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Last lesson, we went over the following concepts:

Dirac Notation: Bras, kets, matrix representation and matrix
mechanics.

Complexity Theory: Classical computational problems can be
grouped under NP-hard with P and NP-complete being subsets.
Qubits: Any quantum 2-level system can be a qubit (spin—%, spin
algebra).

Quantum Gates: Unitary operators can be used as quantum gates to
do computation (Pauli matrices, other gates).

Tensory Products: More qubits requires tensory products of
operators and states.

Quantum Circuits: Construct and utilize quantum circuit diagrams
to build quantum algorithms/protocols.

Q-Teleportation: Protocol to send an arbitrary quantum state over
classical channels.
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Overview

@ Deutsch—Jozsa's Algorithm
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Deutsch—Jozsa's Algorithm: The Problem

@ Quantum algorithm proposed by David Deutsch and Richard Jozsa in
1992.
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Deutsch—Jozsa's Algorithm: The Problem

@ Quantum algorithm proposed by David Deutsch and Richard Jozsa in
1992.

o First Q-algorithm promising exponential speed-up from any
deterministic classical algorithm.

o Deutsch—Jozsa’s problem:
Given an oracle function f on n bits, we want to determine if f is
either

e Constant: f(x) =0 (or 1) for all values of x.

0
{o, half of the x inputs
1

Balanced: f(x) =
° () other half of the x inputs
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Deutsch—Jozsa's Algorithm: The Problem

Quantum algorithm proposed by David Deutsch and Richard Jozsa in
1992.

First Q-algorithm promising exponential speed-up from any
deterministic classical algorithm.

Deutsch—Jozsa’s problem:

Given an oracle function f on n bits, we want to determine if f is
either

o Constant: f(x) =0 (or 1) for all values of x.
0,  half of the x inputs
1

This is known as a promise problem.

Balanced: f(x) =
° () other half of the x inputs

)
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Deutsch—Jozsa's Algorithm: Quantum Improvement

o Classically, we would have to look up 2"/2 41 (i.e. O(2")) function
outputs in the worst case scenario.
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Deutsch—Jozsa's Algorithm: Quantum Improvement

o Classically, we would have to look up 2"/2 41 (i.e. O(2")) function
outputs in the worst case scenario.

@ We can construct a quantum algorithm that will give an exponential
speed-up to this.

@ In fact, | claim that you only need 1 query with a suitable quantum
algorithm.

@ This algorithm, would of course be the Deutsch—Jozsa's algorithm.
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Deutsch—Jozsa's Algorithm: The Algorithm

Deutsch—Jozsa’s Algorithm:

@ We begin with n+ 1 qubit registers, the top n of which start in state
|0) while the last is in state |1).

o We apply Hadamard gates to every qubit in the circuit.
@ The oracle is now applied to all qubits as in figure.

@ We again apply Hadamard gates, but now only to the top n registers.

@ We measure the top n registers in the canonical basis.
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Deutsch—Jozsa's Algorithm: Algorithm Analysis

Consider the 2 qubit Deutsch-Josza Algorithm:

o {— =
!0>Orac|e z
)

2 Qubit Deutsch—Jozsa Algorithm
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Overview

© Bell vs EPR
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Bell vs EPR: General Spin Measurements

@ We are about to discuss the proof of falsity by John Bell to the claims
of Einstein, Podolsky, and Rosen (EPR).

RW (SUTD) TQW IAP 2019 9/21



Bell vs EPR: General Spin Measurements

@ We are about to discuss the proof of falsity by John Bell to the claims
of Einstein, Podolsky, and Rosen (EPR).

@ Before we do so, we have to look a little more into measuring spin in
an arbitrary direction.

RW (SUTD) TQW IAP 2019 9/21



Bell vs EPR: General Spin Measurements

@ We are about to discuss the proof of falsity by John Bell to the claims
of Einstein, Podolsky, and Rosen (EPR).

@ Before we do so, we have to look a little more into measuring spin in
an arbitrary direction.

Figure: Spin Along an Arbitrary Axis
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Bell vs EPR: General Spin Measurements

@ It can be shown that the spin operator along this axis is given by:

A~
=

F’-§:§Xsin¢9cos¢+§ysin05in¢+§zc059: 217'0'
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Bell vs EPR: General Spin Measurements

@ It can be shown that the spin operator along this axis is given by:

A~
=

F’-§:§Xsin¢9cos¢+§ysin05in¢+§zc059: 217'0'

@ with eigenstates:

—

|7 +) = cosg 0) + e sin g 1)

0 . 0
P\ —cin = PN ) v
|F:—) =sin 5 |0) — e'? cos > [1)
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Bell vs EPR: Activity 1

Check that |r;+) and |F; —) are indeed eigenstates with eigenvalues +1.
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Bell vs EPR: Hidden Variables

@ In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR)
claimed that the wave function was an incomplete description of
reality.

A. Einstein B. Podolsky N. Rosen

Figure: Einstein, Podolsky and Rosen
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Bell vs EPR: Hidden Variables

@ In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR)
claimed that the wave function was an incomplete description of
reality.

A. Einstein B. Podolsky N. Rosen

Figure: Einstein, Podolsky and Rosen

@ Instead, they proposed the existence of hidden variables which
preserved determinism (local realism, contradicted entanglement).
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Bell vs EPR: Hidden Variables

@ In 1964, Bell came up with a rigorous proof that EPR’s predictions
could not be true.

Figure: John Stewart Bell
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Bell vs EPR: Hidden Variables

@ In 1964, Bell came up with a rigorous proof that EPR’s predictions
could not be true.

Figure: John Stewart Bell

@ This was validated by the experimental works of Alain Aspect in 1981.
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Bell vs EPR: Elucidation of Bell's Theorem

_ |01)+|1o>)_

e Consider an entangled state (e.g V) v
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_ |01)+|10>)
=5 )

@ EPR would say that these states are just pairs of particles with
definite spins, i.e. quantum mechanical measurements are
reproducible by using a large ensemble of such spin pairs:

o Consider an entangled state (e.g [WT)
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Bell vs EPR: Elucidation of Bell's Theorem

e Consider an entangled state (e.g [V1) = %).

@ EPR would say that these states are just pairs of particles with
definite spins, i.e. quantum mechanical measurements are
reproducible by using a large ensemble of such spin pairs:

e 50% of pairs: particle 1 has spin along +2 and particle 2 along —2.
e 50% of pairs: particle 1 has spin along —2 and particle 2 along +2.
@ But now try to measure this state along 3 different axes, 3, band ¢
with equal angular spacing 6.
e Following EPR, take a population of N particles pairs and define
values Z?Zl N; = N.
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Bell vs EPR: Elucidation of Bell's Theorem

State Population | Particle 1 | Particle 2
Ny (a, b, c)| (-a,-b,-c)
N5 (a, b-c) | (-a,-b, ¢)
N3 (a-b, c) | (-a, b-c)
Ny (a,-b,-c) | (-a, b, ¢)
Ns (-a, b, ¢) | (a,-b,-)
Ne (-a, b,-c) | (a,-b, ¢)
N7 (-a,-b, ©) | (' a, b,-¢)
Ng (-a,-b,-c) | (a, b, ¢)

Table: The populations of particle pairs in each unique state.
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Bell vs EPR: Elucidation of Bell's Theorem

@ From the table, we can derive the following probabilities:
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Bell vs EPR: Elucidation of Bell's Theorem

@ From the table, we can derive the following probabilities:

N3 + N, Ny 4+ N, N3 + N
Blaib) =~ B(aic) =~y B(eib) =

@ For which we have the trivial inequality:

N2+/V4+/V3+/V7 S N3 + Ny
N N - N
= P(a;c) +P(c; b) > P(a; b)

@ The equation above is known as Bell’s inequality.
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Bell vs EPR: Elucidation of Bell's Theorem

@ Now we look at the same probabilities but derived from quantum
mechanics:
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Bell vs EPR: Elucidation of Bell's Theorem

@ Now we look at the same probabilities but derived from quantum

mechanics:
1 1 1
P(a; b) = 5 sin260, P(a;c) = 5 sin? g, P(b; c) = 5 sin? g

@ Substituting this into Bell's inequality:

@ We see that the above inequality fails, disproving the hidden variable
theorem.
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Dynamics of Quantum Systems

Our interest and expertise is in the dynamics and thermodynamics of open and Hamiltonian quantum systems.
We are particularly interested in quantum many-bod systems. Follow the links to our Rescarch and P

pages to know more about what we do, and the People page to find out who we are. There are often positions
available: please check here!

Figure: Poletti Group
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Figure: Period Doubling

anatural example of a clean Floquet time crystal, and finally
in See. VIl we draw our conclusions.

I1. MODEL, PERIODIC STEADY STATE,
AND MEAN-FIELD EQUATIONS

We consider a double-well potential with N atoms which
is periodically driven and under the influence of dissipa-
tion. The system is described by a master equation whose
time-dependent generator £, of Lindblad form [10-13], is
composed of two parts,

B =Lp) = =il AW).p] + D(h). a

Note that we have set /i = 1. The first part of Eq. (1) describes
the Hamiltonian evolution of the system’s density operator 5.
ducto the Hamiltonian A1(1). We consider a double well whose
Hamiltonian is

i U
A = ~J6ib +Bb + 5 ‘Z.;M”' n
+ (A —fiy), @

where by (b)) annihilates (creates) a boson at site j, while

i; = blb,. The Hamilionian parameters are J. the tuneling

in Period-1 Steady States
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Prospective research areas for interested parties:
@ Quantum thermodynamics.
@ Quantum many-body systems dynamics.

@ Neural networks for quantum many-body systems.
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Thank youl!
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