, we work with Hilbert spaces (appendix F.2.14). Elements
of these Hilbert spaces are known as quantum states and thus any quantum state that when acted
on by an operator remains unchanged up to a scale factor is known as an eigenstate (appendix
F.2.13). The scale factor is called the associated eigenvalue. Thus, we see that 1D plane waves
are momentum eigenstates! It is important to note that momentum eigenstates are non-
normalizable states and hence are not physically realizable. However, the linearity of quantum
mechanics allows us to use these eigenstates to construct physically allowed states known as wave
packets (C.3) via linear combination.

We can now use what we have learned to further develop more of such operators. We know from

classical mechanics that the kinetic energy of a particle is given by E = p2

2m . Using this, we
extend our classical intuition and define the following.

Definition 2.2.3. Kinetic Energy Operator: The kinetic energy operator which acts on a
wave function described in the position basis is defined as,

Ê =
p̂2

2m
= − ~2

2m

∂2

∂x2
(2.7)

To double check that our intuition has not failed us, we try applying this operator on the 1D
plane wave function.

ÊΨ(x, t) = − ~2

2m

∂2

∂x2
ei(kx−ωt) = − ~2

2m
(−k2)ei(kx−ωt) =

p2

2m
Ψ(x, t)

⇒ ÊΨ(x, t) = EΨ(x, t) (2.8)

Thus this indeed works out! Seeing that the wave function is both a function of space and time,
what if we instead take a time derivative on Ψ(x, t)?

∂

∂t
Ψ(x, t) = −iωei(kx−ωt)

⇒ i~
∂

∂t
Ψ(x, t) = ~ωei(kx−ωt)

⇒ i~
∂

∂t
Ψ(x, t) = EΨ(x, t) (2.9)
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(We used the fact that E = ~ω from 1.) Strangely enough, the time derivative operator also
extracts the wave energy just as the kinetic energy operator does. Thus combining the 2 results
from (2.2.3) and (2.9), we effectively derived the Free Particle Schrödinger Equation.

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) (2.10)

Note that partial differentials acting on continuous wave functions are linear endomorphisms on
the Hilbert space. This implies that equation (2.10) holds for Ψ(x, t) being wave packets. But
what if the particle in question is not ‘free’? Meaning that there is a non-zero potential that
interacts with the particle (V (x, t) 6= 0). From equation (4.8) and by analytic continuity, we can
extend the kinetic energy operator into what is known as the Hamiltonian.

i~
∂

∂t
Ψ(x, t) = ÊΨ(x, t) → i~

∂

∂t
Ψ(x, t) = ĤΨ(x, t) (2.11)

Taking from classical Hamiltonian Mechanics, we know that the Hamiltonian of a non-dissipative
system is always conserved. As such, we will use the Hamiltonian in quantum mechanics as well,
where we promote the conjugate variables to operators.

Ĥ = − ~2

2m

∂2

∂x2
+ V (x) (2.12)

With this quantum Hamiltonian, we arrive at the full Time-Dependent Schrödinger Equation.

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V (x)

)
Ψ(x, t) (2.13)

Which by extension, we can generalize to 3 dimensions.

i~
∂

∂t
Ψ(~x, t) =

(
− ~2

2m
∇2 + V (~x)

)
Ψ(~x, t) (2.14)

Finally, we introduce the position operator. Because we have been working in the ‘position basis’,
the position operator seems trivial but is useful to ensure a full picture of important operators
when working with different bases.

Definition 2.2.4. Position Operator: The position operator which acts on a wave function
described in the position basis is defined as,

x̂ = x (2.15)

In quantum mechanics, these operators that represent physically measurable quantities are known
as observables.

Note: A special property of obsevables is that they are always Hermitian (will be further
elaborated on).
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§2.3 Commutators

Having introduced operators that act on the quantum states of a given Hilbert space, we will
now equip the C-vector space of operators acting on the Hilbert space (L (H), appendix F.2.1)
with an additional structure called the commutator. This makes the C-vector space into a Lie
algebra (appendix F.2.16).

Definition 2.3.1. Commutator: Given 2 operators Â and B̂, the commutator of Â with B̂
is defined as [

Â, B̂
]

= ÂB̂ − B̂Â (2.16)

We will continue to look at and utilize commutator relations throughout this book so it is impor-
tant to get accustomed to the use of them. Below is a list of useful commutator identities.

1.
[
Â, Â

]
= 0

2.
[
Â, B̂

]
= −

[
B̂, Â

]
3.
[
Â, B̂ ± Ĉ

]
=
[
Â, B̂

]
±
[
Â, Ĉ

]
4.
[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂

5.
[
Â, B̂Ĉ

]
= B̂

[
Â, Ĉ

]
+
[
Â, B̂

]
Ĉ

6.
[
Â,
[
B̂, Ĉ

]]
+
[
Ĉ,
[
Â, B̂

]]
+
[
B̂,
[
Ĉ, Â

]]
= 0

The last identity is known as the Jacobi identity and is necessary for Lie algebras.

Example

Consider the commutator between the x̂ operator and p̂ operators. To compute this in
the representations we have presented them in thus far, we require that the commutator
act on some test function ψ(x).

[x̂, p̂]ψ(x) =

[
x, i~

∂

∂x

]
ψ(x) = i~

[
x,

∂

∂x

]
ψ(x)

= i~
(
x
∂

∂x
ψ(x)− ∂

∂x

(
xψ(x)

))
= i~

(
x
∂

∂x
ψ(x)− ψ(x)− x ∂

∂x
ψ(x)

)
⇒ [x̂, p̂]ψ(x) = i~ψ(x)

⇒ [x̂, p̂] = i~

It would be good for you to remember this relation as it will come in handy as we move
along.
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§ SUMMARY §
In this chapter...
• We looked at a new mathematical object known as the wave function Ψ(x, t), from

which we can extract probabilistic information about the quantum system.
• We learned that physically measurable quantities are now encoded in operators

known as observables which can act on wave functions.
• 3 operators have been formally introduced with the following representations in

position space, 
x̂ = x

p̂ = −i~ ∂
∂x

Ĥ = − ~2

2m
∂2

∂x2 Ψ(x, t) + V (x)

(2.17)

• We learned about commutators as a binary operation on operators
[
Â, B̂

]
= Ĉ,

and saw some common commutator identities.

Exercises

1. Given some function Ψ(x, t) that spreads over all space and solves the Schrödinger
equation, what boundary condition is necessary for the function to be normalizable
(integrates to a finite value)?

2. Normalize the following functions (i.e. find N ),

• ψ(x) = N exp
(
− x2

2σ

)
where σ ∈ R.

• ψ(x) = N sin
(
nπx
L

)
, |x| ≤ L, (n ∈ Z)

• ψ(x) =

{
N sinh(κx) ,−L2 < x < 0

−N sinh
(
κ(x− L)

)
, 0 ≤ x < L

2

3. Consider a wave function Ψ(x, t). If we are concerned with the wave function at
some fixed time t = t0, we can drop the time dependence to give Ψ(x). Prove that
we can get a momentum space wave function Φ(p) from the position space wave
function Ψ(x) via a Fourier transform. (Hint: recall the relation p = ~k.)

4. Consider a set of wave functions {ψ1(x), ψ2(x), ..., ψN (x)}, all of which solve the
time-dependent Schrödinger equation (2.13). Prove that an arbitrary linear com-
bination of these wave functions also solves the time-dependent Schrödinger equa-
tion.

5. Compute the following commutators.[
x̂, Ĥ

]
,
[
p̂, Ĥ

]
,
[
x̂p̂, Ĥ

]
(Hint: [x̂, f(x̂)] = [p̂, g(p̂)] = 0 for arbitrary functions f, g.)



Chapter 3

Building Tools for
Measurement

In this chapter, we will be addressing the notion of measurements and how it fits into the mathe-
matical picture of quantum theory. At this juncture, it is essential to introduce several important
mathematical tools and address key properties of operators associated to observables. These may
vary in appearance depending on the representation of the theory we choose, but rarely is there
any ambiguity once we understand the underlying concepts.

§3.1 Inner Products

We first define an inner product between 2 continuous functions in an infinite-dimensional com-
plex vector space. This makes the vector space a Hilbert space.

Definition 3.1.1. Continuous Function Inner Product: For 2 continuous, complex functions
f(x) and g(x), the inner product of f(x) with g(x) is defined as,

〈f(x), g(x)〉 =

∫ ∞
−∞

dxf∗(x)g(x) (3.1)

The inner product of 2 wave functions tell us their overlap, or colloquially speaking, how much
2 states have in common. If the states are exactly the same, then their overlap is 1 by the
normalization condition. Hence we have the inequality

0 ≤ |〈ψ, φ〉| ≤ 1 (3.2)

where ψ and φ are normalized wave functions.

14
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Example

Consider the functions f(x) = exp
(
−x

2

2

)
and g(x) = x2. The inner product of f(x) with

g(x) would thus be

〈f(x), g(x)〉 =

∫ ∞
−∞

dxf∗(x)g(x)

=

∫ ∞
−∞

x2 exp

(
−x

2

2

)
dx

=
√

2π

Note here that both f(x) and g(x) are real, hence the order of which we arrange the
functions in the inner product is of little significance (〈f(x), g(x)〉 = 〈g(x), f(x)〉).

§3.2 Expectation Values

Quantum mechanics relies heavily on probability theory for mathematical structure. As such,
we can use this to our advantage and adopt probability tools to help us better grasp quantum
systems. Expectation values or simply expectation, gives us a weighted average of all the possible
values of an observable upon measurement.

Definition 3.2.1. Expectation Value: Given an operator Q̂ and an arbitrary quantum state
Ψ, the expectation value of that operator on Ψ is defined as

〈Q̂〉Ψ = 〈Ψ, Q̂Ψ〉 =

∫ +∞

−∞
dx
(

Ψ∗Q̂Ψ
)

(3.3)

Note that expectations can be taken on any operator (not just observables), so in general,

〈Q̂〉Ψ ∈ C (3.4)

where Q is some arbitrary linear operator.

Example

Given the wave function ψ(x) = exp
(
− x2

2σ

)
and operator p̂ = −i~ ∂

∂x , the expectation of

p̂ on ψ(x) is given by
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〈p̂〉ψ =

∫ ∞
−∞

ψ∗(x)p̂ψ(x)dx

= −i~
∫ ∞
−∞

ψ∗(x)
∂

∂x
ψ(x)dx

= i~
∫ ∞
−∞

(
x

σ

)
exp

(
−x

2

σ

)
= 0

A fast means of arriving at the result is noticing that ψ(x) is an even function whereas x
is odd. Hence their product would be odd and the integral over all space would vanish.
Because of their vanishing inner product, ψ(x) and x are called orthogonal (F.2.15).

§3.3 Uncertainty

Another commonly employed tool in classical probability theory is known as the standard de-
viation, usually denoted as σ. In quantum mechanics, we take the standard deviation of an
observable with respect to a given quantum state as the uncertainty. For 2 observables Â and B̂

which do not commute (
[
Â, B̂

]
6= 0), there is an uncertainty when measuring the 2 quantities

simultaneously. This is known as the Heisenberg uncertainty principle. The statement of this
principle is as follows.

Heisenberg Uncertainty Principle

Given 2 observables Â and B̂ that do not commute, there will be an uncertainty relation
when measuring the 2 observables on a quantum state ψ given by

σ2
Â
σ2
B̂
≥
∣∣∣∣ 1

2i
〈ψ,
[
Â, B̂

]
ψ〉
∣∣∣∣2 (3.5)

where σ is the uncertainty of an observable defined by σÂ =
√
〈Â2〉ψ − 〈Â〉2ψ .

Example

Consider the 2 observables x̂ and p̂. We have already seen that their commutation relation
is given by [x̂, p̂] = i~. This means that there is an uncertainty relation between these 2
variables which can be computed as follows.

σ2
x̂σ

2
p̂ ≥

∣∣∣∣ 1

2i
〈ψ, [x̂, p̂]ψ〉

∣∣∣∣2
≥
∣∣∣∣ 1

2i
〈ψ, i~ψ〉

∣∣∣∣2 =
~2

4

(3.6)

This is the widely known position-momentum uncertainty relation and is more commonly
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written as 4x̂4 p̂ ≥ ~/2.

§3.4 Hermiticity and Diagonalization

Hermiticity is a property of all observables and ensures that measured values associated to
Hermitian observables are guaranteed to be real. This is essential in making quantum mechanics
a valid theory of nature.

Definition 3.4.1. Hermiticity: Given an operator A acting on a Hilbert space H, the oper-
ator is said to be Hermitian if

〈Ψ, AΨ〉 = 〈AΨ,Ψ〉 (3.7)

for Ψ being some arbitrary element of the Hilbert space.

At this juncture, it is appropriate to introduce the notion of diagonlizing an operator. This will
allow us to move between different ‘spaces’ (or bases) and tells us the possible states a system
can be in.

Theorem 3.4.1. A linear operator Q on a Hilbert space H is diagonalizable iff there
exists an ordered set of eigenstates {ψi} with corresponding eigenvalues {αi} such that
these eigenstates span the Hilbert space.

To make use of this theorem and understand its utility, we require the following theorems on
Hermitian operators. The proofs are also presented below.

Theorem 3.4.2. All the Eigenvalues of a Hermitian operator Â, are real (R).

Proof. Consider an eigenstate (Φa) of Â with Eigenvalue a. Then since Â is Hermitian,

⇒ (Φa, ÂΦa) = (ÂΦa,Φa)

⇒ (Φa, aΦa) = (aΦa,Φa)

⇒ a(Φa,Φa) = a∗(Φa,Φa)

⇒ a∗ = a

∴ a ∈ R

Hence, if all observables can be described by Hermitian operators, we have resolved the issue of
possibly having complex measurement values! Another useful property of Hermitian operators we
will come to use time and time again is the orthogonality of its non-degenerate eigenstates.
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Theorem 3.4.3. The eigenstates of a Hermitian operator form an orthogonal set of
states. (This is in fact an orthogonal basis that spans the observables’ state space.)

Proof. Consider 2 different eigenstates Φa and Φb, of Â with different eigenvalues a and
b respectively. Then using the Hermiticity of Â,

⇒ (Φa, ÂΦb) = (ÂΦa,Φb)

⇒ (Φa, bΦb) = (aΦa,Φb)

⇒ b(Φa,Φb) = a(Φa,Φb)

⇒ (b− a)(Φa,Φb) = 0

⇒ b = a or (Φa,Φb) = 0

Since we already established that a and b are different eigenvalues, this leads us to con-
clude that (Φa,Φb) = 0. Hence the eigenstates are orthogonal.

The 2 proofs above constitute what is known as the Spectral Theorem, and in summary tells us
that any Hermitian operator can be diagonalized to give an orthogonal set of eigenstates with
real eigenvalues which span the Hilbert space. This means that any arbitrary quantum state
can be written as a linear combination of an observable’s eigenstates!

§3.5 Measurement

So far, we have seen that quantum systems are described by wave functions and no longer adhere
to regular classical descriptions. However when we perform a measurement, we don’t obtain these
quantum waves of probability but instead the classical notion of physical quantities. So what is
actually happening and how do we incorporate this into our theory? The answer comes from a
phenomenon known as the ‘collapse of the wave function’ and is presented in the measurement
postulate below.

Postulate 3.5.1. Given a diagonalizable Hermitian observable Q̂ and an arbitrary quan-
tum state expressed as the superposition of Q̂ eigenstates Ψ =

∑
j αjψj, performing a

measurement of Q̂ on Ψ would cause it to collapse into one of the eigenstates ψj with

probability |αj |2. The measurement outcome would be the eigenvalue qj associated to ψj.

So realize now that every observable has it’s own set of eigenstates and eigenvalues, which allows
us to use different bases of eigenstates as different but equivalent descriptions of a system. Wave
function collapse again, nicely goes hand in hand with the Copenhagen interpretation.

Note: Because measurements are also physical operations on a system, many have asked
how this satisfies the unitarity condition. Some interesting reads which discuss this issue
are given in the bibliography [1], [2].
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§ SUMMARY §
In this chapter,
• We were introduced to inner products with it’s structure elevating a C-vector space

to a Hilbert space.
• We learned the definition of expectation values in the context of quantum mechanics.
• The commutator between 2 observables can tell us if they are complementary vari-

ables, or measurable simultaneously without any uncertainty.
• We saw that observables are represented as Hermitian operators and looked at

several properties to do with Hermiticity.
• We learned how to diagonalize an operator to give the spectrum of the theory.
• We learned about measurement and how it reconciles the wave function formalism

with our observable reality.

Exercises

1. Find the inner product between the following functions in position space:

• f(x) = exp
(
−x

2

2

)
and g(x) = x

• f(x) = x2e−x and g(x) =

{
sin(x) , x ∈ [0, 2π]

0 , otherwise

2. Find the expectation value of x̂ and p̂ on all 4 wave functions from the previous
question in position space.

3. An operator Â is called anti-Hermitian if it satisfies the following relation.

〈Ψ, ÂΨ〉 = −〈ÂΨ,Ψ〉 (3.8)

Prove that all eigenvalues of an anti-Hermitian operator are strictly imaginary.

4. Derive the following identities.

d

dt
〈x̂〉 =

1

m
〈p̂〉, d

dt
〈p̂〉 = −〈V ′(x)〉 (3.9)

These identities constitute the Ehrenfest theorem and are the quantum analog to
Newton’s classical laws of motion.

5. Starting from the time-dependent Schrödinger equation (2.13), convince yourself
that for any time-independent Hamiltonian, the general solution is given by

ψ(x; t) = e−
iĤt
~ ψ(x; 0) (3.10)

Also prove that this time-evolution operator Û(t) = exp
(
− iĤt~

)
, is unitary

(Û(t)†Û(t) = I).



Chapter 4

What Now Schrödinger?

Earlier, we arrived at the famous Schrödinger’s equation (2.13) which is the wave equation that
governs all of quantum dynamics. That said, how do we actually find solutions to this differential
equation? Well, we can simplify things by first looking at objects known as stationary states.
From there, we will finally be able to build and solve a simplified model of radioactive decay as
introduced through smoke detectors at the start of this handbook. We will also see a key feature
of quantum mechanics known as quantization emerge.

§4.1 Stationary States

Thus far, we have explored eigenstates and seen many wonderful properties that these states
exhibit. Knowing the usefulness of eigenstates, we will now explore a specific kind of eigenstate
known as stationary states.

Definition 4.1.1. Stationary States: Stationary states are energy eigenstates constructed
by finding separable solutions to the Schrödinger’s equation.

Note that energy eigenstates are eigenstates of the Hamiltonian. From this definition, we see
that stationary states require us to write our solution to the Schrödinger’s equation as

Ψ(x, t) = ψ(x)f(t) (4.1)

plugging this into Schrd̈inger’s equation, we get

i~
df(t)

dt
ψ(x) =

(
Ĥψ(x)

)
f(t)

⇒ i~
1

f(t)

df(t)

dt
=

1

ψ(x)
Ĥψ(x) (4.2)

We notice that the left-hand side is solely dependent on t whereas the right-hand side is solely
dependent on x. Hence, the only way these 2 sides could be equal is if they were both equal to
a constant. Checking the dimensions, we see that both the LHS and RHS have units of energy

20
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making it convenient to label the seperation constant as E. As such, we arrive at the following
2 equations.

{
i~df(t)

dt = Ef(t)

Ĥψ(x) = Eψ(x)
(4.3)

Looking first at the time dependent equation,

df(t)

dt
= − iE

~
f(t)

⇒ f(t) = f(0)e−
iE
~ t (4.4)

That was simple enough to solve. With this result, we can write our stationary state as

Ψ(x, t) = ψ(x)e−
iE
~ t (4.5)

Notice that in the above representation of the stationary state, we have absorbed the initial
condition factor from solving the time equation into ψ(x). Additionally, we can show that the
stationary state is indeed an energy eigenstate as follows.

ĤΨ(x, t) = Ĥψ(x)e−
iE
~ t

= e−
iE
~ tĤψ(x)

= e−
iE
~ tEψ(x) = EΨ̃(x, t)

Hence, we have shown that Ψ(x, t) indeed satisfies the energy eigen-equation and is thus an
energy eigenstate with energy eigenvalue E.

Having proven this fact, recall that any arbitrary quantum state can be constructed from a
superposition of eigenstates via the spectral theorem. Hence, we can construct any quantum
state from a superposition of stationary states as well!

Ψ(x, t) =

∞∑
n=1

αnΨn(x, t) =

∞∑
n=1

αnψn(x)e−
iEn
~ t (4.6)

§4.2 Modelling Radioactive Decay

Having solved the temporal portion of the separated Schrödinger’s equation, we are now ready
to look for explicit forms of ψ(x) (in 1-dimension).

Note: Unfortunately, a general analytic solution to arbitrary V (x, t) in the Schrödginer’s
equation has not been found. We will be looking at solutions to specific 1D potentials.

This means we are finally ready to build a quantitative picture of radioactivity used in smoke
detectors! We will only be solving a simplified model for radioactive decay, but it will be enough
for us to extract some insightful physics. In particular, we will be considering alpha-decay from
a larger nucleus. The mechanism for radioactive decay is as follows.
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Figure 4.1: α-Particle Decay

During α-decay, the α-particle spontaneously tunnels out of the nuclear potential barrier. When
the α-particle is no longer in tact with the other nucleons, it feels only the electrostatic repulsion
due to the charged daughter nucleus. It thus accelerates away, acquiring the kinetic energy of
a few million electron volts. The approximate radial potential during this process is illustrated
below.

x

V (x)

Nuclear potential well

∝ 1
x

0
×
∼ 10−15m

∼ 30 MeV

Figure 4.2: Radioactive Decay Radial Potential

As seen in figure 4.2, there is a deep nuclear potential well where the α-particle lives before decay.
Without any excitation, the α-particle would have insufficient energy to classically overcome
the nuclear force barrier. But we know that quantum mechanics often breaks classical intuition,
so let’s see what Schrödinger’s equation has to say about this. First, we make one further
simplification to the potential shown in the figure below.

x

V (x)

−V0, Nuclear potential well

0 ∼ 10−15m
×

∼ 30 MeV

Figure 4.3: Simplified Radioactive Decay Radial Potential
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Now, we systematically partition the system into spatial segments, solving for the wave function
within each segment then ‘stitching’ them together afterward.

§4.2.1 In the Nuclear Well

Looking first at region x ∈ [−R,R], the Schrödinger equation here is

− ~2

2m

d2

dx2
ψ(x)− V0ψ(x) = Eαψ(x)

⇒ d2

dx2
ψ(x) = −2m(Eα + V0)

~2
ψ(x)

(4.7)

Much like a finite-square well. To simplify things, we define

k2 ≡ 2m(Eα + V0)

~2
(4.8)

where k is known as the wave number. From our knowledge of ordinary differential equations,
we see that the solution to this ODE is as follows.

ψ(−R < x < R) = Aeikx +Be−ikx (4.9)

(a linear combination of plane-wave solutions with momentum to the left and right) where A
and B are arbitrary complex coefficients to be solved via boundary conditions.

§4.2.2 Classically Forbidden Regions

We now look at the region x ∈ [R,Rc] (the x ∈ [−Rc,−R] region also has a very similar solution).
Here, we note that the energy of the α-particle is lower than the strength of the nuclear potential
barrier Vn. The Schrödinger equation is thus

− ~2

2m

d2

dx2
ψ(x) + Vnψ(x) = Eαψ(x)

⇒ d2

dx2
ψ(x) =

2m|Vn − Eα|
~2

ψ(x)

(4.10)

Again, we define a wave number parameter κ for this (classical forbidden) region,

κ2 ≡ 2m|Vn − Eα|
~2

(4.11)

Taking special care to keep track of our negative signs, we arrive at the following solution.

ψ(R < x < Rc) = Ce−κx +Deκx (4.12)

Actually, we can see that D = 0 because we cannot have the probability amplitude exponentially
increase in a classically forbidden region. Try to reason this to yourself! (The opposite result is
true for x ∈ [−Rc,−R]). This renders our wave function simply as

ψ(R < x < Rc) = Ce−κx (4.13)
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§4.2.3 Freed from Nuclear Entrapment

Finally, we consider the region x ∈ [Rc,∞). It definitely seems classically unorthodox to even
consider this region having a solution, but well, things are unintuitive in the quantum world.
Here, we essentially have a free-particle Schrödinger’s equation. So we again get plane-wave
solutions with wave number k′2 ≡ 2mEα

~2 .

ψ(x > Rc) = Eeik
′x (4.14)

The difference here, is that we know the decayed particle would only have escape momentum away
from the parent nucleus, hence we only considering outward moving plane-wave solutions.

§4.2.4 Joining the Puzzle Pieces

Now, we have 3 separate solutions for 3 separate regions. In fact, we can utlize symmetry and
extend this solution to the entire x space to give

ψ(x) =



Ee−ik
′x, −∞ < x < −Rc

Ceκx, −Rc < x < −R
Aeikx +Be−ikx, −R < x < +R

Ce−κx, +R < x < +Rc

Ee−ik
′x, +Rc < x < +∞

(4.15)

What about the complex coefficients (A,B,C,E)? We know we need a continuous solution because
the Schrödinger’s equation is a second order differential equation, hence requiring ψ(x) and
ψ′(x) to be continuous. We can utilize these continuity conditions to aid us in our solution. A
visualization of the continuous solution is given below (figure 4.4).

r

V (r)

−V0

Eα

ψ(x)

× ×
R Rc

Figure 4.4: Visualization of the Wave Function

Firstly, at the x = R boundary we have

ψ(x = R) : AeikR +Be−ikR = Ce−κR (4.16)



25 4.2. MODELLING RADIOACTIVE DECAY

A valid approximation to employ is that there is a very small amount of the wave which prop-
agates through the barrier. Hence, most of the wave is reflected off, causing the amplitudes A
and B to be largely similar (A ≈ B). As such, we get

2A cos(kR) = Ce−κR

⇒ C = 2AeκR cos(kR)
(4.17)

Now looking at the x = Rc boundary, we have

Ce−κRc = Ee−ik
′Rc

⇒ 2AeκR cos(kR)e−κRc = Ee−ik
′Rc

⇒ E = 2Ae−ik
′Rceκ(R−Rc) cos(kR)

(4.18)

From here, we can immediately extract valuable information relating to the likelihood of the
trapped α-particle escaping. We use a metric known as the transmission coefficient T to measure
this, where T is then the ratio of the outgoing flux from a barrier to the incoming flux (probability
of transmission through a boundary).

T =
k′|ψ(x > Rc)outgoing|2

k|ψ(−R < x < R)incoming|2
(4.19)

So from our solutions earlier, we get a transmission coefficient as follows.

T =
k′|E|2

k|A|2

=
k′

k
·

∣∣∣2Ae−ik′Rceκ(R−Rc) cos(kR)
∣∣∣2

|A|2

= 4

√
Eα

Eα + V0
· e2κ(R−Rc) · cos2(kR)

Which explicitly written, is

T = 4

√
Eα

Eα + V0
· cos2

(
R
√

2m(Eα + V0

~

)
· exp

{
−
√

8m|Vn − Eα|
~

(Rc −R)

}
(4.20)

Hence, we see that the transmission coefficient depends heavily on the width of the barrier
(Rc − R), the strength of the potential well and barrier (V0 and Vn respectively) and of course
the energy of the α-particle Eα. But in any case, there is still a non-zero, significant probability
that the α-particle could sneak its way out of the nuclear potential well! This phenomena is known
as quantum tunneling, and is in fact an essential process for the existence of our universe.

§4.2.5 Stuck in a Box!

Apart from quantum tunnelling, this simple system promises some very insightful new physics.
We will now explore the case where the α-particle doesn’t even have enough energy to tunnel
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out, rendering it stuck forever in the nuclear potential well. Our potential can thus be effectively
modelled as an infinite square well. This system is also often referred to as the particle in a box
problem. Mathematically, we write the potential as

V (x) =

{
0 −R < x < R

∞ otherwise
(4.21)

Because the particle is trapped within the region x ∈ [−R,R] region, the wave function must
vanish at x = −R and x = R. As such, we set-up solving our problem with our knowledge of
differential equations as follows.

− ~2

2m

d2

dx2
ψ(x) = Eψ(x), x ∈ [−R,R]

⇒ ψ(x) = Aeikx +Be−ikx

Applying the boundary conditions.

ψ(−R) = 0 ⇒ A+Be2ikR = 0

ψ(R) = 0 ⇒ A+Be−2ikR = 0

⇒ 2iB sin(2kR) = 0

⇒ kn =
nπ

2R
, n ∈ N\{0} (4.22)

So we see that there is a quantization of the wave number! Recalling that p = ~k and E = p2/2m,
we find that the associated momenta and energies of the particle are

pn =
nπ~
2R

, En =
~2n2π2

8mR2
(4.23)

Hence we get a quantization of both momentum and energy of the particle, indexed by the param-
eter n. A visualization of the wave functions with the lowest 3 energies are illustrated in figure 4.5.

Exercises

1. By applying the normalization condition, show that the normalized wave functions
of an infinite square well of width 2R are given by ψ(x;n) = 1

2
√
R

sin
(
nπ
R x
)
.

2. Give an explanation as to why we ignore negative and trivial values of the wave
vector kn.
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x

V (x)

n = 0

n = 1

n = 2

ψ(x)

0−R R

Figure 4.5: n = 1, 2, 3 Infinite Square Well Wave Functions

The solution of the infinite square well gives rise to 2 theorems on 1D potentials. These theorems
are listed below.

Theorem 4.2.1. There are no degenerate11D bound states.

Theorem 4.2.2. For a 1D bound state, the number of nodes2increases linearly with the
‘quantization index’ n following the relation

number of nodes = (n− 1), for n = 1, 2, 3... (4.24)

Of course, just solving one potential is not sufficient as a proof for these 2 theorems. The proof
for these theorems can be found in appendix D.2.1. I would highly recommend reading through
these proofs or even trying them for yourselves for maximum take away.

§4.3 Dirac’s Bras and Kets

Earlier in chapter 1, we saw how we could write quantum states as vector and the matrix
representation of operators acting on these states. But since the start of chapter 2, we have
been dealing with these continuous function objects we call wave functions. How do we resolve
these 2 seemingly unrelated mathematical objects? Well, firstly we have to be clear about what
difference caused us to use these different objects.

In the Mach-Zehnder interferometer, we saw that the states were intrinsically confined to 2
possible configurations {|u〉 , |d〉}, so there was no need to provide a representation with any

1

Definition 4.2.1. Degeneracies: An energy level is called degenerate if there exists 2 or more energy eigenstates
that are associated to this same energy.

2

Definition 4.2.2. Node: For a wave function in one spatial dimension x, a node is a point away from spatial
boundaries where the wave function ψ(x) crosses the x axis on a ψ(x) vs x plot.



CHAPTER 4. WHAT NOW SCHRÖDINGER? 28

more than 2 complex numbers (All probabilistic information of the system could be encoded with
these 2 complex numbers). But when we introduced the wave function formalism, we required
mathematical objects that were labelled by a continuous variable x (position). This continuous
variable makes it way harder to track the probabilistic information of the entire system (tracking
ψ(x) for all values of x simultaneously). Despite this, it is still theoretically possible to have a
vector analog for systems with continuous labels. We write this abstract infinitely long vector
as |ψ〉, known as a ‘ket ’ (as per in Mach-Zehnder interferometry).

Note: What is written inside the ket is simply a label which indicates the significance
of that state with respect to a system. Generally, we write |ψ〉 when referring to some
arbitrary state.

Writing this out explicitly,

ψ(x)→ |ψ〉 =



...
ψ(−2ε)
ψ(−ε)
ψ(0)
ψ(ε)
ψ(2ε)

...


(4.25)

where ε is an infinitesimally small slice of space. To define an inner product on a complex vector
space, we require a definition of conjugate transposition. The notation that Dirac proposed for
the conjugate transpose of a ket is called the ‘bra’, given by

〈ψ| =
(
|ψ〉∗

)T
= |ψ〉† (4.26)

The symbol we use for conjugate transposition (†) is called the dagger. With this, we can formally
introduce inner products by simple closing the ‘bra-ket ’, 〈ψ|φ〉. Expectations are performed in
the same way with the observable wedged in-between, 〈ψ| Q̂ |ψ〉.

Note: Mathematically speaking, bra vectors live in the dual space of the ket Hilbert
space in accordance to the Riesz representation theorem3.

. Additionally, operators like Ĥ and p̂ will also adopt matrix representations, where the ijth

entry is given by

[Q̂]ij = 〈ψi| Q̂ |ψj〉 (4.27)

In equation (4.27) above, the |ψj〉 states are eigenstates of some operator (not necessarily Q̂)
acting on that Hilbert space. We know from the spectral theorem (3.4.2 and 3.4.3) that Hermitian
observables are diagonalizable with real eigenvalues and a spanning set of eigenstates. Hence,
it is imperative to specify which basis we are working with in order to construct the matrix
representation of an operator. To be explicit, given some basis

B = {|ψ1〉 , |ψ2〉 , ..., |ψn〉} (4.28)

3The Riesz representation theorem essentially says that for every Hilbert space H, there exists a dual Hilbert
space H∗ such that every |ψ〉 in H has a 〈ψ| in H∗
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and an operator Q̂, the matrix representation of Q̂ in the B basis is given as

Q̂ =


〈ψ1| Q̂ |ψ1〉 〈ψ1| Q̂ |ψ2〉 . . . 〈ψ1| Q̂ |ψn〉
〈ψ2| Q̂ |ψ1〉 〈ψ2| Q̂ |ψ2〉 . . . 〈ψ2| Q̂ |ψn〉

...
. . .

...

〈ψn| Q̂ |ψ1〉 〈ψn| Q̂ |ψ2〉 . . . 〈ψn| Q̂ |ψn〉

 (4.29)

Note: Given some observable Q, working in the Q basis would ensure that the matrix
representation of Q̂ is diagonal.

It also follows that in some countable basis, the property of completeness asserts the following
relation: ∑

j

|ψj〉 〈ψj | = I (4.30)

This is sometimes referred to as the ‘resolution of the identity ’. A simple case to check this
would be the 2-level system we saw in the Mach-Zehnder interferometry experiment. For this
basis ({|u〉 , |l〉}), we get the sum to be explicitly written as:∑

j

|ψj〉 〈ψj | = |u〉 〈u|+ |l〉 〈l|

=

[
1
0

] [
1 0

]
+

[
0
1

] [
0 1

]
=

[
1 0
0 1

]
= I

(4.31)

Indeed giving us a resolution of the identity operator.

Note: For bases that cannot be enumerated (non-enumerable bases), the identity is given
by an integral. For instance, the resolution of the identity in the position basis is given
as: ∫ ∞

−∞
dx |x〉 〈x| = I (4.32)

This will not be further elaborated on in this handbook, so as to prevent information
overload to the learner (more on this can be read about in [5]).

Example

Let’s say that we are working in the momentum basis for the infinite square well system
(of width L) with quantized momentum. It is then useful to write the eigenstates of the
p̂ operator as {|pn〉}. In this basis, p̂ is diagonal with entries computed by

[p̂]ij = 〈pi| p̂ |pj〉 = pi,jδi,j (4.33)
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The matrix would thus look something like

p̂ =



p1,1 0
. . .

... pj,j
...

pj+1,j+1

0
. . .


(4.34)

We can also easily see that the jth eigenvector (eigenstate) is a vector with 1 in the jth

position and 0 everywhere else.

|pj〉 =



...
0j−1

1j
0j+1

...

 , pj,j =
jπ~
L

(4.35)

This satisfies the relation in 4.33. Make sure to check for yourself that this works and get
familiar with the correspondence between kets and number array vectors.



31 4.3. DIRAC’S BRAS AND KETS

§ SUMMARY §
In this chapter,
• We solved for the time dependence of separable wave function solutions.
• We learned about stationary states as separable solutions to the time-independent

Schröinger equation.
• We saw how radioactive α-decay from a parent nucleus could be modelled as a

1-dimensional potential problem.
• We saw that quantum tunnelling is the main mechanism which allows for radioactive
α-decay to occur.
• We saw energy and momentum quantization naturally arise due to boundary con-

ditions of a 1-dimensional potential.
• We learned how to express general quantum states and operators in their matrix

representations, coupled to the use of Dirac notation.

Exercises

1. (a) Using the node theorem, sketch the ground state (n = 0) wave function for
the simplified radioactivity model (figure 4.3) where Eα < 0.

(b) Using the intuition from your sketch, solve for an analytic solution.

2. Consider again an infinite square well but now positioned at x ∈ [0, L]. Re-derive
the nth bound state wave function along with its quantized momentum and energy.

3. Prove that a non-trivial wave function can never vanish along with its first spatial
derivative (cannot have both ψ(x) and ψ′(x) being simultaneously 0 at any x).

4. In the position basis, find the matrix representations of x̂ and p̂. (Hint: Use the
limit definition of a derivative to find p̂).

5. Given some arbitrary state |ψ〉 and a position eigenstate |x〉, write ψ(x) in terms

of these abstract ket vectors. Write
∫∞
−∞ dx|ψ(x)|2 in terms of |ψ〉 and |x〉.
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Chapter 5

Quantum Computation

So far we have learned that our world works in strange and unintuitive ways at small scales. This
advent of quantum mechanics has granted us access to a plethora of previously unimaginable
technologies. In this chapter, we take a closer look at an aforementioned emerging quantum
technology, one of which could shape our future drastically. This is the technology of quantum
computers. Quantum computation is an entirely new model of computation that sprung out of
the work by Paul Benioff and Yuri Manin in 1980, Richard Feynman in 1982 and David Deutsch
in 1985. We are about to learn the workings of this new computational engine. Strap-up.

§5.1 TLDR; Classical Computers

There are currently many models of classical computation, some of which are what we call,
universal while others are not. This idea of universal computation was proposed by Alan Turing
in 1936, saying that any ‘reasonable’ computation can be solved by a universal machine. Below is
a list of some of these computational models, whether or not they are universal is indicated.

1. Turing Machines (Universal)

2. Finite Automata (Not Universal)

3. λ-calculus (Universal)

5. Coin Tosses (Not Universal)

6. Circuit Models (Universal)

Out of these, the circuit model is what I will be touching briefly on because it will pave the
way for the model of quantum computation. What you need to know about the circuit model is
that it has the following structure.

Figure 5.1: The Circuit Model (Computer Science)

33
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Note: Circuits are only designed for finite sized inputs. The formal mathematical
definition of the circuit model requires knowledge of graph theory, in which the circuit is
a finite directed acyclic graph. We will neither learn nor require this formal definition.

The circuit model is a generalization of the common boolean circuitry with universal gates
{AND,NOT} (for instance). Also, the description of a circuit should be the output of a classical
computer program.

§5.1.1 Byte-Sized Complexity Theory

It would be useful for us to know a little bit of complexity theory as a step to the appreciation
of quantum computing.

Disclaimer: Bear in mind that the information on complexity theory provided here is
minimal and relatively informal.

Many problems in computer science can be expressed as decision problems. Examples of these are
the primality (is m prime?) and factoring (given m, l ∈ Z with l < m, does m have a non-trivial
factor less than l?). For such problems, if the number of operations (∼ time of computation)
is a polynomial function of the size of the input n, we call these class of problems polynomial
hard, or simply ∈ P . Also, if ‘yes’ instances of these problems are easily verified with the aid of
a ‘witness’, then we say that the problem is contained in the bigger class of NP -hard problems
(nondeterministic polynomial time). On the other hand, if ‘no’ instances are easily verifiable by
the witness, the problem ∈ co-NP .

Finally, there is a special class of problems which are known as NP -complete. What makes it
special is that solving NP -complete problems will allow for us to solve all NP problems! A set
visualization of the classes is given below.

Figure 5.2: Complexity Classes

Of course, these 3 classes of problems are not nearly an exhaustive list of complexity classes
being studied by computer scientists. In fact, quantum decision problems solvable in polynomial
time are also specially categorized, with the class being known as BQP (bounded-error quantum
polynomial time).
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§5.2 The Qubit

The fundamental constituent of a quantum computer is a quantum bit, otherwise known as a
qubit. In theory, any 2-level quantum system can be realized as an implementation of a qubit.
Take for instance the previously explored Mach-Zehnder interferometer (1.1). Upon passing
the photon through the beam splitters, we effectively created a qubit state in superposition

(|ψ〉 = |u〉+|d〉√
2

)!

Another intrinsic 2-level system is the spin of spin- 1
2 particles. A more rigorous treatment of

spin is discussed in appendix E but for all intends and purposes, we can think of quantum spin as
the 2-level quantized version of the classical spin for a charged sphere. This quantization allows
us to represent the orthogonal states of our spin qubit as follows.

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
(5.1)

Here, we have adopted the notation used by quantum information scientists, where the 2 qubit
states are labelled by 0 and 1. Since spin is an observable quantity, quantum mechanics promotes
it to a Hermitian operator denoted as Ŝz with eigenvalues ±~

2 . The subscript z on the spin
operator denotes the canonical basis, where we take the default axis of measurement to be along
z in 3D space. A keen observer would have noticed that there is a subtlety here. We have 2
vector spaces in which one seems to be ‘embedded’ in the other. These vector spaces are

1. The 2D vector space of spin states (quantum state space)

2. The 3D vector space of rotations (real space)

This means that in any arbitrary direction in real space, there lives a 2D complex vector space.
Formally, we have a smooth sphere of rotations called the Lie group with a tangent vector space
known as the Lie algebra (appendix F.2.16). The Pauli matrices (introduced soon) multiplied
with an i are solutions to this Lie algebra, and they can then be exponentiated with a continuous
real parameter to generate the Lie group. A bastardized visualization of this for our context is
shown below (figure 5.3).

y

z

x

|0〉

|1〉

Spin axis

“Lie algebra”
(eigenstates)

Lie group

Figure 5.3: Visualization of Spin Rotations

A similar method of visualization is known as the Bloch sphere geometric representation. This
will not be covered but can be read about in [6].
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§5.3 Pauli Gates

There is actually a bijective map1 (so(3) ∼= su(2))2 from the generators of 3D rotations over
an R-vector space to 2D Pauli matrices over the complexes. The matrix representation of the
solutions to this algebra (su(2)) are as follows:

I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(5.2)

where σx, σy and σz are known as the Pauli matrices and the identity matrix is added to form
a basis for all 2 × 2 Hermitian matrices (but not part of the algebra). The Pauli matrices
conveniently correspond to spin operators in the x, y and z axes (up to a scale factor of ~

2 ).
Explicitly, the spin matrices are

Ŝx =
~
2

[
0 1
1 0

]
, Ŝy =

~
2

[
0 −i
i 0

]
, Ŝz =

~
2

[
1 0
0 −1

]
(5.3)

each of which are spin observables along specified axes (x, y, z) written in the z basis represen-
tation. The eigenstates of each of these operators are given below.

Ŝx : |+〉 =
1√
2

[
1
1

]
, |−〉 =

1√
2

[
1
−1

]
Ŝy : |↑〉 =

1√
2

[
1
i

]
, |↓〉 =

1√
2

[
1
−i

]
Ŝz : |0〉 =

[
1
0

]
, |1〉 =

[
0
1

] (5.4)

Or written in the canonical basis,

Ŝz : {|0〉 , |1〉}, Ŝy : { |0〉+ i |1〉√
2

,
|0〉 − i |1〉√

2
}, Ŝx : { |0〉+ |1〉√

2
,
|0〉 − |1〉√

2
} (5.5)

The spin matrices follow a set of cyclic commutation relations known as the algebra of angular
momentum (recall the definition of a commutator from 2.3.1).[

Ŝx, Ŝy

]
= i~Ŝz,

[
Ŝy, Ŝz

]
= i~Ŝx,

[
Ŝz, Ŝx

]
= i~Ŝy (5.6)

The Pauli operators follow a similar algebra but with a factor of 2/~. The wonderful thing
about Pauli matrices is that they are all unitary, Hermitian and involutory (squares to identity).
Unitarity makes them realizable as physically implementable operations on qubits, so we can use
them to construct quantum gates (analogous to logic gates for classical circuits)!

Note: When we refer to the Pauli matrices in the context of gates, we drop the σ and
simply label them as {X,Y, Z}.

1Refer to appendix F.2.12 for more information on bijectivity.
2so(3) and su(2) are Lie algebras of the 3D special orthogonal and 2D special unitary groups, SO(3) and

SU(2).
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§5.4 More Qubits; Tensor Products

Clearly, having a computer (even a quantum one) with one bit (qubit) isn’t very useful. The
beauty of quantum computers is that the addition of more qubits doesn’t scale in the same
way that adding more bits to a C-computer does. For multi-particle (many-body) quantum
systems, we require the use of tensor products. I will be presenting tensor products in their
matrix representation, also known as Kronecker products. Given 2 vectors

|ψ〉 =


...
ψj
ψj+1

...

 , |φ〉 =


...
φj
φj+1

...

 (5.7)

with |ψ〉 ∈ V and |φ〉 ∈W , the Kronecker product of |ψ〉 and |φ〉 is given by

|ψ〉 ⊗ |φ〉 =


...

ψj |φ〉
ψj+1 |φ〉

...

 (5.8)

Note: A common shorthand notation is to drop the ⊗ symbol and merge the kets
|ψ〉 ⊗ |φ〉 → |ψφ〉.

This new |ψ〉 ⊗ |φ〉 state is part of the tensor-ed Hilbert space V ⊗W . The dimensions of this
larger Hilbert space is given by dim(V ⊗W ) = dim(V ) · dim(W ). We also require the operators
acting on these states to have a defined action on the tensor-ed Hilbert space. As such, we also
define a Kronecker product for matrices as such. Given 2 matrices,

Â =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

...
an1 an2 . . . ann

 , B̂ =


b11 b12 . . . b1nm
b21 b22 . . . b2m
...

. . .
...

bm1 bm2 . . . bmm

 (5.9)

the Kronecker product of Â and B̂ is defined as

Â⊗ B̂ =


a11B̂ a12B̂ . . . a1nB̂

a21B̂ a22B̂ . . . a2nB̂
...

. . .
...

an1B̂ an2B̂ . . . annB̂

 (5.10)

which would be a (n · m) × (n · m) matrix. The action of these operators on states are thus
defined as follows.

(Â⊗ B̂)(|ψ〉 ⊗ |φ〉) = Â |ψ〉 ⊗ B̂ |φ〉 (5.11)
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Example
Consider a system of 2 qubits, one at site A and the other at site B (distinguished by
their positions). Let’s now say that both qubits are initially in the |0〉 state using the
canonical basis. The state of the total system is then

|state〉AB = |0〉A ⊗ |0〉B =

[
1
0

]
⊗
[
1
0

]
=
[
1 0 0 0

]T
(5.12)

If we now perform an operation on the system given by (Z ⊗Y )(X ⊗X), the state of our
system would evolve as such.

(Z ⊗ Y )(X ⊗X)(|0〉A ⊗ |0〉B) = (Z ⊗ Y )(X |0〉A ⊗X |0〉B)

= (Z ⊗ Y )(|1〉A ⊗ |1〉B)

= (Z |1〉A ⊗ Y |1〉B)

= (− |1〉A)⊗ (−i |0〉B) = |1〉A ⊗ i |0〉B

(5.13)

Or in the language of matrices,
0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




1
0
0
0

 =


0
0
i
0

 (5.14)

§5.5 Quantum Circuits

We now introduce the formalism of quantum circuit diagrams. Quantum circuits are drawn in
the following steps:

1. Specify the qubit inputs.
2. Connect quantum wires from inputs to outputs.
3. Specify intermediate gates to take inputs to outputs.
4. Include any classical post-processing required.

Example
Below is a quantum circuit for producing the Greenberger-Horne-Zeilinger (GHZ) state.

|0〉

|0〉

|0〉

H

X

X

|000〉+|111〉√
2

Figure 5.4: Quantum Circuit for GHZ State

In the circtui above, the H gates are Hadamard gates and the gates which span 2 quantum
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wires are called controlled-NOT gates (CNOT gate). All gates with a linking node to
another quantum wire makes that gate a control gate.

Above, we have already introduced 2 new gates not previously presented. As such, it would seem
a good time to list a set of frequently used quantum gates with their circuit symbols and their
matrix representations.

H

Figure 5.5: Hadamard Gate

1√
2

[
1 1
1 −1

]

X

Figure 5.6: Pauli-X/NOT Gate

[
0 1
1 0

]

Y

Figure 5.7: Pauli-Y Gate

[
0 −i
i 0

]

Z

Figure 5.8: Pauli-Z Gate

[
1 0
0 −1

]

S

Figure 5.9: Phase Gate

[
1 0
0 i

]

T

Figure 5.10: π/8 Gate

[
1 0
0 eiπ/4

]

X

Figure 5.11: CNOT Gate


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Exercise

Given a system of 2 qubits, construct quantum circuits with input |0〉 ⊗ |0〉 such that
they produce the following output states.

1. |Φ+〉 = (|00〉+ |11〉)/
√

2

2. |Φ−〉 = (|00〉 − |11〉)/
√

2

3. |Ψ+〉 = (|01〉+ |10〉)/
√

2

4. |Ψ−〉 = (|01〉 − |10〉)/
√

2

These are the famous Bell states, and are very widely used in quantum informa-
tion.

§5.6 Spooky Action at a Distance

Consider the state ∣∣Φ+
〉

=
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√

2
=
|00〉AB + |11〉AB√

2
(5.15)

The form of this state is very unique because if you notice, having measured and determined
the qubit state in A, the state in B is automatically known. In fact, after preparation of
the state |Φ+〉, it seems there will always be this binding correlation between particles A and
B no matter the distance between them. This phenomena is what physicist termed quantum
entanglement.

Note: This seems to imply but does not actually allow for superluminal information
transfer as it would violate Einstein’s theory of special relativity.

Entanglement is an integral part of many quantum protocols and algorithms, but is also the
biggest challenge impeding the construction of scalable quantum computers today.

§5.7 Beam Me Up, Scotty!

We are now ready to look at our first quantum protocol. This protocol aids in the sending of
quantum information, and is made especially useful because of the no-cloning theorem.

Theorem 5.7.1. The no-cloning theorem states that it is impossible to create an identical
copy of some arbitrary unknown quantum state |ψ〉.

This protocol we are about to learn is called quantum teleportation. Quantum Teleportation is
the process of transmitting quantum information between 2 individuals (Alice and Bob) who
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agree on a prior scheme. This is done by means of sending classical bits and utilizing quantum
entangle.

The Protocol

1. Alice has a single qubit quantum state which she wants to send over to Bob. Alice
and Bob also share a 2-qubit entangled state, which means Alice has 2 qubits and
Bob, 1.

2. Alice then performs a measurement in the Bell basis on her 2 qubits which grants
her 2 classical bits.

3. Alice then sends her 2 classical bits over a classical channel to Bob.
4. Bob receives the 2 classical bits, and performs the necessary unitary on his qubit

according to a previously agreed upon rule, obtaining Alice’s original qubit. The
state has been effectively teleported.

§5.7.1 Q-Teleportation Analysis

Let’s say Alice starts of with an arbitrary single qubit state that she wants to send to Bob,
|ψ〉 = α |0〉A+β |1〉A. The subscript is used to denote that this is Alice’s state. Also assume that

Alice and Bob initially share the entangled Bell state, |Φ+〉 =
|00〉AB+|11〉AB√

2
. The total state of

the system is now,

∣∣Φ+
〉
AB
⊗ |ψ〉A = (

|00〉AB + |11〉AB√
2

)⊗ (α |0〉A + β |1〉A)

=
(α |000〉+ α |110〉+ β |001〉+ β |111〉)ABA√

2

=
(α |000〉+ α |101〉+ β |010〉+ β |111〉)AAB√

2

Using the following Bell basis identities,

|00〉 =
1√
2

(
∣∣Φ+

〉
+
∣∣Φ−〉)

|01〉 =
1√
2

(
∣∣Ψ+

〉
+
∣∣Ψ−〉)

|10〉 =
1√
2

(
∣∣Ψ+

〉
−
∣∣Ψ−〉)

|11〉 =
1√
2

(
∣∣Φ+

〉
−
∣∣Φ−〉)

⇒
∣∣Φ+

〉
AB
|ψ〉A =

α(|Φ+〉+ |Φ−〉) |0〉+ α(|Ψ+〉 − |Ψ−〉) |1〉+ β(|Ψ+〉+ |Ψ−〉) |0〉+ β(|Φ+〉 − |Φ−〉) |1〉
2

⇒
∣∣Φ+

〉
AB
|ψ〉A =

|Φ+〉 (α |0〉+ β |1〉) + |Φ−〉 (α |0〉 − β |1〉) + |Ψ+〉 (β |0〉+ α |1〉) + |Ψ−〉 (β |0〉 − α |1〉)
2
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The simple rewriting in the Bell basis of Alice’s state shows us that Alice’s 2 qubits are now
entangled, while the entanglement between Alice’s and Bob’s qubits is broken! Notice how Bob’s
state now resembles the state that was originally intended for teleportation.

We now have to look into building a circuit that extracts information from Bell states just as
measurements in the canonical basis would. The idea behind this is that we would like to first
transform the Bell states into separable states, and then into the canonical basis for measurement.
It turns out that this can be done by applying the following sequence of gates: A CNOT gate
from the 1st to the 2nd qubit, then a Hadamard to the 1st qubit.∣∣Φ+

〉
=
|00〉+ |11〉√

2

CNOT−−−−→ |00〉+ |10〉√
2

= |+〉 |0〉 H⊗I−−−→ |00〉

∣∣Ψ+
〉

=
|01〉+ |10〉√

2

CNOT−−−−→ |01〉+ |11〉√
2

= |+〉 |1〉 H⊗I−−−→ |01〉

∣∣Φ−〉 =
|00〉 − |11〉√

2

CNOT−−−−→ |00〉 − |10〉√
2

= |−〉 |0〉 H⊗I−−−→ |10〉

∣∣Ψ−〉 =
|01〉 − |10〉√

2

CNOT−−−−→ |01〉 − |11〉√
2

= |−〉 |1〉 H⊗I−−−→ |11〉

Hence we see that by passing Alice’s 2 qubits through the above circuit consisting of a CNOT
and a Hadamard gate, we get states in computational basis that will allow us to correct Bob’s
state! The final step in the protocol for Bob to retrieve Alice’s initial quantum state is to apply
the respective recovery operators as follows

00→ I
01→ σx

10→ σz

11→ σxσz

Amazingly, Alice has sent her single qubit quantum state to Bob by the transfer of 2 classical bits
of information. We can also write this in quantum circuit notation as follows (figure 5.12).

|ψ〉A

|Φ+〉A

|Φ+〉B

X

H

X |ψ〉B

Figure 5.12: Quantum Teleportation Circuit

In the circuit above,

Figure 5.13: Measurement Apparatus

is the symbol for canonical basis measurement.
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Note: Single lines are used to indicate quantum wires whereas double lines indicate
classical wires.

§5.8 Deutsch–Jozsa’s Algorithm

We will now look at a quantum algorithm proposed by David Deutsch and Richard Jozsa in
1992. This simple algorithm was one of the first Q-algorithms promising exponential speed-up
from any deterministic classical algorithm. First, we state Deutsch–Jozsa’s problem.

Deutsch–Jozsa’s problem:
Given an oracle function f on n bits, we want to determine if f is either

1. Constant: f(x) = 0 (or 1) for all values of x.

2. Balanced: f(x) =

{
0, half of the x inputs

1, other half of the x inputs

In computer science, this is known as a promise problem. Classically, we would have to look up
exactly 2n/2+1, or O(2n) function outputs in the most unlucky scenario to confirm the function
is not constant. The classical circuit would look as such.

x Input

n

Oracle f(x) Output

Figure 5.14: Classical Deutsch–Jozsa Circuit

The quantum analog of the classical circuit would be as follows. Note that we have to make the
quantum circuit reversible1.

x

|b〉

n

Oracle

Q-circuit

n

x

|b⊕ f(x)〉

Figure 5.15: Quantum Deutsch–Jozsa Circuit

The x input represents an n-bit binary string (e.g. x = 0010110...01). Note that in the quantum
circuit above, the qubits which are known in advance are called ancilla bits. In this handbook,
we will be presenting the algorithm for an n qubit circuit but will only perform an analysis for
the 2 qubit case.

1Reversible computing is a model of computation where the computational process is reversible (isentropic).
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The Deutsch–Jozsa Algorithm

1. We begin with n+ 1 qubit registers, the top n of which start in state |0〉 while the
last is in state |1〉.

2. We apply Hadamard gates to every qubit in the circuit.
3. The oracle is now applied to all qubits as in figure 5.15.
4. We again apply Hadamard gates, but now only to the top n registers.
5. We measure the top n registers in the canonical basis.

The 2 qubit circuit diagram for this is illustrated below.

|0〉

|0〉

|1〉

H

H

H

Oracle

H

H

Figure 5.16: 2 Qubit Deutsch–Jozsa Algorithm

§5.8.1 2-Qubit Algorithm Analysis

As seen from the protocol above, we initially start off with the state |001〉. After passing it
through the Hadamard gates, the state evolves as follows.

H⊗3 |001〉 =
1√
23

(|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ (|0〉 − |1〉)

=
1√
23

22−1∑
x=0

|x〉 ⊗ (|0〉 − |1〉)
(5.16)

Above, we adopted the shorthand notation where H⊗H⊗H is written as H⊗3. Again, remember
that x represents a 2-bit binary string. After this, we apply the oracle which yields

UOracle

(
1√
23

22−1∑
x=0

|x〉 ⊗ (|0〉 − |1〉)
)

=
1√
23

22−1∑
x=0

|x〉 ⊗ (|f(x)〉 − |1⊕ f(x)〉)

=
1√
23

22−1∑
x=0

(−1)f(x) |x〉 ⊗ (|0〉 − |1〉)

(5.17)

⊕ represents bitwise addition (addition modulo 2). Once again, we apply Hadamards to the first
2 qubits, giving

H⊗2 ⊗ I
(

1√
23

22−1∑
x=0

(−1)f(x) |x〉 ⊗ (|0〉 − |1〉)
)

=
1√
25

22−1∑
x=0

(−1)f(x)
( 22−1∑
y=0

(−1)x·y |y〉
)
⊗ (|0〉 − |1〉)

(5.18)
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Above, the dot product between x · y is performed over a finite field. More explicitly, x · y =
x0y0⊕ x1y1⊕ ...⊕ xnyn. Lastly, we perform a measurement on the 2 top qubits in the canonical
basis. To see what the measurements could yield, we check the probability of obtaining |00〉.
Looking at the final state before measurement (dropping the last auxiliary qubit),

1

22

22−1∑
x=0

(−1)f(x)
( 22−1∑
y=0

(−1)x·y |y〉
)

(5.19)

we see that only 1 term in the sum over y would be |00〉 with coefficient 1
22

∑22−1
x=0 (−1)f(x). Hence

the probability of measuring (0, 0) from the top 2 qubits is

P(00) =

∣∣∣∣∣∣ 1

22

22−1∑
x=0

(−1)f(x)

∣∣∣∣∣∣
2

(5.20)

From this, we see that if the function f is constant, we get

P(00) =

∣∣∣∣ 1

22

(
(−1)0 + (−1)0 + (−1)0 + (−1)0

)∣∣∣∣2 =

∣∣∣∣ 1

22

(
(−1)1 + (−1)1 + (−1)1 + (−1)1

)∣∣∣∣2 = 1

(5.21)

Whereas if the function f is balanced, we get

P(00) =

∣∣∣∣ 1

22

(
(−1)0 + (−1)0 + (−1)1 + (−1)1

)∣∣∣∣2 = 0 (5.22)

So amazingly, we see that the Deutsch–Jozsa algorithm definitively produces |00〉 for constant
functions and |11〉 for balanced functions! This means that with just one query, we have solved
the Deutsch–Jozsa problem (vs 2n−1 + 1 queries classically)! This shows the power of quantum
computers.



CHAPTER 5. QUANTUM COMPUTATION 46

§ SUMMARY §
In this chapter,
• We very briefly looked at some classical models of computation and basic complexity

theory.
• We learned what a qubit is and how any 2-level quantum system can be used as

implementations of qubits.
• We learned about tensor products as a method to describe many-body quantum

systems with exponentially expanding Hilbert spaces.
• We looked at the formalism of quantum circuit diagrams and how single unitary

operators can act as quantum gates.
• We finally attained a mathematically rigorous understanding of entanglement that

was introduced in chapter 1.
• We saw how entanglement could be utilized in the Q-teleportation protocol to effec-

tively send a quantum state from Alice to Bob. The Q-teleportation protocol was
provided in words and a circuit diagram.
• We learned the Deutsch–Jozsa algorithm, which solves the Deutsch–Jozsa problem

exponentially faster than any deterministic classical algorithm.

Exercises

1. For all the Pauli matrices σj , prove that since they are involutory, they satisfy

eiθσj = I cos(θ) + iσj sin(θ) (5.23)

2. The anti-commutator of 2 operators Â and B̂ is defined as {Â, B̂} = ÂB̂ + B̂Â.
Prove that

{σi, σj} = 2δijI (5.24)

3. Construct a 4×4 unitary matrix S that swaps the tensor product of 2 qubit states
S |ψ〉 |φ〉 = |φ〉 |ψ〉. (Hint: It can be constructed with purely real entries.)

4. Find the recovery operators for the Q-teleportation protocol if Alice and Bob
initially shared either |Φ−〉 , |Ψ+〉 or |Ψ−〉 instead.

5. Following the analysis of the 2-qubit Deutsch-Jozsa algorithm, do the same analysis
but extended to the n-qubit case. Be sure to take note of the normalization factors.



Chapter 6

Bell vs EPR

We come to the closing chapter of our journey through the quantum world. Here, I will present the
erroneous claims of Einstein, Podolsky, and Rosen (EPR), along with the proof of falsity given by
John Stewart Bell. The mathematical statement put forth by Bell (referred to as Bell’s theorem)
is likely the most profound fact about quantum mechanics. Even though Bell’s theorem would
not really be considered a ‘abstracted’ topic from quantum physics, the implications of it seem an
appropriate closer that will leave you rightfully baffled by the mysteries of our universe.

§6.1 More on Spin Measurement

Before we discuss what is known as the EPR paradox, we have to familiarize ourselves with
arbitrary directional spin measurement. As earlier discussed, the spin vector space is em-
bedded in the space of 3D continuous rotations. This means that any axis in 3D space can
be an axis for spin measurement. Using polar coordinates, consider some unit vector ~r =
{sin θ cosφ, sin θ cosφ, cos θ}T . An illustration of the spin along ~r in the “Lie group/algebra
visualization” is shown below.

y

z

x

|~r; +〉

|~r;−〉

Figure 6.1: Spin Along an Arbitrary Axis
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It can be shown that the spin operator along this axis is given by

~r · ~̂S = Ŝx sin θ cosφ+ Ŝy sin θ sinφ+ Ŝz cos θ =
~
2
~r · ~̂σ (6.1)

with eigenstates

|~r; +〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

|~r;−〉 = sin
θ

2
|0〉 − eiφ cos

θ

2
|1〉

(6.2)

It is a good exercise for you check that the states and operators presented with arbitrary {θ, φ}
correspond to the Pauli matrices and their eigenstates for σx : {π/2, 0}, σy : {π/2, π/2} and
σz : {0, 0}. From here, consider spin measurements along the arbitrary axis ~r. Given some
quantum state, we would be able to extract probabilistic information about the result of such a
measurement via projective methods. This can be illustrated by considering the following.

Probability Retrieval:

Generally speaking, given some basis {|~r; +〉 , |~r;−〉} and an arbitrary quantum state |Ψ〉,
we can compute the probability of attaining the eigenvalue +1 as follows.

P(+1) = |〈~r; +|Ψ〉|2 (6.3)

And similarly for the eigenvalue −1. For instance, let’s say we want to make a measure-
ment in the canonical basis {|0〉 , |1〉} on the state |ψ〉 = α |0〉 + β |1〉. Then we see that
the associated probabilities for getting the ±1 eigenvalues are as follows.

P(+1) = |〈0|ψ〉|2

= |〈0| (α |0〉+ β |1〉)|2

= |α|2
(6.4)

P(−1) = |〈1|ψ〉|2

= |〈1| (α |0〉+ β |1〉)|2

= |β|2
(6.5)

§6.2 Just An Illusion?

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) claimed that the wave func-
tion was an incomplete description of our physical reality, implying that the Copenhagen in-
terpretation of quantum mechanics is unsatisfactory. Instead, they proposed the existence of
hidden variables which govern the quantum phenomena we observe in a deterministic fashion.
This followed from their belief of local realism (The idea that objects are only affected by their
immediate surroundings), which was key in classical field theories like general relativity. This
greatly contradicted the notion of entanglement, as entanglement seems to allow for instanta-
neous action at a distance.



49 6.2. JUST AN ILLUSION?

It was in 1964 that Bell came up with a rigorous proof that EPR’s predictions could not be true,
which was firmly validated by the experimental works of Alain Aspect [3] in 1981. The rebuttal
is as follows.

Elucidation of Bell’s Theorem

First consider an entangled state like |Ψ+〉 = 1√
2
(|01〉+ |10〉). This is also known as the singlet

state due to its total spin angular momentum. EPR would say that this so-called entangled
state are just pairs of particles with definite spins. The point being that quantum mechanical
measurements are reproducible by using a large ensemble of these definite spin pairs with the
following distribution:

• In 50% of pairs, particle 1 has spin along +ẑ and particle 2 has spin along −ẑ, and

• the other 50% of pairs have particle 1 along −ẑ and particle 2 along +ẑ.

This would resolve the perfect non-local correlation between the spins of the two particles where
P (+ẑ,−ẑ) = 1/2. What if we now tried to measure this state along 3 different axes, ~a,~b and ~c
with equal angular spacing θ between them? A visualization of this is given below (6.2).

~a

~c

~b

θ
θ

Figure 6.2: Evenly Spaced Axes

Let’s see what we would get if we followed EPR’s proposition. Given some population of N
particle pairs with a deterministic distribution of states as displayed in the table below. We will
label the deterministic state of the particles within each pair with a triple (±a,±b,±c), where the

parity indicates the corresponding eigenvalue ±~/2 along the measurement axis ~a, ~b or ~c.

State Population Particle 1 Particle 2
N1 ( a, b, c) (-a,-b,-c)
N2 ( a, b,-c) (-a,-b, c)
N3 ( a,-b, c) (-a, b,-c)
N4 ( a,-b,-c) (-a, b, c)
N5 (-a, b, c) ( a,-b,-c)
N6 (-a, b,-c) ( a,-b, c)
N7 (-a,-b, c) ( a, b,-c)
N8 (-a,-b,-c) ( a, b, c)

Table 6.1: The populations of particle pairs in each unique state. The populations must satisfy the
relation

∑8
j=1Nj = N .
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From table 6.1, we can derive the following probabilities:

P(a; b) =
N3 +N4

N
, P(a; c) =

N2 +N4

N
, P(c; b) =

N3 +N7

N
(6.6)

And one can easily see that

N2 +N4

N
+
N3 +N7

N
≥ N3 +N4

N

⇒ P(a; c) + P(c; b) ≥ P(a; b)
(6.7)

Equation 6.7 above is known as Bell’s inequality. Now we look at the same probabilities but
derived from the (experimentally verified) mathematical structure of quantum mechanics. Let’s
be clear that the point of this proof is to show that we do not need these statistical ensembles
for probability to arise. As such, we can simply consider a single pair of spin- 1

2 particles. To give
weight to this proof, we will further assert that this ‘spin-pair’ is in an entangled state similar to
the state |Ψ+〉. For convenience, we utilize the rotational invariance of this state to say that it
is the same for any arbitrary direction ~r. As such, we can consider the entangled state along ~r
as

|Ψ〉~r =
|~r; +〉 |~r;−〉+ |~r;−〉 |~r; +〉√

2
(6.8)

The respective probabilities used in the Bell’s inequality under the quantum formalism are then
given as follows:

P(a; b) =
∣∣∣〈~a; +|

〈
~b; +

∣∣∣Ψ〉
~a

∣∣∣2
=

1

2
sin2 θ

(6.9)

P(a; c) = |〈~a; +| 〈~c; +|Ψ〉~a|
2

=
1

2
sin2 θ

2
(6.10)

P(c; b) =
∣∣∣〈~c; +|

〈
~b; +

∣∣∣Ψ〉
~c

∣∣∣2
=

1

2
sin2 θ

2
(6.11)

where we have utilized the probability retrieval method discussed earlier to attain these results.
Substituting this into Bell’s inequality, we get

1

2
sin2 θ

2
+

1

2
sin2 θ

2

?
≥ 1

2
sin2 θ

⇒ sin2 θ

2

?
≥ 1

2
sin2 θ

(6.12)

I left the question mark above the inequality because we are still unsure if the inequality holds.
To check this, we consider the small angle approximation. For θ << 1, it follows that sin(θ) ≈ θ.
This means that sin2 θ

2 ≈
(
θ
2

)2

= θ2

4 and 1
2 sin2 θ ≈ 1

2θ
2. It is obvious that θ2

2 > θ2

4 , so we see that

the probabilities derived from quantum mechanics causes the inequality to fail! The implication
being that Einstein’s, Podolsky’s, and Rosen’s interpretation of quantum mechanics is wrong.
There are no hidden variables. Our universe at such scales is intrinsically probabilistic. This
is why quantum mechanics is such a useful tool, this is why we need quantum mechanics.
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§ SUMMARY §
In this chapter,
• We looked at Einstein’s, Podolsky’s, and Rosen’s interpretation of quantum me-

chanics, which suggests the existence of random variables to resolve local realism.
• We learned how to measure spin along an arbitrary axis in 3D space using polar

coordinates.
• We worked through performing spin measurements along 3 different axes with the

assumption that EPR were right, only to come to the inevitable conclusion that
this disagrees with quantum mechanics.

Exercises

1. Prove that {|~r; +〉 , |~r;−〉} are indeed the eigenstates of ~r · ~̂S by deriving them.

2. Take the unit vector {1/
√

2, 0, 1/
√

2}T in 3D space.

(a) What is the spin operator along this direction?

(b) Find the action of this operator on the states {|0〉 , |1〉} and {|+〉 , |−〉}.

(c) Using the sphere visualization, find a geometric picture of the action of this
operator on the states listed above.

3. Using the techniques that Bell employed for his analysis, re-evaluate the EPR
proposition with spin measurements in 2 directions instead of 3. Is this enough to
reject the EPR hypothesis?

4. Can you think of alternative interpretations to quantum mechanics apart from the
Copenhagen one? Let your imagination run wild and explore these ideas!

Going Beyond

Having read this rapid introduction to quantum science and its emergent technologies, I would
like to point you to several invaluable academic resources that will lead you deeper into the rabbit
hole. For a more exhaustive coverage of introductory quantum mechanics, I would recommend
2 texts depending on your preference and capacity.

• David J. Griffiths’ ‘Introduction to Quantum Mechanics’ [4] gives a rather gentle and
succinct treatment of quantum mechanics, suitable for the level of an undergraduate.

• Ramamurti Shankar’s ‘Principles of Quantum Mechanics’ [5] is a much more thorough
text on quantum mechanics with extensive mathematical rigour. This text definitely finds
its place in an advanced undergraduate or graduate course.

Additionally, MIT open courseware has an entire bank of free, high quality educational content
that is easily accessible. I highly encourage the use and support of this resource. As for quantum
computing, ‘Quantum Computation and Quantum Information’ by Nielsen and Chuang [6] gives
a wonderfully comprehensive, self-contained text of this field. The University of California,
Berkeley and California Institute of Technology also have well written collections of quantum
computing notes ([8], [9]) online which one may find useful. I have personally utilized and
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benefited greatly from the use of the resources mentioned above, from which much of these notes
are inspired.

Of course, Google scholar [11] and arXiv [12] are your best friends when it comes to scouting
for scientific literature. Being able to sieve through the endless pool of manuscripts for what
interests you is definitely a skill on its own, and a valuable one I might add. Be sure to include
the appropriate keywords in your searches and use the citations to navigate around other relevant
articles. In our day and age, we hold the key to boundless knowledge in the palms of our hands.
It is our responsibility to make the best of it as engines of discovery which in turn, will lead to
the betterment of humanity.
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Appendix A

Early Beginnings of QM

§A.1 Catastrophic Beginnings

In 1900, scientists and researches were studying the theory of Black-Body Radiation. Black-body
radiation is thermal electromagnetic radiation which is emitted by a body in thermal equilibrium
with its environment at some temperature, T. It was found that black-body radiation has a
characteristic and continuous frequency spectrum (where frequency is denoted by ν). The energy
density over an infinitesimal frequency interval dν was initially modelled by the Rayleigh-Jeans
Formula,

ρ(ν, T ) =
8πkBTν

2

c3
dν (A.1)

However, due to the inverse relationship between wavelengths (λ) and frequencies (ν) of radiation,
this equation diverges for small values of λ (in the UV range) and does not give a completely
accurate picture of the spectrum. This was known as the Ultraviolet Catastrophe .

As a result, Max Planck proposed an exponential term raised to a dimensionless function linear
in ν. In doing so, Planck postulated the equation,

ρ(ν, T ) =
8πhν3

c3(e
hν
kBT − 1)

dν (A.2)

Where the Planck’s Constant has the value h = 6.62× 10−34Js. This was eventually discovered
to be a constant of nature.
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Following this, Einstein proposed that light came in discrete packets (photons) in 1905. He
presented the famous photon energy and momentum equations,

E = hν, p =
h

λ
(A.3)

Then in 1920, Louis de Broglie suggested that in fact all matter has wave properties. At that
time, nobody knew what these waves were and simply called them ’matter waves’. 1924 was the
year Erwin Schrödinger presented his famous and fundemental equation, the Schrödinger’s
Equation,

i~
∂

∂t
Ψ = ĤΨ (A.4)

which revolutionized the study of quantum mechanics...

§A.2 Experimental Persuasions

Physics is a largely experimental science, so it is important that we explore several experiments
that proved the existence of quantum phenomena. 2 of the most prominent experimental results
are the photoelectric effect and Compton scattering photon energies.

§A.2.1 The Photoelectric Effect

Performed by Hertz in 1887, the experiment consisted of a metal plate irradiated with pho-
tons in an evacuated chamber with a collector metal plate on the opposite end. As a result,
an electric current was detected through the wire connecting the 2 metals plates outside the
evacuated chamber. This indicated the release of electrons from the irradiated plate, dubbed as
Photoelectrons.

Unique Properties of Photoelectrons

While performing this experiment, there were several experimental findings which were
unexpected in a classical theory of electromagnetic radiation. These are concisely listed
below.

1. The energy of photoelectrons are independent of the light intensity.
2. There is a minimum Threshold Frequency (ν0), such that only energies associated

to frequencies above ν0 (E ≥ φ(ν0)) produce a photoelectric current.
3. The magnitude of the photoelectric current (rate of electrons released) is propor-

tional to the light intensity.

The quantized photon energy equation proposed by Einstein in 1905 modelled this result perfectly
for which the photoelectron energy is given by,

Eγ = hνγ =
1

2
mv2 + φ (A.5)

Where Eγ represents incident photon energy and this result was verfied by Millikan in 1915.
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§A.2.2 Compton Scattering

Performed by Arthur Holly Compton in 1923, the experiment consisted of X-ray photons scat-
tering off electrons that were virtually ‘free’ (Eγ,X−ray >> φ). Compton scattering showed an
experimental violation of Thompson Scattering, which was the low energy limit of the scattering
experiment leading to classically expected results (incident and outgoing EM radiation carried
the same energy).

However in Compton scattering, outgoing photons (measured by a detector at an angle θ from
the optical axis) had less energy than the incident photos. This is attributed to the kinetic
energy gained by emitted photoelectrons. This phenomena is nicely described by the relationship
between the wavelengths of scattered and incident photons (note that E ∝ 1

λ ),

λscattered = λincident + (1− cos(θ))λCompton (A.6)

λCompton =
h

cmelectron
(A.7)

Interestingly, the intensity measured by the detector produced a bi-modal distribution peaked at
λincdent and λscattered. This result, along with the results of the Electron Diffraction Experiment
motivated de Broglie to propose in 1924, that all particles have wave attributes. This postulate
was known as Wave-Particle Duality (Note that these ‘waves’ are not the conventional notion
of waves like in classical mechanics).



Appendix B

Elitzur-Vaidman Probabilistic
Improvements

Earlier, we saw that Mach-Zehnder interferometry enables us to detect working Elitzur Vaidman
bombs with a 1/4 probability of success. However in practice, a 1/4 probability of success isn’t very
good, especially when we are dealing with bombs! This chapter in the appendix talks about how we
can modify the set-up to increase the probability of detection without detonation. First, consider
a new kind of beam splitter that receives, reflects and transmits photons horizontally.

Figure B.1: Horizontal Beam Splitter

For this regime, we will take any beam on the left side of the beam splitter to be |L〉 and any
beam on the right to be |R〉.

|L〉 =

[
1
0

]
, |R〉 =

[
0
1

]
(B.1)

As for our beam splitter matrix, we model it as such.

UBS =

[
cos
(
π

2N

)
i sin

(
π

2N

)
i sin

(
π

2N

)
cos
(
π

2N

) ] , N ∈ Z (B.2)

The reason we model our beam splitter in this way is to simplify computation for iterative left
multiplication of the matrix. Consider a set-up where we place this horizontal beam splitter
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between 2 mirrors and send in a photon from the left. After passing through the beam splitter
twice, the resulting action of the beam splitter is given by

UBSUBS =

[
cos
(
π

2N

)
i sin

(
π

2N

)
i sin

(
π

2N

)
cos
(
π

2N

) ] [ cos
(
π

2N

)
i sin

(
π

2N

)
i sin

(
π

2N

)
cos
(
π

2N

) ]
=

[
cos
(
π

2N + π
2N

)
i sin

(
π

2N + π
2N

)
i sin

(
π

2N + π
2N

)
cos
(
π

2N + π
2N

) ]

Following this iteratively, after k passes through the beam splitter, we get

UkBS =

[
cos
(
kπ
2N

)
i sin

(
kπ
2N

)
i sin

(
kπ
2N

)
cos
(
kπ
2N

) ] (B.3)

⇒ UkBS |L〉 =

[
cos
(
kπ
2N

)
i sin

(
kπ
2N

)
i sin

(
kπ
2N

)
cos
(
kπ
2N

) ] [1
0

]
=

[
cos
(
kπ
2N

)
i sin

(
kπ
2N

)]
⇒ P(left) = cos2(

kπ

2N
), P(right) = sin2(

kπ

2N
) (B.4)

Now let us reinsert our Elitzur-Vaidman bomb into the experiment on the right-hand side of
the beam splitter. We know that after 1 pass, the probability of the photon being on the left is
cos2( π

2N ). With the bomb in place, the increment stacks different as now with every additional
pass, the probability is raised to an additional power.

⇒ PNpasses(left) =
(

cos
( π

2N

))2N

≈ 1− π2

4N
(B.5)

⇒ P(detonation) = 1−
(

cos
( π

2N

))2N

≈ π2

4N
(B.6)

This result tells us that we can make the probability of detonation arbitrarily small by having
the photon ‘bounce back and forth’ between the mirrors! Of course to make the bomb detection
100% accurate, one would have to wait an infinitely long amount of time as N →∞.



Appendix C

Wave Mechanics

In this chapter of appendices, we present a more indepth coverage of the interpretation and
mathematical formalism of quantum matter waves. We will see the differences and similarities
between classical waves and matter waves. We will explore interesting properties of these waves
and after which, the cumulation of these insights will lead to the conclusion of how these matter
waves are to be interpreted.

§C.1 Galilean Transformation of Classical Waves

In classical mechanics, a Galilean transformation is a linear operation used to map coordinates of
one inertial reference frame to those in another. These reference frames must differ only by con-
stant relative motion. In the study of Galilean transformations, it is useful to look at quantities
known as Galilean invariants (not to be confused with Galilean invariance). These are quantities
that remain unchanged despite having moved from one reference frame to another.

In classical wave mechanics, the phase (φ = kx − ωt) of a wave is a Galilean invariant. Allow
us to differentiate between the coordinates of the 2 inertial reference frames by adding a prime
superscript. Consider the case where there are 2 observers in 2 different reference frames. The
unprimed observer is moving with velocity v and the primed observer is moving with velocity v′,
both with respect to some stationary observer. Since φ is an invariant quantity,

⇒ φ = φ′

⇒ kx− ωt = k′x′ − ω′t′

⇒ 2π

λ
(x− vt) =

2π

λ′
(x′ − (v′ − v)t′)

⇒ 2π

λ
x− 2π

λ
vt =

2π

λ′
x′ − 2π

λ′
(v′ − v)t′

⇒ λ = λ′ (C.1)

Thus, this also makes the wavelength, λ of a classical wave to be a Galilean invariant!
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§C.2 Matter Waves

A wave can be well described by it’s wave vector (k) and frequency ( ω2π ). This leads us to look
for these variables in our attempt to gain a description of matter waves. From the postulates of
Einstein and Planck, we know that these quantities arise in the relations

p = ~k, E = ~ω (C.2)

Allow us to first look at a quantity that shows up in classical wave mechanics known as the Phase
Velocity. The phase velocity is defined by the ratio of the angular frequency of the wave and its
wave vector. Thus for a matter wave, we see that

vphase =
ω

k
=

~ω
~k

=
E

p
=

1
2mv

2

mv
=

1

2
v

This reveals the fact that the phase velocity (also known as the carrier-wave velocity) of a matter
wave is twice the velocity of a matter particle with the same energy and momentum. We will
soon see that wavepackets are what resolves this difference in velocities.

§C.3 Group Velocity

Let us know look at another quantity known as the Group Velocity. The group velocity of a
wave is defined by the first derivative of its dispersion relation with respect to the wave vector.
Hence, for a matter wave, this works out to be

vgroup =
dω

dk
=
dE

dp
=

d

dp
(
p2

2m
) =

p

m
= v

We see here that the group velocity of a matter wave exactly corresponds to the particle velocity!
Therefore it is now useful to define group velocities in this new context of matter waves.

Definition C.3.1. Group Velocity: The group velocity is defined as the velocity of a
wavepacket, which is constructed by a superposition of its constituent (purely sinusoidal)
waves denoted by their individual wave vectors, k.

Definition C.3.2. Wavepacket: A wavepacket is defined by the integral over k, of all con-
stituent sinusoidal waves.

Ψwavepacket(x, t) =

∫ ∞
0

dkΦ(k)ei(kx−ω(k)t) (C.3)

x

vph

vg

Figure C.1: Wavepacket with Group Velocity vg and Phase Velocity vph
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The amplitude (Φ(k)) attached to the constituent waves of the wavepacket narrowly peaks at a
particular value k = k0, which allows for the construction of the wavepacket in the manner as
presented above. As such, matter particles appear to be some kind of wavepacket composed of
continuous carrier waves. It is only natural that we now ask how these wavepackets move since
they have an associated group velocity.

§C.4 Principle of Stationary Phase

To retrieve a finite value of the group velocity of a wavepacket, we need to evaluate the derivative
of ω at some particular value of k. The question is now, how do we find this value of k that
accurately gives us an idea of how this wavepacket is travelling? To build intuition to solving this,
we must first understand that integrals over high frequency sinusoidal waves tend to vanish due
to the oscillatory nature of the function parity. Hence for our wavepacket integral not to vanish
from the sinusoidal carrier waves, we require that these sinusoidal waves are ‘slowly varying’
near the region where our amplitude Φ(k) peaks. To ensure this, we employ the Principle of
Stationary Phase.

Principle of Stationary Phase

For a wavepacket that is sharply peaked at k = k0, the integral over k of all constituent
sinusoidal waves will only be able to give a significant contribution around k ∼ k0. Hence,
the phase factor (φ(k) = kx−ω(k)t) must be stationary at k = k0 to produce a non-vanishing
result.

dφ(k)

dk

∣∣∣∣
k=k0

= 0 (C.4)

Continued analysis of this gives,

⇒ x− t dω(k)

dk

∣∣∣∣
k=k0

= 0

vg(k0) =
dω(k)

dk

∣∣∣∣
k=k0

⇒ x = vg(k0)t (C.5)

This result shows that up to a good approximation within small time intervals, the wavepacket
moves linearly in time with a constant velocity vg.

§C.5 Time-Evolving Wavepackets

For small intervals of time, t, it is convenient to use the Stationary Phase Approximation to
observe how a wave evolves in time and progresses in space. The stationary phase approximation
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is done by taking the Taylor Expansion of the angular frequency (ω(k)) around k = k0.

ω(k) ≈ ω(k0) + (k − k0)
dω(k)

dk

∣∣∣∣
k=k0

+O((k − k0)2) (C.6)

⇒Ψ(x, t) ≈
∫ ∞

0

dkΦ(k)ei(kxe−ω(k0)t)e
ik(

dω(k)
dk |k=k0 )t

e
ik0(

dω(k)
dk |k=k0 )t

≈ e−iω(k0)te
ik0(

dω(k)
dk |k=k0 )t

∫ ∞
0

dkΦ(k)e
ik(x−t dω(k)

dk |k=k0 )

≈ e−iω(k0)teik0vg(k0)t

∫ ∞
0

dkΦ(k)eik(x−vg(k0)t)

⇒ |Ψ(x, t)|2 ≈ |Ψ(x− vg(k0)t, 0)|2 (C.7)

From this short manipulation, we arrive at a beautiful result that tells us that the wavepacket at
some arbitrary (small) time interval (t) after t = 0, looks just like the wavepacket at t = 0 just
displaced in position! Hence for small time intervals, we can use the following steps to propagate
a given free particle wavepacket in time.

1. Given Ψ(x, 0), we first compute Φ(k) = 1√
2π

∫
dxΨ(x, 0)e−ikx.

2. We can now write Ψ(x, 0) = 1√
2π

∫
dxΦ(k)eikx.

3. Simply tacking on the time dependence, we get Ψ(x, t) = 1√
2π

∫
Φ(k)dxei(kx−ω(k)t), where

ω(k) = ~k2/2m. Explicitly, the result is expressed as

Ψ(x, t) =
1√
2π

∫
dxΦ(k)ei(kx−

~k2
2m t) (C.8)

4. If Ψ(x, 0) had already been a plane wave, we can skip steps 1 and 2 and immediately tack
on the time dependence in step 3 to give the final solution.

However, the analysis above is only a good model for small time intervals. As t grows to large
values, the O((k − k0)2) terms in the Taylor expansion become significant and we can no longer
ignore them. We will now look at the exact solution of the group velocity by exploring the
Dispersion relation.

Definition C.5.1. Dispersion Relation: This is a relation between the angular frequency
(ω) of a wave and its wave vector, k.

For matter waves, we can derive these equations from the quantized momentum and energy
equations proposed by Planck and Einstein.

E = ~ω =
p2

2m
, p = ~k

⇒ ~ω =
(~k)2

2m

⇒ ω(k) =
~k2

2m
(C.9)
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It is clear now that the angular frequency is a 2nd order polynomial in k, causing 3rd order
derivatives (and above) of ω(k) to vanish. This renders the exact Taylor expansion of ω(k)
around k0 as,

ω(k) = ω(k0) + (k − k0)
~k0

m
+ (k − k0)2 ~

2m
(C.10)

⇒ Ψ(x, t) =

∫ ∞
0

dkΦ(k)eikxei(ω(k0)+(k−k0)
~k0
m +(k−k0)2 ~

2m )t (C.11)

The added O((k − k0)2) term causes equation (3.6) to be a poor approximation. Furthermore,
the shape of the wavepacket deforms as it travels at vg and time progresses. The exact solution
is definitely more difficult to work with than the stationary phase approximation, so it would be
good to find bounds on t for which we can safely utilize the approximate solution. By observation
of equation (3.9), in order for us to drop the non linear terms we will need to enforce that

(k − k0)2

2

~
m
|t| � 1 (C.12)

k − k0 ≡ 4k

⇒ (4k)2 ~
m
|t| � 1

⇒ (4(~k))2

~m
|t| = (4p)2

~m
|t| � 1

⇒ |t| � ~m
(4p)2

(C.13)

From this, we see that the bound on t is related to a quantity known as the Momentum Uncer-
tainty, 4p. By simply eyeballing 4p = ~(k − k0), we can see that this momentum uncertainty
quantity is somehow related to the ‘spread’ of the wavepacket around k0. We will now attempt
to build some intuition on uncertainty, but it will only formally be introduced later on in the
book.

§C.6 Heisenberg Uncertainty Principle (Qualitative)

First allow us to consider a wave taken at time, t = 0. It’s wavepacket and corresponding Fourier
Transform can be written as,

Ψ(x, 0) =
1√
2π

∫ ∞
0

dkΦ(k)eikx (C.14)

Φ(k) =
1√
2π

∫ ∞
−∞

dxΨ(x, 0)e−ikx (C.15)

From classical wave mechanics, we know that moving between the frequency and time domain by
means of Fourier Transform gives rise to an inequality known as the Time-Bandwidth Product
(4ω4 t ≥ 1

2 ). Since matter particles also possess wave-like properties, we can make the analytic
extension of this into the context of wavepackets.

If we look closer at the Fourier transform of a wavepacket, there is in fact a hidden physical
interpretation of this ‘k domain’. Recall again the Planck momentum equation, p = ~k. This
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means that we can in fact rewrite the Fourier transform in terms of momentum! By suitable
substitutions, we arrive at the equation

Φ(p) =
1√
2π~

∫ ∞
−∞

dxΨ(x, 0)e−i
px
~ (C.16)

And just as classical waves have an uncertainty in extracting information about the time and
bandwidth simultaneously, so do quantum waves when trying to simultaneously observe the
position and momentum of a particle! This is known as the Heisenberg Uncertainty Principle
for position-momentum, and is derived to be

4x4 p ≥ ~
2

(C.17)

The Heisenberg Uncertainty Principle says that we cannot determine both the position and
momentum of a particle simultaneously with absolute precision. In the wavepacket picture, this
means that the narrower the wavepacket is in the momentum domain, the wider the wavepacket
is in the position domain (and vice versa).

§C.7 Interpretation of Waves and Normalization

We have been working with this mysterious object Ψ (often referred to as the Wave Function),
which we have termed a quantum or matter wave. When Schrödinger first studied these wave
functions, he interpreted Ψ as a particle that had ‘disintegrated’ and spread itself across space.
Regions in space where we found larger values of Ψ meant that more of the disintegrated particle
resided there. It was Max Born who proposed that Ψ is in fact some kind of probabilistic
distribution of matter particles. The physics community has since adopted Born’s interpretation
of the wave function, leading to incredibly accurate descriptions of nature. This is known as the
Copenhagen interpretation of quantum mechanics.



Appendix D

Quintessential 1D Potentials

In this chapter of the appendix, we explore several widely studied 1-dimensional potentials. Some-
thing that may have crossed you mind is that working in 1 spatial dimension may seem unrealis-
tically ideal, however great insights can be learned from solving these 1D systems. There are in
fact some real physical systems that can be modelled with a 1D Hamiltonian. Below, I present
and solve some of commonly taught these 1D quantum systems.

§D.1 Spooky Circles

This system is possibly the simplest quantum system that gives rise to quantization. This is
more formally known as first quantization (where second quantization is the quantization of
fields covered in quantum field theory), and is the transitioning of what would be a continuous
spectrum of possible values in classical mechanics to one with a discrete spectra.

Here, we have a particle on a topological 1-dimensional circle. Consider a particle who lives only
along a line on the x-axis. The line only goes from x ∈ [0, L] and dictates that the wave function
representing the particle must take on the same values at the line boundaries (ψ(0) = ψ(L)).
This is effectively a 1-dimensional topological circle. Note that the potential in the physically
allowable region is 0. As a result, the time-independent Schrödinger equation for our particle
reads,

− ~2

2m

d2

dx2
ψ(x) = Eψ(x), x ∈ [0, L] (D.1)

As such, we utilize our knowledge of differential equations and the boundary conditions to get a
solution.

ψ′′(x) = −2mE

~2
ψ(x),

⇒ ψ(x) = N eikx, k ≡
√

2mE

~
ψ(0) = ψ(L) ⇒ eikL = eik0 = 1

⇒ kn =
2πn

L
, n ∈ Z (D.2)

65
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From this simple exercise, we see that the wave-vector (and hence momentum) of our wave
function here is only allowed to take on integer multiples of 2π/L and no longer a contiuous
spectrum!

Imposing the normalization condition (1.5) on ψ(x), we arrive at the following solution.

ψ(x) =

√
1

L
· eiknx (D.3)

Note: there is a subtlety due to the possible parity of the momenta which leads to
degeneracies.

Definition D.1.1. Degeneracies: An energy level is called degenerate if there exists 2 or
more energy eigenstates that are associated to the same energy.

§D.2 Quantum Boxes

We already solved the infinite-square well (particle in a box) problem in chapter 4 so we will
not be presenting that solution in the appendix. However, we did utilize several theorems while
solving this potential without proof. Below is a restatement of those theorems with their proofs
included.

§D.2.1 Prove It!

These proofs are non-trivial and should be understood by the reader in order to grasp the
significance of these theorems.

Theorem D.2.1. There are no degenerate11D bound states.

Proof. Consider a particle of mass m moving in a potential V (x). First assuming that
degeneracies do exist, this implies that we can have 2 bound states ψ1(x) and ψ2(x) which
possess the same energy E. Their time-independent Schrödinger equations are then,

− ~2

2m

d2ψ1(x)

dx2
+ V (x)ψ1(x) = Eψ1(x) (D.4)

− ~2

2m

d2ψ2(x)

dx2
+ V (x)ψ2(x) = Eψ2(x) (D.5)
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Multiplying (D.4) by ψ2(x) and (D.5) by ψ1(x) then taking their difference, we get

− ~2

2m
ψ2(x)

d2ψ1(x)

dx2
+

~2

2m
ψ1(x)

d2ψ2(x)

dx2
= 0

⇒ ψ2(x)
d2ψ1(x)

dx2
− ψ1(x)

d2ψ2(x)

dx2
= 0

⇒ ψ2(x)
d2ψ1(x)

dx2
− ψ1(x)

d2ψ2(x)

dx2
+
dψ1(x)

dx

dψ2(x)

dx
− dψ2(x)

dx

dψ1(x)

dx
= 0

⇒ d

dx

(
ψ2(x)

dψ1(x)

dx
− ψ1(x)

dψ2(x)

dx

)
=

d

dx
W (ψ2, ψ1) = 0

⇒ W (ψ2, ψ1) = constant

But we know that for our bound states to be normalizable, ψ1/2(x)→ 0 as |x| → ∞.

⇒W (ψ2, ψ1) = 0

⇒ lnψ1(x) = lnψ2(x) + C ′

⇒ ψ1(x) = Cψ2(x) (D.6)

This proves that the 2 initially assumed different bound states are actually linearly de-
pendent and thus are in fact the same bound state.

Theorem D.2.2. For a 1D bound state, the number of nodes2increases linearly with the
‘quantization index’ n following the relation

number of nodes = (n− 1), for n = 1, 2, 3... (D.7)

I will only provide a qualitative argument for this theorem and not a rigorous proof.

Argument of Theorem:

Consider first a particle in an infinite square well of differential width dx. Instead of
having V (x) = 0 for the region 0 < x < dx, V (x) is governed by a smooth potential well
that satisfies V (0) = 0 and monotonically increases for increasing |x|. Thus as we expand
the ‘screens’ of the infinite well, we reveal more and more of this potential well. We call
this a screened potential.
Also, we utilize the following facts.

1. The node theorem holds for an infinite square well of any width (both arbitrarily
small or large).

2. A non-trivial wave function can never vanish along with its first spatial derivative
(we cannot simultaneously have ψ(x∗) = 0 and ψ′(x∗) = 0 for some x∗).

The argument is then, as we gradually move apart the infinite screens causing the potential
to deviate away from an infinite square well, we cannot have new nodes appearing. If
we did, this would mandate that the derivative at the boundary vanish at some point in
the expansion. This violates fact 2 since we have the condition for the wave function to
vanish at the infinite potential boundary.
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Thus, this proves that the node theorem holds for all 1D bound states.

§D.2.2 Boxes Continued

We move on to studying the 1-dimensional finite square well potential. This is similar to the
infinite square well under the condition that the energy is lower than the potential barrier. The
potential is modelled as

V (x) =

{
−V0 −a < x < a

0 |x| > a
(D.8)

x

y

V0

0

−a a

Figure D.1: Finite Square Well

For now, we are interested in bound states and hence will consider the case where |E| < V0,
noting that V0 > 0 and E < 0. Writing out the time-independent Schrödinger equation for
−a < x < a,

− ~2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x)

⇒ ψ′′(x) = −2m

~2
(E − V (x))ψ(x)

⇒ ψ′′(x) = −2m

~2
(V0 − |E|)ψ(x) (D.9)

For simplification of calculation, we define a parameter that has the same units as the wave-vector
(we will often do this in our analysis of 1D potentials).

k2 =
2m

~2
(V0 − |E|) (D.10)

Then equation (D.9) becomes

ψ′′(x) = −k2ψ(x) (D.11)
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Then by the symmetry of the potential and knowing that our ground state (lowest energy state)
has no nodes, we can check that the solution is given by

ψ(x) = N cos(kx) (D.12)

We see above that we immediately arrived at our solution using 2 facts. The first is by virtue of
the node theorem which we have already proven in the particle in a box problem. The second is
due to the symmetry of our 1D potential, and in fact this can be generalized to any symmetric
potential.

Theorem D.2.3. Any 1D bound state (energy eigenstate) subject to an even potential
can be chosen to be either even or odd.

Proof. Consider first the time-independent Schr odinger equation with an even potential,
that is V (x) = V (−x) ,

ψ′′(x) +
2m

~2
(E − V (x))ψ(x) = 0

Then if we let x→ −x and utilizing the fact that V (x) is even,

ψ′′(−x) +
2m

~2
(E − V (−x))ψ(−x) = 0

⇒ ψ′′(−x) +
2m

~2
(E − V (x))ψ(−x) = 0

From this, we can construct even and odd solutions labelled as ψeven(x) and ψodd(x) as
such.

ψeven(x) =
1

2

(
ψ(x) + ψ(−x)

)
, ψodd(x) =

1

2

(
ψ(x)− ψ(−x)

)
(D.13)

This conclusively proves theorem (D.2.3).

Going back to our finite square well problem, allow us to construct the rest of the solution for
|x| > a. We employ the same process as before and define another parameter κ.

ψ′′(x) =
2m|E|
~2

ψ(x) (D.14)

κ2 = −2mE

~2
(D.15)

⇒ ψ′′(x) = κ2ψ(x) (D.16)

⇒ ψ(x) = Aeκx or Be−κx (D.17)

The Schrödinger equation mandates that our solution along with its first derivative to be con-
tinuous since it is a second order differential equation in x. With these 2 conditions, we attain
boundary conditions at x = ±a so we can stitch our 2 solutions together attaining the following
equations.

N cos(k(−a)) = N cos(ka) = Aeκ(−a) (D.18)

N cos(ka) = Be−κa (D.19)
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In (D.18), we used the fact that cosine functions are even. The order arises from the necessity
of the wave function to be normalizable (ψ → 0 as |x| → ∞). We can also see as a consequence
of symmetry that A = B, hence we can set them to be 1 without any loss of generality.

⇒ N cos(ka) = e−κa (D.20)

Utilizing the continuity of the first derivative at x = a, we arrive at the following equation.

−Nk sin(ka) = −κe−κa (D.21)

Taking the ratio of equations (D.20) and (D.21), we arrive at the following result.

k tan(ka) = κ (D.22)

At this point, it is convenient for us to define several dimensionless quantities. These can easily
be verified to be dimensionless as will be done below their definitions.

η ≡ ka (D.23)

ξ ≡ κa (D.24)

z2
0 ≡ η2 + ξ2 =

2mV0a
2

~2
(D.25)

The following proof will show that all 3 of these parameters are dimensionless.

Proof. We first point out that it is obvious η, ξ and z0 have the same dimensions. So
proving that one of these quantities is dimensionless will imply that so are the others.
Allow us to look at z0.

z2
0 =

2mV0a
2

~2
∼ mEL2

E2t2

∼ mL2

Et2

∼ mL2

mL2
∼ 1

Hence this shows that z2
0 is dimensionless, and hence so is z0 along with η and ξ.

Using these dimensionless parameters, we incorporate them into (D.22) which gives the following
unit-free relation.

ξ = η tan(η) (D.26)

For a better picture, we can plot this relation shown in figure D.2.
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Figure D.2: ξ vs η Plot

z0 on this plot would then be a circle with a radius that varies monotonically with the value of
V0 > 0. The interesting thing we can learn by simply looking at this graph comes from the fact
that

number of intersections = number of bound states (D.27)

Intersections here of course referring to the intersections between the z2
0 = η2+ξ2 and ξ = η tan(η)

graphs. The analogy we can use to understand this comes from thinking about an actual physical
well. The deeper this well (larger the strength of the potential V0), the larger the number of levels
(occupy-able quantized energy states) that can fit into this well!

A good thing to note about the plot is that the η tan(η) curve intersects the η-axis in nπ intervals,
where n ∈ N. This means for instance, that z0 would have to minimally be π in order for there
to be 2 bound states. The relation between the number of bound states and z0 is summarized
by the following.

nπ ≤ z0 < (n+ 1)π ⇒ n bound states (D.28)

So far, all our computation has been done on the assumption that we are working with even
bound states. However, theorem (D.2.3) tells us that we can also have odd bound states and in
fact has to be true for the node theorem to be satisfied! By utilizing analytic continuity, we can
respectively modify our solutions as follows.

ψ(−a < x < a) = N sin(kx) (D.29)

ψ(x < −a) = −eκx (D.30)

ψ(x > a) = e−κx (D.31)

Then enforcing the continuity conditions, we get

N sin(ka) = e−κa (D.32)

Nk cos(ka) = −κe−κa (D.33)

⇒ k cot(ka) = −κ (D.34)

⇒ η cot(η) = −ξ (D.35)

Where we attained (D.35) from taking the ratio of the first 2 equations and multiplying (D.34)
through by a. The new plot of (D.35) is given below.
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Figure D.3: ξ vs η Plot

For this plot, the η cot(η) curve only intersects the η axis in (2n+ 1)π/2 intervals where n ∈ N.
This means if we again consider the z2

0 = η2 +ξ2 curve and (D.27), the first bound state will only
appear for z0 > π/2 whereas the even solution will always have a bound state! The relation
between the number of bound states and z0 is summarized by the following.

(n− 1

2
)π ≤ z0 < (n+

1

2
)π ⇒ n bound states (D.36)

Finally, we write out the full normalized wave function for the odd and even solutions.

ψeven(x) =


eκx, x < −a(
e−κa

cos ka

)
cos(kx), −a < x < a

e−κx, x > a

(D.37)

ψodd(x) =


−eκx, x < −a(
e−κa

sin ka

)
sin(kx), −a < x < a

e−κx, x > a

(D.38)

Great! We have completed a comprehensive analysis of the finite square well potential! One
could now ask, what if the energy of the particle falls below that of the potential? Is this even
possible? Well it turns out that this can never be the case.

Theorem D.2.4. The energy of the particle must always exceed the minimum energy
of the potential it is subject to.

Proof. Consider a normalized wave function ψ(x) subject to a potential V (x) with an
energy E. Also recall that E = 〈Ĥ〉ψ. Using this fact,

E =
(
ψ(x), Ĥψ(x)

)
=
(
ψ(x),

( p̂2

2m
+ V (x)

)
ψ(x)

)
= 〈 p̂

2

2m
〉ψ + 〈V (x)〉ψ
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Because the kinetic energy term is always positive being a squared quantity,

⇒ E ≥ 〈V (x)〉ψ ≥ Vmin(x) (D.39)

Thus proving that the particle energy E is always greater than Vmin(x).

§D.3 Infinitely Sharp Wells

Continuing on to the next 1D potential, we now look at the attractive Dirac delta potential
written as

V (x− a) = −αδ(x− a) =

{
−∞, x = a

0, otherwise
(D.40)

Notice that the delta function here is attractive since it is negative. This is to facilitate the
possibility and study of bound states. Potentials that allow for bound states are called attractive
potentials. For our analysis, we begin by looking for a quantity with the units of energy from
our available parameters. We perform the dimensional analysis as follows. The only parameters
in this problem are α, ~ and m.

α ∼ E

L
⇒ E ∼ α

L

E ∼ p2

2m
∼ ~2

mL2

⇒ E ∼ mα2

~2

⇒ Ẽ =
mα2

~2

Ẽ is our newly defined energy parameter. For bound states, we know that the energy of a bound
state particle has to be 1) negative 2) proportional to Ẽ. As such, we define our bound state
energy as

Eb = −Cmα
2

~2
, C ≥ 0 (D.41)

Now we attempt to solve the eigenvalue problem with the attractive delta potential. For con-
venience, we set a = 0 so that the delta function is centered at the origin. Now looking at
time-independent Schrödinger equation for x 6= 0 and using the tricks employed for previous
potential problems, we arrive at

ψ′′(x) = −2mE

~2
ψ(x) = κ2ψ(x), E < 0 (D.42)

Since a bound state would classically live within the potential, any region where x 6= 0 would be
classically forbidden and hence convex toward the axis. Furthermore, since our wave function has
to be normalizable, it must decay as x → ∞. Taking from the results of the finite square well
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and considering the limit as its width shrinks while its depth grows indefinitely, we instinctively
choose exponentials as our solution.

ψ(x > 0) = N e−κx, ψ(x < 0) = N eκx (D.43)

Again we know their normalization constants are equal due to the symmetry of the problem.
What about at x = 0? This makes things a little more challenging, but thankfully for our
knowledge of delta functions we know it is defined by its integral!

− ~2

2m
ψ′′(x = 0)− αδ(x)ψ(x = 0) = Eψ(x = 0) (D.44)

⇒ − ~2

2m

∫ +ε

−ε
ψ′′(x)dx− α

∫ +ε

−ε
δ(x)ψ(x)dx = E

∫ +ε

−ε
ψ(x)dx (D.45)

⇒ − ~2

2m
ψ′(x)|+ε−ε − αψ(0) = 0

⇒ ψ′(x)|+ε−ε = −2mα

~2
ψ(0) (D.46)

The result in (D.46) is known as the discontinuity condition and arises due to the unique nature
of the Dirac delta function. In fact, the Dirac delta function is the only 1D potential that causes
a discontinuity in the derivative of the wave function. From here, we plug in our solutions from
(D.43) into (D.46) to get

− κ e−κx
∣∣
+ε
− e+κx

∣∣
−ε = −2mα

~2
N

⇒ κ =
mα

~2
=

√
−2mE

~2

⇒ E = −κ
2~2

2m
= − ~2

2m

(mα
~2

)2

⇒ Eb = −1

2
Ẽ (D.47)

Hence we have found our proportionality constant in (D.41), C = 1/2. To complete our solution
to the delta function potential, we have to normalize our wave function. For this, we can exploit
the symmetry of our bound state once again as such

N 2

∫ ∞
−∞

dx · e−2κ|x| = 2N 2

∫ ∞
0

dx · e−2κ|x| = 1

⇒ 2N 2 · −1

2κ
e−2κx

∣∣∣∣∞
0

=
2N 2

2κ
= 1

⇒ N =
√
κ

⇒ ψ(x) =
√
κ · e−κ|x| (D.48)

The attractive delta potential only admits one bound state because it disallows the first excited
odd state and must adhere to the node theorem. Therefore, solution (D.48) is the only allowable
solution to this problem.



75 D.4. QUANTUM SPRINGS

§D.4 Quantum Springs

We are now going to learn about one of the most important systems in all of physics, the
harmonic oscillator. Since this is the quantum mechanical version, we shall refer to the system
as the quantum harmonic oscillator (QHO). In this book, we will be solving this system using
an algebraic approach (operator method). Alternative derivations can be found in other readily
available textbooks if one is interested. Again taking cue from classical mechanics, the quantum
harmonic oscillator Hamiltonian is given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (D.49)

We can rewrite this as,

Ĥ =
1

2
mω2

(
x̂2 +

p̂2

2m

)
=

1

2
mω2

((
x̂− i p̂

mω

)(
x̂+ i

p̂

mω

)
+

~
mω

I
)

≡ 1

2
mω2V̂ †V̂ +

1

2
~ωI (D.50)

Where we have split the Hamiltonian using a sum of squares. However, we are working with
operators that do not commute ([x̂, p̂] = i~I), hence we get an additional 1

2~ωI term. We also
define the following unit-free operators.

â ≡
√
mω

2~
V̂ , â† ≡

√
mω

2~
V̂ † (D.51)

â† and â are known as the raising and lowering operators respectively. From these definition,
we again update the form of our Hamiltonian as written below.

Ĥ = ~ω(N̂ +
1

2
) , N̂ ≡ â†â (D.52)

N̂ is known as the number operator and notice that it is a Hermitian operator. As a next step,
let us look at several commutator identities between the operators we have just defined. In this
book, I will simply list them out but I urge you to take the time to derive them on your own. It
is a relatively simple exercise but worth the time.[

â, â†
]

= 1,
[
Ĥ, â†

]
= ~ωâ†,

[
Ĥ, â

]
= −~ωâ (D.53)

It may not be clear yet, but we have already done most of the work for solving the harmonic
oscillator system! To see why, we act with the raising operator and Hamiltonian on some energy
eigenstate ψE with energy E.

ĤψE = EψE

⇒ â†ĤψE =
(
Ĥâ† + (â†Ĥ − Ĥâ†)

)
ψE = E(â†ψE)

⇒
(
Ĥâ† +

[
â†, Ĥ

])
ψE =

(
Ĥâ† − ~ωâ†

)
ψE = E(â†ψE)

⇒ Ĥ(â†ψE) = (E + ~ω)(â†ψE)

(D.54)
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Showing us that when we apply the Hamiltonian to the new ‘raised’ state â†ψE , we get an
energy that is ~ω higher than the ‘unraised’ state ψE ! The algebraic manipulation we performed
above using the commutator is known as ‘commuting an operator through’, and is a very useful
technique. We can do a similar derivation for â to get that

Ĥ(âψE) = (E − ~ω)(âψE) (D.55)

This explains why â† and â are known as the raising and lowering operators, since they raise
and lower the energies of a given state. Be clear that the raising and lowering operators are not
unitary, so they cannot be realized as a real implementable operation on quantum states. They
are simply mathematical tools to aid us in finding the spectrum of the QHO.

To complete the spectrum of our theory, we utilize theorem D.2.4, which says that E ≥ Vmin = 0.
This means that the ground state ψ0(x) must be a state that imposes the following condi-
tion:

âψ0(x) = 0 (D.56)

Otherwise, the lowering operator has the capacity to lower the energy of our state indefinitely.
Writing â in terms of x̂ and p̂, the above condition (equation D.56) expresses itself as a first
order differential equation. This we know how to solve.√

mω

2~

(
x̂+

ip̂

mω

)
ψ0(x) =

√
mω

2~

( ~
mω

d

dx
+ x
)
ψ0(x) = 0 (D.57)

Using equation (D.57) and the normalization condition, we get the ground state wave function
of a QHO is

ψ0(x) =
(mω
π~

)1/4

exp
(
−mω

2~
x2
)

(D.58)

Plugging this into equation (D.52), we get that the ground state energy is simply E0 = ~ω/2.
So by the relation in equation (D.54), we get that the spectrum of the QHO takes the elegant
form,

En = ~ω(n+
1

2
) (D.59)

Where n ∈ N and denotes the energy excitation level of the state. The ladder operators also
conveniently allow us to generate any arbitrary QHO eigenstate. We simply apply the appropriate
number of raising operators on ψ0 and normalize as follows:

ψn(x) =
(â†)n√
n!
ψ0(x) (D.60)

This shows us the power of these operators, and the elegance of this construction. Below (figure
D.4) is a visualization of the wave functions for the lowest 3 energy levels n = 0, 1, 2.

Exercise

Using equation (D.60), find the n = 1 and n = 2 energy eigenstates for the quantum
harmonic oscillator (ψ1(x), ψ2(x)).
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ψ0(x)

ψ1(x)

ψ2(x)

Figure D.4: Wavefunction plot for the lowest 3 energy levels

Some other useful identities pertaining the QHO are listed below.[
N̂ , Ĥ

]
= 0 (D.61)

N̂ψn(x) = nψn(x) (D.62)

âψn(x) =
√
n ψn−1(x) (D.63)

â†ψn(x) =
√
n+ 1 ψn+1(x) (D.64)

Why QHOs are so important is because many a time, bound state quantum systems can (to
a good approximation) be thought of as a QHO plus some perturbative term. This allows us
to employ the techniques developed in perturbation theory (not covered in this book) to very
accurately solve much more complex quantum systems where brute force analytic methods would
otherwise fail.



Appendix E

Spin

In 1922, 2 physicist performed the Stern-Gerlach experiment in Frankfurt which yielded puzzling
results. Stern and Gerlach were atomic physicist concerned with measuring the thermal motion of
ions. They did this primarily by sending beams of ions through magnetic fields and then measuring
their deflected velocities. While doing so, they observed a weird phenomena while shooting beams
of silver atoms through a magnetic field. This was the first experimental observation of quantum
mechanical spin.

§E.1 Head Spinning Results

Silver atoms have 47 electrons, of which 46 fill up the n = 1, 2, 3, 4 levels, leaving a lone electron
in the outermost 5s orbital. As such, shooting silver atoms are electrostatically equivalent to
shooting singular electrons. The experimental set-up is shown below.

Figure E.1: Stern-Gerlach Experiment

When these silver atoms were shot through the ~B field, Stern and Gerlach observed that the
electrons were not consistently deflected in the same direction! A consistent deflection direction
with varying deflection angles is what would be classically expected with a time-independent ~B
field and like-charged particles of varying velocities. With this, Ralph Kronig suggested that this
had to do with some kind of electron rotation. Wolfgang Pauli rejected this proposition as he
refused to accept the premise that point particles could have a spin angular momentum. But we
now know that Kronig was not entirely wrong.
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§E.1.1 Magnetic Moments

To understand why Kronig proposed this, we require a little knowledge of magnetic moments ~µ.
The Magnetic moment of a closed current carrying loop is given by

~µ = I ~A (E.1)

where A is the cross-sectional area of the loop and |~µ| has the units of [µ]=̇Energy
Tesla . Now consider

a rotating ring, rotating with linear velocity v, having total charge Q, total mass M and linear
charge density λ as illustrated below.

Figure E.2: Rotating Charged Ring

The magnetic moment of this charged ring can be calculated as follows.

I = λv =
Qv

2πR

⇒ µ = IA =
Qv

2πR
(πR2) =

1

2
QvR

Then since the angular momentum is defined as

L = |~r× ~p| = RMv (E.2)

⇒ µ =
1

2
Q
(MvR

M

)
⇒ µ =

1

2

Q

M
L (E.3)

This is actually the classical, universal relation for all axially symmetric charged rotating objects.
Hence if we follow this result and take electrons as spinning on their own axis, we should arrive
at the equation,

µe
?
=

e

2me
S (E.4)

where e is the electronic charge, me is the mass of the electron and we have swapped out L for
S since we are considering the electron as having a spin angular momentum, not an orbital one.
However, experimental results show that this is not exactly accurate. The actual relation gives
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an additional prefactor known as the ‘Lande factor ’, g. As such, the precise magnetic moment
of an electron is

µe = g
( e~

2me

)(S
~

)
(E.5)

Notice that we have added factors of ~ to this equation. Since ~ has units of angular momentum,
this allows for S/~ to be unit-free. Additionally, the middle constant term is known as the ‘Bohr
magneton ’ defined as

µB ≡
e~

2me
= 9.274× 10−24J/T (E.6)

For electrons, their Lande factor is found to be extremely close to ge = 2, and hence their
magnetic moment vector relation is given as

~µ = −2µB
~S

~
(E.7)

where the negative sign arises from the negative charge of the electrons. In the experiment, these
electrons were passed through a magnetic field and thus it would be good for us to know how
this works in theory. The resultant force that a magnetic field applies on an object with a given
magnetic moment is

~F =∇
(
~µ · ~B

)
(E.8)

This implies that in the Stern-Gerlach experiment, treating the central axis as z, we get a force
on our silver atoms

~F ≈∇(µzBz)

= µz∇(Bz) = µz
∂Bz
∂z

ẑ (E.9)

There is an approximate sign since the B field is not perfectly uniform. Following the classical
picture, what we would expect is a normal distribution of silver atoms that appear on the
screen, since the silver atoms emitted from the oven would have a Boltzmann distribution of
magnetic moments. But this is not the case. Intead, Stern and Gerlach observed a bi-modal
distribution!

Classically
expected

Experimental
result

Figure E.3: Stern-Gerlach Distributions
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This result was originally termed ‘space quantization’, which is slightly misleading as space is
not actually quantized here. But from this, since µB and µz are adjustable parameters, we can
use (E.7) to get the values of Sz. Stern and Gerlach discovered these to be

Sz = ±~
2

(E.10)

§E.2 Superposition of Spin States

Allow us now to treat the Stern-Gerlach apparatus oriented along a particular axis as a black
box, such that when we send in spin 1-half particles, they emerge as either their ‘up’ or ‘down’
states.

|ψ〉s
|−〉

Sz = −~
2

|+〉
Sz = +~

2
Ẑ

Figure E.4: Spin-Z Black Box

Stern and Gerlach continued to perform experiments by placing these black boxes in a chain,
and the results are as follows.

1. The first experiment set up as shown in figure E.5 showed that we can have 2 orthogonal
states for the electron. These states are with respect to the ẑ orientation and we will label
them as {|z; +〉 , |z;−〉}.

|ψ〉s

+~
2

−~
2

0%

+~
2

100%
Ẑ Ẑ

Figure E.5: 2 ẑ-oriented Black Boxes with Blockage

2. A second experiment set up as shown in figure E.6. These results show that basis states
of one orientation of the Stern-Gerlach experiment have overlap with the basis states of
another orientation ⇒ 〈x;±|z;±〉 6= 0.

|ψ〉s

+~
2

−~
2

50%

+~
2

50%
Ẑ X̂

Figure E.6: ẑ/x̂-oriented Black Boxes with Blockage

3. The last experimental set up shown in figure E.7 shows that any ‘memory’ of a having
passed through previous filters is not retained.
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|ψ〉s

Sz = +~
2

Sx = +~
2

50%
+~

2

50%
−~

2

Ẑ X̂ Ẑ

Figure E.7: ẑ/x̂/ẑ-oriented Black Boxes with Blockages

As implied by the first experiment above, it turns out that this system can be modelled as a
2-dimensional complex vector space with an orthonormal basis consisting of these up and down
states {|+〉 , |−〉}. This is perfect for the implementation of a qubit. In this short write-up on spin,
I have adopted the physicists’ convention of representing the canonical basis with {|+〉 , |−〉}. Do
not confused these as the Ŝx eigenstates which quantum information scientists write them as.
However, do bear in mind that these are simply labels, so as long as there is no ambiguity, there
is no issue with using whatever label you prefer.



Appendix F

Abstract and Linear Algebra

In this chapter, we will introduce material from modern/abstract and linear algebra that will be
useful for the study of quantum mechanics. Although not all of it’s applications may be found
in this book, they will still be helpful in gaining a clearer picture of the material. As stated in
the preface, some prior knowledge of linear algebra is assumed so these notes will not be giving
in depth coverage. However, if I feel that something is needed to be emphasized or not taught
in a usual linear algebra course, I will expound on it in greater detail. For this section in the
appendix, I will drop the usual frames around definitions and theorems.

§F.1 Groups, Rings and Fields

This section will be rather dense with definitions and theorems, but is meant as a build up to
the following sections. Note that the proofs for the theorems will not be given in these notes and
is left as exercises for the reader.
Definition F.1.1. Set: A set S is a distinct collections of objects known as elements a ∈ S.
Definition F.1.2. Subset: Given 2 sets T and S, we say S is a subset of T if all elements in S
are also in T . We denote subsets as S ⊂ T .
Definition F.1.3. Morphism: Let S and T be sets. A morphism or map of sets of S into T is
written as

f : S → T

f(s) 7→ t
(F.1)

just as a function which assigns an element f(s) ∈ T for each s ∈ S.
Definition F.1.4. Group: A group is a set G equipped with a binary operation ‘·’ satisfying the
following axioms for a, b, c ∈ G.

1. Associativity: (a · b) · c = a · (b · c)
2. Identity: ∃e ∈ G s.t. e · a = a · e = a
3. ∀a ∈ G, ∃a−1 ∈ G s.t. a−1 · a = a · a−1 = e

Examples

• Integers Z under usual addition.

83
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• The nth roots of unity µn = { exp
(

2πij
n

)
| j ∈ Z}.

• The set of n× n invertible matrices, GLn = {M ∈ Rn×n | det(M) 6= 0}
Theorem F.1.1. For a group G, the following properties hold.

1. The identity element is unique.
2. For any a ∈ G, if x, y ∈ G are such that xa = ya or ax = ay, then x = y. This is known

as cancellation.
3. The inverses of any element of G is also unique.

Definition F.1.5. Abelian Group: A group G is called Abelian if for each a, b ∈ G, we have
a · b = b · a (group elements commute under the binary operation).
Definition F.1.6. Subgroup: A subgroup K in a group G is a subset K ⊂ G such that,

1. K is closed under multiplication in G
2. K is a group under induced multiplication from G

We denote a subgroup by K < G.
Definition F.1.7. Group Homomorphism: Given 2 groups (G, ·) and (G′, ∗), a group homo-
morphism is a morphism φ,

φ : G→ G′ (F.2)

that satisfies the following for any a, b ∈ G.

f(a · b) = f(a) ∗ f(b) (F.3)

In the above definition, we have used the notation of (G, ·) where in the given tuple, the left
most entry represents the group and the rightmost entry represents the associated binary oper-
ation.
Definition F.1.8. Rings: A ring is a set R equipped with 2 binary operations “+” and “·” which
satisfies the following.

1. (R,+) is an Abelian group.
2. The ring contains unity I with I · a = a · I = a for a ∈ R.
3. “·” satisfies associativity, (a · b) · c = a · (b · c).
4. “·” and “+” satisfy distributivity, (a+ b) · c = a · b+ a · c

Examples

1. Z, Q, R and C under usual addition and multiplication.
2. n× n matrices with entries in a given set, Mn(Z), Mn(Q), Mn(R) and Mn(C).
3. The set of integers modulo n Z/nZ, under usual addition and multiplication given by
a · b = a · b. (a, b ∈ Z/nZ)

Theorem F.1.2. A ring R satisfies the following properties for any 2 elements a, b ∈ R.

1. 0 · a = a · 0 = 0
2. a · (−b) = (−a) · b = −(a · b)
3. (−a) · (−b) = a · b

(−a) and (−b) above are the additive inverses of a and b.
Definition F.1.9. R-module: Given a ring R, a left R-module M is defined as an additive
Abelian group (M,+), with the operation

• : R×M →M (F.4)

such that for any r, r′ ∈ R and v, u ∈M , the operation satisfies
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1. s • (v + u) = s • v + s • u
2. (s+ s′) • v = s • v + s′ • v
3. (rs) • v = r • (s • v)
4. IR • v = v

A right R-module is defined in a similar way with the operation defined on M ×R instead.

R-modules are generalizations of the notion of vector spaces which we will formally come to in
a bit.
Definition F.1.10. Commutative Rings: A ring R is called commutative if for all a, b ∈ R, we
have a · b = b · a.
Definition F.1.11. Units: An element is called a unit u ∈ R if it has both left and right inverses,
u−1 · u = u · u−1 = I.
Definition F.1.12. Field: A field F is commutative ring in which all non-zero elements are
units.

Examples

1. Q,R and C are fields.
2. Z is not a field
3. Z/pZ is a field only if p is a prime integer.

Definition F.1.13. Ring Homomorphism: Given 2 rings R and R′, a ring homomorphism is a
morphism φ,

φ : R→ R′ (F.5)

that satisfies the following for any a, b ∈ R.

1. f(ab) = f(a)f(b)
2. f(a+ b) = f(a) + f(b)
3. f(IR) = IR′

Definition F.1.14. Associative F-Algebra: Given a field F, an associative F-algebra (or just
F-algebra) is an F-module with an F-bilinear map A×A→ A that satisfies associativity

x(yz) = (xy)z (F.6)

for all x, y, z ∈ A.

Examples

1. The polynomial ring over Q, written as Q[x] = {
∑
j cjx

j | ∀cj ∈ Q} is a Q-algebra.
2. Mn(F) is an F-algebra for F ∈ {Q,R,C}
3. The ring of Quaternions H, is an R-algebra.

§F.2 Vector Spaces, Hilbert Spaces and Lie Algebras

Again, the material covered in this section does not constitute a comprehensive course on vector
spaces, Hilbert spaces and Lie algebras. Content is presented on a need to know basis, relevant
for understanding this book.
Definition F.2.1. F-Vector Space: An F-vector space is an additive, Abelian group V with an
operation • : F× V → V called multiplication which satisfies

1. c • (~v + ~u) = c • ~v + c • ~u
2. (c+ d) • ~v = c • ~v + d • ~v
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3. I • ~v = ~v

for c, d ∈ F and ~v, ~u ∈ V .

Examples

1. The set of n-dimensional number arrays V = {(v1, v2, ..., vn) | vj ∈ F}.
2. The set of polynomial functions over a field F written as F[x].
3. The set of 2× 2 Hermitian matrices V = {M ∈ C2×2 |M† = M} over C.

Definition F.2.2. Subspace: A subset W of an F-vector space V is a subspace if W satisfies

1. closure under vector addition
2. closure under multiplication with elements of the field F.

Definition F.2.3. Linear Combination: Given an F-vector space V , a linear combination of a
set of vectors {~v1, ~v2, ..., ~vn} ⊂ V with F-coefficients {c1, c2, ..., cn} ⊂ F is defined as

n∑
j=1

cj~vj = c1~v1 + c2~v2 + ...+ cn~vn (F.7)

Definition F.2.4. Span: Given a list of vectors S = (v1, v2, ..., vn) from an F-vector space V ,
the span of S is defined as the set of all linear combinations of the vectors in S.

span(S) = {
n∑
j=1

cj~vj | cj ∈ F} (F.8)

Definition F.2.5. Linear Independence: Given an F-vector space V , a list of vectors {~v1, ~v2, ..., ~vn} ⊂
V is linearly independent iff

n∑
j=1

cj~vj = 0 ⇐⇒ cj = 0 ∀j (F.9)

Definition F.2.6. Basis: The basis of an F-vector space V , is a linearly independent list of
vectors that spans V .

§F.2.1 Linear Operators and L (V )

Operators play a huge role in quantum mechanics so it is essential that we look a little deeper
into what exactly they are and their properties.
Definition F.2.7. Linear Operators: Given an F-vector space V , a linear operator is a vector
space map, T : V → V (linear endomorphism) which satisfies

1. T (~v + ~u) = T (~v) + T (~u)
2. T (a~v) = aT (~v)

for ~v, ~u ∈ V and a ∈ F.

Examples

1. Given the vector space V = F[x], differentiation d
dx is a linear operator on V .

2. Given the vector space V = F[x, y, z], the Laplacian ∇2 is a linear operator on V .
3. Given the vector space V = Rn, any n× n real matrix is a linear operator on V .
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§ Structure of L (V )

L (V ) is the set of linear operators on some F-vector space V . Given 2 operators S, T ∈ L (V )
and some element a ∈ F, the operators satisfy the following properties.

1. (S + T )~v = S~v + T~v
2. (aS)~v = a(S~v)

Additionally, we can check that (S + T ) and (aS) are also both linear operators. We can also
check that L (V ) is in fact an F-vector space and the proof is left as an exercise for the reader.
Now, we equip our vector space L (V ) with an additional binary operation “∗” defined by

(S ∗ T )~v ≡ S(T (~v)) (F.10)

which grants additional structure to our vector space. We term this operation as operator
multiplication. Note that “∗” is associative and L (V ) has a operator multiplicative identity,
but it may not be commutative nor necessitate having inverses.

§F.2.2 Kernel and Range

As a little overview, I would like to point out that for the following structures being intro-
duced,

• the kernel is associated to a property known as injectivity.
• the range is associated to a property known as surjectivity.

Keep this in mind as we present their definitions.
Definition F.2.8. Kernel: Given a linear map (not necessarily an operator) T acting on an
F-vector space V , the kernel (or nullspace) of T denoted as null(T ), is defined as

null(T ) = {~v ∈ V | T (~v) = ~0} (F.11)

Definition F.2.9. Injectivity: An operator T acting on the vector space V is injective if for 2
vectors ~v, ~u ∈ V ,

T (~v) = T (~u)⇒ ~v = ~u (F.12)

Theorem F.2.1. An operator T is injective ⇐⇒ null(T ) = {~0}.

The theorem above is very useful for proving if operators are injective or not (simply look at the
kernel of the operator).
Definition F.2.10. Range: Given a linear map (not necessarily an operator) T acting on an
F-vector space V , the range of T denoted as range(T ) is defined as

range(T ) = {T (~v) | ~v ∈ V } (F.13)

Theorem F.2.2. For an operator T acting a vector space V , range(T ) is a subspace of V.
Definition F.2.11. Surjectivity: An operator T acting on a vector space V is surjective if
range(T ) = V (the range of T generates the entire vector space).
Definition F.2.12. Bijectivity: An operator T acting on a vector space V is bijective iff it is
both injective and surjective.
Theorem F.2.3. Rank-Nullity Theorem: For a linear map T acting on the vector space V ,

dim(null(T )) + dim(range(T )) = dim(V ) (F.14)
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§ Inverses of Linear Operators

Let’s now ask the question, when do operators have inverses? Firstly, since operator multiplica-
tion is not a commuative operation on L (V ), an operator T can have 2 kinds of inverses.

• A left inverse: S ∈ L (V ) s.t. S ∗ T = I.
• A right inverse: S′ ∈ L (V ) s.t. T ∗ S′ = I.

Well, it is actually proven that S and S′ are in fact the same operator!
Theorem F.2.4. Given some operator T ∈ L (V ), if both S and S′ exists such that S ∗ T =
T ∗ S′ = I, then we have S = S′.
Theorem F.2.5. For a given operator T ∈ L (V ), the existence of a T inverse operator implies
that T is injective and vice versa.
Theorem F.2.6. Given a finite dimensional F-vector space and an operator T that acts on it,
T is injective iff T is surjective.

§ Eigenvalues and Eigenvectors

In linear algebra, specific vectors associated to linear operator carry a special property. This
property allows these vectors to remain unchanged (up to a scale factor) when acted on by their
associated operator. These vectors are what are known as Eigenvectors.
Definition F.2.13. Eigenvector: If T is a linear operator mapping a non-zero vector v ∈ V
over field F onto itself, such that

T (v) = λv (F.15)

then v is known as the Eigenvector of T with an Eigenvalue λ.

§F.2.3 Hilbert Spaces and Lie Algebras

Definition F.2.14. Hilbert Space: A Hilbert space H, is a C-vector space with a defined inner
product operation on 2 H-elements as given by

〈 , 〉 : H×H → C (F.16)

Definition F.2.15. Orthogonality: Given a Hilbert space H, 2 elements ψ, φ ∈ H are called
orthogonal iff

〈ψ, φ〉 = 〈φ, ψ〉 = 0 (F.17)

Definition F.2.16. Lie Algebra: A Lie algebra L, is a finite dimensional C-vector space
equipped with a binary operation [ , ] : L × L → L called the bracket. The bracket satisfies
the following properties.

1. Bilinearity
2. Antisymmetry: [x, y] = −[y, x]
3. Jacobi Identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for x, y, z ∈ L.
Definition F.2.17. Lie Subalgebra: A subspace L′ ⊂ L (with L being a Lie algebra) is a Lie
subalgebra if [L′,L′] ⊂ L′. In this case, L′ inherits the bracket operation from L and is therefore
also a Lie algebra.
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