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Last lesson, we went over the following concepts:

@ Wave-Particle Duality: Young's double slit experiment with
electrons (Davisson and Germer, 1927).
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Last lesson, we went over the following concepts:

Wave-Particle Duality: Young's double slit experiment with
electrons (Davisson and Germer, 1927).

Properties of QM: Linearity; Necessity of Complex Numbers; Loss of
Determinism; Superposition; Entanglement.

Mach-Zehnder Interferometry:Set-up of beam splitters and mirrors
to model superposition in a simple quantum system, bomb detection.

Matter Waves: classical dynamical variables — quantum wave
function (‘carrier’ of probabilistic information).

Observables: physical measurables (energy, position, momentum,
etc...) are promoted to operators.

Schrodinger’s Equation: the governing equation for all of quantum
mechanics.
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Overview

@ Building Tools for Measurement
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Building Tools for Measurement: Commutators

@ We can equip our operator vector space with additional structure that
turns it into a Lie algebra.
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Building Tools for Measurement: Commutators

@ We can equip our operator vector space with additional structure that
turns it into a Lie algebra.

@ This structure is called the commutator (a.k.a the bracket) and is
defined as follows:

Definition

Given 2 operators A and B, the commutator of A with B is defined as

[4.8] = AB - BA (1)
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Building Tools for Measurement: Commutators

@ We can equip our operator vector space with additional structure that
turns it into a Lie algebra.

@ This structure is called the commutator (a.k.a the bracket) and is
defined as follows:

Definition

Given 2 operators A and B, the commutator of A with B is defined as

[4.8] = AB - BA (1)

@ These commutators satisfy some very useful properties (see next
slide).
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Building Tools for Measurement: Commutators

Here is a list of commutator properties:
° /A\, A} =0

o [A B] = —[B,/A\}

° _A,Bi(f] = [A,B] + [A,C‘}
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Quantum Promotions: Activity 2

Compute the commutator between X and p, [X, p].
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Quantum Promotions: Activity 2

Compute the commutator between X and p, [X, p].
(Hint: try applying the commutator to some arbitrary test function 1)(x).)

RW (SUTD) TQW IAP 2019 6 /32



Building Tools for Measurement: Inner Products

@ When working in the continuous function space, we can define an
inner product as follows:

Definition

For 2 continuous, complex functions f(x) and g(x), the inner product of
f(x) with g(x) is defined as,

(F(x), g / dxf*(x)g(x)
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Building Tools for Measurement: Inner Products

@ When working in the continuous function space, we can define an
inner product as follows:

Definition

For 2 continuous, complex functions f(x) and g(x), the inner product of
f(x) with g(x) is defined as,

(F(x), g / dxf*(x)g(x)

@ This allows us to look for the ‘overlap’ between 2 wave functions.

@ by the normalization condition, we have that:

0<|[{,0)] <1
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Building Tools for Measurement: Expectation

@ The expectation value of an observable gives us a weighted average of
all its possible values upon measurement.

Definition

Given an operator Q and an arbitrary quantum state V, the expectation
value of that operator on V is defined as

(Q)y = (W, QU) = /+OO dx(w*@w) (2)

—00
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Building Tools for Measurement: Uncertainty

@ From the non-vanishing commutator between quantum observables,
this causes uncertainty between the measuring of conjugate variables.

Heisenberg Uncertainty Principle

Given 2 observables A and B that do not commute, there will be an
uncertainty relation when measuring the 2 observables on a quantum state

1 given by
2

050% > ‘211.(@0, [A, é}@

where o is the uncertainty of an observable defined by

o4 =1/ (A2 — (A .
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Building Tools for Measurement: Spectral Theorem

e Hermiticity is a property of all observables and ensures that their
associated measured values are guaranteed to be real.

Definition

Given an operator A acting on a Hilbert space ‘H, the operator is said to
be Hermitian if
(W, AV) = (AU, V)

for U being some arbitrary element of the Hilbert space.
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Building Tools for Measurement: Spectral Theorem

e Hermiticity is a property of all observables and ensures that their
associated measured values are guaranteed to be real.

Definition

Given an operator A acting on a Hilbert space ‘H, the operator is said to
be Hermitian if
(W, AV) = (AU, V)

for U being some arbitrary element of the Hilbert space.

@ Knowing this, we look at 2 theorems which together, constitute the
spectral theorem and is key to our understanding of measurement in

QM.
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Building Tools for Measurement: Spectral Theorem

o First, we look at the notion of diagonalization:

A linear operator Q on a Hilbert space H is diagonalizable iff there exists
an ordered set of eigenstates {1);} with corresponding eigenvalues {«;}
such that these eigenstates span the Hilbert space.
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Building Tools for Measurement: Spectral Theorem

o First, we look at the notion of diagonalization:

A linear operator Q on a Hilbert space H is diagonalizable iff there exists
an ordered set of eigenstates {1);} with corresponding eigenvalues {«;}
such that these eigenstates span the Hilbert space.

@ The 2 theorems corresponding to the spectral theorem:

Theorem

All the Eigenvalues of a Hermitian operator A, are real (R).

Theorem

The eigenstates of a Hermitian operator form an orthogonal set of states.
(This is in fact an orthogonal basis that spans the observables’ state
space.)

| \

v
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Building Tools for Measurement: Activity 1

Prove the 2 theorems in the previous slide.

(Hint: Recall the definition of Eigenvalues, Eigenvectors and Hermitian op-
erators.)
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Building Tools for Measurement: Measurement

@ Quantum systems are described by wave functions.
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Building Tools for Measurement: Measurement

@ Quantum systems are described by wave functions.

@ However when we perform a measurement, we obtain classical notions
of physical quantities.

@ How do we resolve this apparent paradox?

@ The answer is a phenomenon known as the ‘collapse of the wave
function’, expounded upon by the measurement postulate:

Measurement Postulate

Given a diagonalizable Hermitian observable Q and an arbitrary quantum
state expressed as the superposition of Q eigenstates W = i ojj,
performing a measurement of Q on V would cause it to collapse into one
of the eigenstates 1); with probability |aj]2. The measurement outcome
would be the eigenvalue q; associated to 1);.

RW (SUTD) TQW IAP 2019 13 / 32



Overview

© What Now Schrédinger?

RW (SUTD) TQW IAP 2019 14 / 32



What Now Schrodinger?: Stationary States

@ We will now explore a specific kind of energy eigenstate known as
stationary states.

Definition

Stationary states are energy eigenstates constructed by finding separable
solutions to the Schrédinger’s equation.
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What Now Schrodinger?: Stationary States

@ We will now explore a specific kind of energy eigenstate known as
stationary states.

Definition

Stationary states are energy eigenstates constructed by finding separable
solutions to the Schrédinger’s equation.

@ Separable solutions are written as:

V(x, t) = P(x)f(t)

@ Plugging these into the Schrodinger equation, we get:

df(t)

i
gl

= Ef(t), Ay(x)= Ey(x)
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What Now Schrodinger?: Stationary States

@ The solutions to the time-dependent equation is given by:
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V(x,t) =(x)e”*
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What Now Schrodinger?: Stationary States

@ The solutions to the time-dependent equation is given by:

@ Which gives the stationary states to be written as:

iEt

V(x,t) =(x)e”*

@ Recall that any arbitrary quantum state can be constructed from a
superposition of eigenstates (spectral theorem). Hence any quantum
state can be written as:

o0 oo
iEn
V(x,t) =Y anWnl(x, t) =Y antha(x)e” 7"
n=1 n=1
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What Now Schrodinger?: lonization Smoke Detectors

@ Having found the temporal solutions of stationary states, we can now
look for explicit spatial solutions (x).
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What Now Schrodinger?: lonization Smoke Detectors

@ Having found the temporal solutions of stationary states, we can now
look for explicit spatial solutions (x).

e Unfortunately, a general analytic solution to arbitrary V/(x, t) has not
been found.

@ We will be looking at solutions to specific 1D potentials in the
context of radioactivity (a-decay).

Neutron
Proton

‘.‘/ﬂbf + :

Parent nucleus a-particle Daughter nucleus
(z protons) (2 protons (z-2 protons)
2 neutrons)

Figure: a-Particle Decay
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What Now Schrodinger?: lonization Smoke Detectors

lonization is actually utilized in a common household appliance,
smoke detectors.

Figure: lonization Smoke Detector
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What Now Schrodinger?: Modelling Radioactive Decay

The approximate model for the radial potential can be visualized as follows.

~ 107 1°m

— V0, Nuclear potential well

Figure: Simplified Radial Potential (not to scale)

RW (SUTD) TQW IAP 2019 19 / 32



What Now Schrodinger?: In the Nuclear Well

@ In the region x € [—R, R|, the Schrddinger equation is:

"2 d?
- %p@b(x) — W(x) = Eatb(x)
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What Now Schrodinger?: In the Nuclear Well

@ In the region x € [—R, R|, the Schrddinger equation is:

"2 d?
- %p@b(x) — W(x) = Eatb(x)

@ To simplify things, we define

2m(Ea + Vo)

2
k 12

Il
—

w
~

where k is known as the wave number.
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What Now Schrodinger?: In the Nuclear Well

@ In the region x € [—R, R|, the Schrddinger equation is:
h? d?
- %W@Z)(x) — Vouo(x) = Eatp(x)
@ To simplify things, we define

2m(Ea + Vo)
g = 2t 1) (3)

where k is known as the wave number.
@ The solution to this ODE is:

Y(—R < x < R) = Ae’™ 4 Be=* (4)

where A and B are complex coefficients to be solved via boundary
conditions.
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What Now Schrodinger?: In the Nuclear Well

@ For E, < 0, we have that the wave function must vanish at the
boundaries:
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What Now Schrodinger?: In the Nuclear Well

@ For E, < 0, we have that the wave function must vanish at the
boundaries:

@ This allows us to solve for the coefficients A and B. We also see
quantization of the wave number k:

_(2n—-1)7
kn = R Ne N\{0}
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What Now Schrodinger?: In the Nuclear Well

@ For E, < 0, we have that the wave function must vanish at the
boundaries:

@ This allows us to solve for the coefficients A and B. We also see
quantization of the wave number k:
(2n—1)m

k= =%, ne N\{0}

@ This implies a quantization of the momentum and energy!

_ (2n—1)mh

h2(2n — 1)?72
Pn R

E, =
8mR?
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What Now Schrodinger?: Activity 1

Find the explicit wave function solutions to the infinite square well (nuclear
well) potential.
(Hint: Make use of the ansatz already previously provided.)
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What Now Schrodinger?: In the Nuclear Well

Solution to an infinite square well (above) gives rise to 2 theorems on 1D
potentials:
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What Now Schrodinger?: In the Nuclear Well

Solution to an infinite square well (above) gives rise to 2 theorems on 1D
potentials:

There are no degenerate 1D bound states.

For a 1D bound state, the number of nodes increases linearly with the
‘quantization index’ n following the relation

number of nodes = (n—1), for n=1,2,3...
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What Now Schrodinger?: Classically Forbidden Regions

e For the x € [R, R:] and x € [—Rc, —R] regions, the energy of the
a-particle is lower than the strength of the nuclear potential barrier
V,,. The Schrédinger equation is:

n? d?
2madx?

P(x) + Voo (x) = Eatp(x)
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What Now Schrodinger?: Classically Forbidden Regions

e For the x € [R, R:] and x € [—Rc, —R] regions, the energy of the
a-particle is lower than the strength of the nuclear potential barrier
V,,. The Schrédinger equation is:

h? d?
—%@@/}(x) + Voo (x) = Eatp(x)
@ We define a wave number parameter k for this classical forbidden

region:
5> 2"1‘\/0 — Ea‘
/{/ = 72
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What Now Schrodinger?: Classically Forbidden Regions

e For the x € [R, R:] and x € [—Rc, —R] regions, the energy of the
a-particle is lower than the strength of the nuclear potential barrier
V,,. The Schrédinger equation is:

n? d?
2madx?

P(x) + Voo (x) = Eatp(x)

@ We define a wave number parameter k for this classical forbidden
region:

e
@ We get the following solution:
P(R<x < R)=Ce™™

where we ignore the exponentially growing solution.

RW (SUTD) TQW IAP 2019 24 /32



What Now Schrodinger?: Freed from Nuclear Entrapment

o Lastly, we look at the region x € [R¢, 00). Here, we have a
free-particle Schrodinger's equation:

K2 d?
—%WT/}(X) = E,Y(x)
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What Now Schrodinger?: Freed from Nuclear Entrapment

o Lastly, we look at the region x € [R¢, 00). Here, we have a
free-particle Schrodinger's equation:

h? d?
S () = Eat(x)

@ The solution is thus:
(x> R.) = Ee™'*

where the wave number is k2 = 2’”E“ and E, > 0.
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What Now Schrodinger?: Joining the Puzzle Pieces

Joining the 3 solutions for the 3 separate regions:

Ee*"k'X, -0 < x < —R.
Ce"x, —R.<x<—R
P(x) = Ae™ - Bemi* R < x < +R
Ce "X, +R < x < +R.
Ee_iklx, +R. < x < 400

(Visualization shown on the next slides.)
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What Now Schrodinger?: Joining the Puzzle Pieces

—V

Figure: Visualization of the Wave Function

RW (SUTD) TQW IAP 2019 27 / 32



The Quantum World: Day 2

Break
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Overview

© Dirac’s Bras and Kets
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Dirac’s Bras and Kets

@ In the Mach-Zehnder interferometer experiment, Earlier in chapter ,
we saw how we could write quantum states as vector and operators as
matrices.
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Dirac’s Bras and Kets

@ In the Mach-Zehnder interferometer experiment, Earlier in chapter ,
we saw how we could write quantum states as vector and operators as
matrices.

@ But while modelling radioactive decay, we have been dealing with
these continuous function objects we called wave functions.

@ How do we resolve these 2 seemingly unrelated mathematical objects?

@ Firstly we have to be clear about what caused us to use these
difference different objects.

o Finite (discrete) state space vs infinite (contiuous) state space.
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Dirac’s Bras and Kets: Matrix Mechanics

@ In Mach-Zehnder interferometry, states were confined to 2 possible
configurations {|u) ,|d)} = no need to provide a representation with
any more than 2 complex numbers.
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Dirac’s Bras and Kets: Matrix Mechanics

@ In Mach-Zehnder interferometry, states were confined to 2 possible
configurations {|u) ,|d)} = no need to provide a representation with
any more than 2 complex numbers.

@ The wave function formalism requires mathematical objects to be
labelled by a continuous variable x (position). But it is theoretically
possible to have a (infinitely long) vector analog known as a ‘ket’.

¥(—2¢)
¥(—¢)
Y(x) = ) = | ¥(0)

¥(+e)
P(+2€)
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The Quantum World: Day 2

Thank you!
https://tinyurl.com/TQWday2
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