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Recap

Last lesson, we went over the following concepts:

Commutators: Defined commutators between operators and their
properties.

Inner Products and Expectation: Defined inner products in infinite
dimensional Hilbert spaces and expectation values.

Hermitian Operators and the Spectral Theorem: Hermitian
observables will always have real eigenvalues and orthonormal
eigenvectors.

Measurement: Measuring an observable collapses the state into an
eigenstate producing the associated eigenvalue.

Stationary States and 1D potentials: Separable solutions allow us
for energy eigenstate solutions in 1D potentials.
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Dirac’s Bras and Kets: Matrix Mechanics

To define an inner product, we require a definition of conjugate
transposition. Conjugate transpose of a ket is called the ‘bra’:

〈ψ| =
(
|ψ〉∗

)T
= |ψ〉†

The symbol we use for conjugate transposition (†) is the ‘dagger’.

Inner products are done by closing the ‘bra-ket’:

〈ψ, φ〉 = 〈ψ|φ〉

.

Expectations are performed in the same way with the observable
wedged in-between:

〈Q̂〉ψ = 〈ψ| Q̂ |ψ〉
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Dirac’s Bras and Kets: Matrix Representation

Operators that act on these kets/states/wave functions will adopt a
matrix representation.

The entries of these matrices for a given operator Q̂ are:

[Q̂]ij = 〈ψi | Q̂ |ψj〉

It is imperative to specify which basis we are working with in order
to construct the matrix representation of an operator.

To be explicit, given some basis B = {|ψ1〉 , |ψ2〉 , ..., |ψn〉}, the matrix
representation of Q̂ will be:

Q̂ =


〈ψ1| Q̂ |ψ1〉 〈ψ1| Q̂ |ψ2〉 . . . 〈ψ1| Q̂ |ψn〉
〈ψ2| Q̂ |ψ1〉 〈ψ2| Q̂ |ψ2〉 . . . 〈ψ2| Q̂ |ψn〉

...
. . .

...

〈ψn| Q̂ |ψ1〉 〈ψn| Q̂ |ψ2〉 . . . 〈ψn| Q̂ |ψn〉
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Overview

1 TLDR; Classical Computers

2 Quantum Computers
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TLDR; Classical Computers: Classical Machines

There are many models of classical computation.

Some of these are universal while others are not.

This idea of universal computation was proposed by Alan Turing in
1936: any ‘reasonable’ computation can be solved by a universal
machine.

The circuit model is what we will be looking more closely at because
it will pave the way for the circuit model of quantum computation.

The circuit model is a generalization of the common boolean circuitry
with universal gates (e.g. {AND,NOT}).
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TLDR; Classical Computers: Byte-Sized Complexity
Theory

To appreciate the advantages of quantum computing, it would be
useful to have an understanding of basic complexity theory.

For computational problems, if the number of operations is a
polynomial function of the size of the input n, we call these class of
problems polynomial hard (∈ P).

These problems are contained in the bigger class of NP-hard problems
(nondeterministic polynomial time).

Finally, there is a special class of problems which are known as
NP-complete. Solving NP-complete problems allows us to solve all
NP problems.
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TLDR; Classical Computers: Byte-Sized Complexity
Theory

A set visualization of the aforementioned classes is given below.

Figure: Complexity Classes
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Quantum Computers: Today

Figure: Bristlecone
(Google)

Figure: IBM’s Quantum
Computer

Figure: D-Wave’s
Quantum
Computer
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Quantum Computers: Today

Figure: IBM’s Commercial Quantum Computer
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Quantum Computers: Today

Figure: IBM QuantumExperience
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Quantum Computers: Today

Figure: Microsoft Q# Development Kit
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Quantum Computers: The Qubit

The fundamental constituent of a quantum computer is a quantum
bit (qubit).

In theory, any 2-level quantum system can be realized as an
implementation of a qubit (e.g. Mach-Zehnder interferometer
{|u〉 , |d〉}).

A commonly adopted 2-level system is the spin of spin-12 particles.
(think of quantum spin as the 2-level quantized version of the
classical spin for a charged sphere).

This quantization allows us to represent the orthogonal states of our
spin qubit as follows:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
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Quantum Computers: The Qubit

We have 2 vector spaces in which one is ‘embedded’ in the other.
These vector spaces are:

The 2D vector space of spin states (quantum state space).
The 3D vector space of rotations (real space).

This means that in any arbitrary direction in real space, there lives a
2D complex vector space.

A method of visualizing is known as the Bloch sphere geometric
representation. This will not be covered.

I give an alternative means of visualization that may be useful and I
find rather intuitive.
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Quantum Copmuters: The Qubit

y

z

x

|0〉

|1〉

Spin axis
“Lie algebra”
(eigenstates)

Lie group

Figure: Visualization of Spin Rotations
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Quantum Computers: Quantum Gates

As in classical computers, we now want to be able to perform
operations on our qubits.

These can be done in the form of quantum gates (similar to logic
gates in the classical circuit model).

Physical operations to a closed system in quantum mechanics must
be unitary, so we need to look for unitary operators which can act as
our quantum gates.

When adopting spin as qubits, we are given some nice tools to work
with related to spin observables (Pauli and identity matrices).

I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
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Quantum Computers: Quantum Gates

The eigenstates of the Pauli matrices (in the z-basis) are:

σ̂x : |+〉 =
1√
2

[
1
1

]
, |−〉 =

1√
2

[
1
−1

]
σ̂y : |↑〉 =

1√
2

[
1
i

]
, |↓〉 =

1√
2

[
1
−i

]
σ̂z : |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]

The Pauli matrices follow the following commutation relation called
the spin algebra:

[σ̂i , σ̂j ] = 2iεijk σ̂k

Pauli matrices are all unitary, Hermitian and involutory.
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Quantum Computers: Quantum Gates

Check the commutation relations of the Pauli matrices. What are their
anti-commutation relations?
(Hint: The anti-commutator is defined as {Â, B̂} = ÂB̂ + B̂Â.)
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Quantum Computers: Quantum Gates

H

Figure: Hadamard Gate

1√
2

[
1 1
1 −1

]

X

Figure: Pauli-X/NOT Gate

[
0 1
1 0

]

Y

Figure: Pauli-Y Gate

[
0 −i
i 0

]
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Quantum Computers: Quantum Gates

Z

Figure: Pauli-Z Gate

[
1 0
0 −1

]

S

Figure: Phase Gate

[
1 0
0 i

]

T

Figure: π/8 Gate

[
1 0

0 e iπ/4

]
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Quantum Computers: Quantum Gates

X

Figure: CNOT Gate


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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The Quantum World: Day 3

Break
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Quantum Computers: More Qubits

Having a computer (even a quantum one) with one bit (qubit) isn’t
very useful.

In quantum computers, the addition of more qubits scales the
computational capacity exponential (unlike in classical computers).

For multi-particle (many-body) quantum systems, we require the use
of tensor products (presented as Kronecker products).

This ‘expands’ the Hilbert space of our quantum system → given the
Hilbert spaces of each sub-quantum system being {H1, ...,Hn}, then
the Hilbert space of the total system is given by H1 ⊗ ...⊗Hn, with
dim(H1 ⊗ ...⊗Hn) = dim(H1)...dim(Hn).
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Quantum Computers: More Qubits

Definition

Given 2 vectors:

|ψ〉 =


...
ψj

ψj+1
...

 , |φ〉 =


...
φj
φj+1

...


with |ψ〉 ∈ V and |φ〉 ∈W , the Kronecker product of |ψ〉 and |φ〉 is
given by :

|ψ〉 ⊗ |φ〉 = |ψ〉 |φ〉 = |ψφ〉 =


...

ψj |φ〉
ψj+1 |φ〉

...
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Quantum Computers: More Qubits

Definition

Given 2 matrices:

Â =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
. . .

...
an1 an2 . . . ann

 , B̂ =


b11 b12 . . . b1nm
b21 b22 . . . b2m

...
. . .

...
bm1 bm2 . . . bmm


the Kronecker product of Â and B̂ is defined as:

Â⊗ B̂ =


a11B̂ a12B̂ . . . a1nB̂

a21B̂ a22B̂ . . . a2nB̂
...

. . .
...

an1B̂ an2B̂ . . . annB̂
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Quantum Computers: More Qubits

The action of these operators on states in the larger space is:

(Â1 ⊗ ...⊗ Ân)(|ψ〉1 ⊗ ...⊗ |ψ〉n) = Â1 |ψ〉1 ⊗ ...⊗ Ân |ψ〉n
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Quantum Computers: Quantum Circuits

We now introduce the formalism of quantum circuit diagrams. Quantum
circuits are drawn in the following steps:

Specify the qubit inputs.

Connect quantum wires from inputs to outputs.

Specify intermediate gates to take inputs to outputs.

Include any classical post-processing required.

Example:

|0〉

|0〉

|0〉

H

X

X

|000〉+|111〉√
2

Figure: Quantum Circuit for GHZ State
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Quantum Computers: Entanglement

Consider the state:∣∣Φ+
〉

=
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√

2
=
|00〉AB + |11〉AB√

2

This state is unique because if you measure and determined the state
in A, the state in B is automatically known!

There seems to be this binding correlation between particles A and B
no matter the distance between them. This phenomena is what
physicist term quantum entanglement.
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Quantum Computers: Teleportation

We can now look at the first quantum protocol, quantum
teleportation.

It has use because of the no-cloning theorem:

Theorem

The no-cloning theorem states that it is impossible to create an identical
copy of some arbitrary unknown quantum state |ψ〉.

In this protocol the goal is transmitting quantum information between
2 individuals (Alice and Bob) who agree on a prior scheme.

This will be done by the sending classical bits and utilizing quantum
entangle.
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Quantum Computers: Teleportation

The Protocol:

Alice has a single qubit quantum state which she wants to send over
to Bob. Alice and Bob also share a 2-qubit entangled state, which
means Alice has 2 qubits and Bob, 1.

Alice then performs a measurement in the Bell basis on her 2 qubits
which grants her 2 classical bits.

Alice then sends her 2 classical bits over a classical channel to Bob.

Bob receives the 2 classical bits, and performs the necessary unitary
on his qubit according to a previously agreed upon rule, obtaining
Alice’s original qubit. The state has been effectively teleported.
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Quantum Computers: Teleportation

To do a measurement in the Bell basis, we run our outputs through a circuit
that allows us to measure in the computational basis:
A CNOT gate from the 1st to the 2nd qubit, then a Hadamard to the 1st

qubit.

∣∣Φ+
〉

=
|00〉+ |11〉√

2

CNOT−−−−→ |00〉+ |10〉√
2

= |+〉 |0〉 H⊗I−−→ |00〉

∣∣Ψ+
〉

=
|01〉+ |10〉√

2

CNOT−−−−→ |01〉+ |11〉√
2

= |+〉 |1〉 H⊗I−−→ |01〉

∣∣Φ−〉 =
|00〉 − |11〉√

2

CNOT−−−−→ |00〉 − |10〉√
2

= |−〉 |0〉 H⊗I−−→ |10〉

∣∣Ψ−〉 =
|01〉 − |10〉√

2

CNOT−−−−→ |01〉 − |11〉√
2

= |−〉 |1〉 H⊗I−−→ |11〉
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Quantum Computers: Teleportation

After sending the classical bits, we apply the respective recovery operators:

00→ I
01→ σx

10→ σz

11→ σxσz

The Q-teleportation protocol as a circuit is given below:

|ψ〉A

|Φ+〉A

|Φ+〉B

X

H

X |ψ〉B

Figure: Quantum Teleportation Circuit
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The Quantum World: Day 3

Thank you!
https://tinyurl.com/TQWday3
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