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Recap

Last lesson, we went over the following concepts:

Dirac Notation: Bras, kets, matrix representation and matrix
mechanics.

Complexity Theory: Classical computational problems can be
grouped under NP-hard with P and NP-complete being subsets.

Qubits: Any quantum 2-level system can be a qubit (spin-12 , spin
algebra).

Quantum Gates: Unitary operators can be used as quantum gates to
do computation (Pauli matrices, other gates).

Tensory Products: More qubits requires tensory products of
operators and states.

Quantum Circuits: Construct and utilize quantum circuit diagrams
to build quantum algorithms/protocols.

Q-Teleportation: Protocol to send an arbitrary quantum state over
classical channels.
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Overview

1 Deutsch–Jozsa’s Algorithm

2 Bell vs EPR
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Deutsch–Jozsa’s Algorithm: The Problem

Quantum algorithm proposed by David Deutsch and Richard Jozsa in
1992.

First Q-algorithm promising exponential speed-up from any
deterministic classical algorithm.

Deutsch–Jozsa’s problem:
Given an oracle function f on n bits, we want to determine if f is
either

Constant: f (x) = 0 (or 1) for all values of x .

Balanced: f (x) =

{
0, half of the x inputs

1, other half of the x inputs

This is known as a promise problem.
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Deutsch–Jozsa’s Algorithm: Quantum Improvement

Classically, we would have to look up 2n/2 + 1 (i.e. O(2n)) function
outputs in the worst case scenario.

We can construct a quantum algorithm that will give an exponential
speed-up to this.

In fact, I claim that you only need 1 query with a suitable quantum
algorithm.

This algorithm, would of course be the Deutsch–Jozsa’s algorithm.
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Deutsch–Jozsa’s Algorithm: The Algorithm

Deutsch–Jozsa’s Algorithm:

We begin with n + 1 qubit registers, the top n of which start in state
|0〉 while the last is in state |1〉.
We apply Hadamard gates to every qubit in the circuit.

The oracle is now applied to all qubits as in figure.

We again apply Hadamard gates, but now only to the top n registers.

We measure the top n registers in the canonical basis.
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Deutsch–Jozsa’s Algorithm: Algorithm Analysis

Consider the 2 qubit Deutsch-Josza Algorithm:

|0〉

|0〉

|1〉

H

H

H

Oracle

H

H

2 Qubit Deutsch–Jozsa Algorithm
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Bell vs EPR: General Spin Measurements

We are about to discuss the proof of falsity by John Bell to the claims
of Einstein, Podolsky, and Rosen (EPR).

Before we do so, we have to look a little more into measuring spin in
an arbitrary direction.

y

z

x

|~r ; +〉

|~r ;−〉

Figure: Spin Along an Arbitrary Axis
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Bell vs EPR: General Spin Measurements

It can be shown that the spin operator along this axis is given by:

~r · ~̂S = Ŝx sin θ cosφ+ Ŝy sin θ sinφ+ Ŝz cos θ =
~
2
~r · ~̂σ

with eigenstates:

|~r ; +〉 = cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉

|~r ;−〉 = sin
θ

2
|0〉 − e iφ cos

θ

2
|1〉
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Bell vs EPR: Activity 1

Check that |~r ; +〉 and |~r ;−〉 are indeed eigenstates with eigenvalues ±1.
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Bell vs EPR: Hidden Variables

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR)
claimed that the wave function was an incomplete description of
reality.

Figure: Einstein, Podolsky and Rosen

Instead, they proposed the existence of hidden variables which
preserved determinism (local realism, contradicted entanglement).
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Bell vs EPR: Hidden Variables

In 1964, Bell came up with a rigorous proof that EPR’s predictions
could not be true.

Figure: John Stewart Bell

This was validated by the experimental works of Alain Aspect in 1981.
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Bell vs EPR: Elucidation of Bell’s Theorem

Consider an entangled state (e.g |Ψ+〉 = |01〉+|10〉√
2

).

EPR would say that these states are just pairs of particles with
definite spins, i.e. quantum mechanical measurements are
reproducible by using a large ensemble of such spin pairs:

50% of pairs: particle 1 has spin along +ẑ and particle 2 along −ẑ .
50% of pairs: particle 1 has spin along −ẑ and particle 2 along +ẑ .

But now try to measure this state along 3 different axes, ~a, ~b and ~c
with equal angular spacing θ.

Following EPR, take a population of N particles pairs and define
values

∑8
j=1Nj = N.

RW (SUTD) TQW IAP 2019 14 / 21



Bell vs EPR: Elucidation of Bell’s Theorem

Consider an entangled state (e.g |Ψ+〉 = |01〉+|10〉√
2

).

EPR would say that these states are just pairs of particles with
definite spins, i.e. quantum mechanical measurements are
reproducible by using a large ensemble of such spin pairs:

50% of pairs: particle 1 has spin along +ẑ and particle 2 along −ẑ .
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Bell vs EPR: Elucidation of Bell’s Theorem

State Population Particle 1 Particle 2

N1 ( a, b, c) (-a,-b,-c)
N2 ( a, b,-c) (-a,-b, c)
N3 ( a,-b, c) (-a, b,-c)
N4 ( a,-b,-c) (-a, b, c)
N5 (-a, b, c) ( a,-b,-c)
N6 (-a, b,-c) ( a,-b, c)
N7 (-a,-b, c) ( a, b,-c)
N8 (-a,-b,-c) ( a, b, c)

Table: The populations of particle pairs in each unique state.
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Bell vs EPR: Elucidation of Bell’s Theorem

From the table, we can derive the following probabilities:

P(a; b) =
N3 + N4

N
, P(a; c) =

N2 + N4

N
, P(c; b) =

N3 + N7

N

For which we have the trivial inequality:

N2 + N4

N
+

N3 + N7

N
≥ N3 + N4

N
⇒ P(a; c) + P(c ; b) ≥ P(a; b)

The equation above is known as Bell’s inequality.
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Bell vs EPR: Elucidation of Bell’s Theorem

Now we look at the same probabilities but derived from quantum
mechanics:

P(a; b) =
1

2
sin2 θ, P(a; c) =

1

2
sin2 θ

2
, P(b; c) =

1

2
sin2 θ

2

Substituting this into Bell’s inequality:

1

2
sin2 θ

2
+

1

2
sin2 θ

2

?
≥ 1

2
sin2 θ

⇒ sin2 θ

2

?
≥ 1

2
sin2 θ

We see that the above inequality fails, disproving the hidden variable
theorem.
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The Quantum World: Research

Figure: Poletti Group
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The Quantum World: Research

Figure: Period Doubling in Period-1 Steady States

quantum thermodynamics - quantum many-body systems dynamics - neural
networks for quantum many-body systems
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The Quantum World: Research

Prospective research areas for interested parties:

Quantum thermodynamics.

Quantum many-body systems dynamics.

Neural networks for quantum many-body systems.
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The Quantum World: Day 4

Thank you!
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