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Introduction

This workshop is designed as a brief but mathematically rigorous introduc-
tion to quantum science and technology for the tech enthusiast. If at the
end of this workshop you still feel bewildered by the perplexity that is quan-
tum mechanics, rest in the comfort that even the best minds have struggled
with attaining a true grasp of this aspect of reality.

“If quantum mechanics hasn’t profoundly shocked you, you haven’t
understood it yet.”

– Niels Bohr
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Why Quantum Mechanics: Applications

Figure: MRI (NMR)

Figure: Processors
Figure: Fiber Optics
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Why Quantum Mechanics: Breaking Classical Law

Classical mechanics fails to give us a comprehensive picture of our
universe at small scales and low temperatures.

There are several experiments that pointed this out to the early
pioneers of quantum theory.

One of these experiments is the Young’s double slit experiment which
led to the notion of wave-particle duality.
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Why Quantum Mechanics: Young’s Double Slit

In 1801, Thomas Young performed the famous Young’s double-slit
experiment which proved the classical theory of light being
electromagnetic waves was true.

The set-up consists of 2 barriers, the first with a single and the next
with double apertures (slits).

A plane wave of light is then incident on the 2 consecutive barriers,
passing through the single slit then the double slit.

Upon transmission through the apertures, the wave-nature of light
causes diffraction.

As a result, the outgoing diffracted waves overlap, causing a
superposition of wave amplitudes and bright and dark fringes on a
detector.
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Why Quantum Mechanics: Young’s Double Slit

Figure: Young’s Double Slit Experiment

RW (SUTD) TQW IAP 2019 7 / 31



Why Quantum Mechanics: Davisson and Germer

In 1927, Clinton Davisson and Lester Germer re-performed the
Young’s double slit experiment but with electrons instead.

The classical expectation of this experiment would be that the
electrons would behave just as billiard balls being thrown through the
slits.

What was seen by Davisson and Germer was in fact an interference
pattern on the screen, exactly as what Young did for light!

This bizarre result gave rise to the notion of wave-particle duality, and
matter could no longer be thought of deterministic chunks as they
were believed to be in classical physics.
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Why Quantum Mechanics: Davisson and Germer

Davisson and Germer Double Slit Experiment
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https://www.youtube.com/watch?v=ToRdROokUhs


Why Quantum Mechanics: Wave-Particle Duality

This result, along with the postulates of photons by Einstein and matter
waves by de Broglie, breathed life into the following equations:

E = hν

p =
h

λ

where E is the photon energy, ν is the frequency of light, λ is the wavelength
of light and h = 6.62× 10−34Js is known as the Planck’s constant, with its
origins come from the ultraviolet catastrophe.
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Why Quantum Mechanics: Classical Deviations

There are several key features of quantum mechanics which point toward the
failure of classical mechanics as a comprehensive theory. These properties
are essential for us to keep in mind as we progress along.

Linearity

Necessity of Complex Numbers

Loss of Determinism

Superposition

Entanglement
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A Dive into Superposition: Mach-Zehnder Interferometer

Superposition is a fundamental and recurring concept in quantum
mechanics.

We will be looking at Mach-Zehnder Interferometry to discover and
model superposition in a simple quantum system (2-level system).

Interferometry is a class of experimental techniques that superimposes
electromagnetic waves and exploits the properties of interference to
gather information.
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A Dive into Superposition: Mach-Zehnder Interferometer

Mach-Zehnder Interferometer
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https://www.youtube.com/watch?v=obhMMsY6v6I


A Dive into Superposition: Mach-Zehnder Interferometer

We define a 2-dimensional basis {|u〉 , |l〉}, where |u〉 denotes the
state representing the photon occupying the upper beam and |l〉
denotes the photon occupying the lower beam.

To perform mathematical operations on these states, we can
construct a representation of these states with vectors of a 2D
complex vector space.

|u〉 =

[
1
0

]
, |l〉 =

[
0
1

]

This means that an arbitrary state in this vector space is written as:

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
, α, β ∈ C
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A Dive into Superposition: Matrix Representation

The action of the beam splitters and mirrors on the photons can be modelled
as linear transformations (2×2 matrix representations) on |ψ〉.

Definition

Given a linear transformation T : V → U and the bases for V and U being

BV = {~vj}
|V |
j=1 and BU = {~uj}

|U|
j=1 respectively, then we have:

T (~vj) =
∑
i

aij ~wi (1)

where aij are the entries of the matrix representation of T with respect
to BV and BU .
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A Dive into Superposition: Matrix Representation

We assert that these states are carriers of probabilistic information.

Beam splitters will be labelled BS .

We have to enforce unitarity which allows ‖|ψ〉‖2 to be invariant as
unity because of probability theory.

‖(BS) |ψ〉‖2 =

∥∥∥∥[a b
c d

] [
α
β

]∥∥∥∥2 = 1

⇒ ((BS) |ψ〉)†(BS) |ψ〉 = (|ψ〉)†(BS)†(BS) |ψ〉 = 1

⇒ (BS)†(BS) = I
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A Dive into Superposition: Elitzur-Vaidman Bombs

In 1993, Avshalom Elitzur and Lev Vaidman conceived a method of
probabilistically detecting working Elitzur-Vaidman bomb with QM.

Any classical approach would fail with 100% certainty.

An Elitzur-Vaidman bomb is a bomb with a photo-detector used as
its trigger. If the bomb is working, a single photon incident on the
photo-detector would cause the bomb to go off.
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A Dive into Superposition: Elitzur-Vaidman Bombs

Figure: Elizur-Vaidman Bomb Detection Set-Up
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A Dive into Superposition: Elitzur-Vaidman Bombs

First we work with a bomb that is not working (will not explode
under any circumstance).

Consider a photon entering the upper channel |u〉. After passing
through the first beam splitter:

(BS1) |u〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]

The ‘split’ photon continues to pass through BS2.

(BS2)(BS1) |u〉 =
1

2

[
1 1
1 −1

] [
1
1

]
=

[
1
0

]

The result of a defective bomb is that we will always get a reading
from D2.
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A Dive into Superposition: Elitzur-Vaidman Bombs

Now we look at a working bomb and perform a similar analysis.

Notice that the probabilities of being either an upper or lower beam
after BS1 are equal.

P(|u〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
, P(|l〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

⇒ P(|u〉) = P(|l〉) =
1

2

Evidently if the photon does in fact enter the lower path, the bomb
detonates and the experiment is undoubtedly over (not too great).

But if the photon enters the upper path:

(BS2) |u〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
(2)

Amazingly, we retrieve the same result with an equal probability for
the beams to be detected by D1 and D2!

RW (SUTD) TQW IAP 2019 21 / 31



A Dive into Superposition: Elitzur-Vaidman Bombs

Now we look at a working bomb and perform a similar analysis.

Notice that the probabilities of being either an upper or lower beam
after BS1 are equal.

P(|u〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
, P(|l〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

⇒ P(|u〉) = P(|l〉) =
1

2

Evidently if the photon does in fact enter the lower path, the bomb
detonates and the experiment is undoubtedly over (not too great).

But if the photon enters the upper path:

(BS2) |u〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
(2)

Amazingly, we retrieve the same result with an equal probability for
the beams to be detected by D1 and D2!

RW (SUTD) TQW IAP 2019 21 / 31



A Dive into Superposition: Elitzur-Vaidman Bombs

Now we look at a working bomb and perform a similar analysis.

Notice that the probabilities of being either an upper or lower beam
after BS1 are equal.

P(|u〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
, P(|l〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

⇒ P(|u〉) = P(|l〉) =
1

2

Evidently if the photon does in fact enter the lower path, the bomb
detonates and the experiment is undoubtedly over (not too great).

But if the photon enters the upper path:

(BS2) |u〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
(2)

Amazingly, we retrieve the same result with an equal probability for
the beams to be detected by D1 and D2!

RW (SUTD) TQW IAP 2019 21 / 31



A Dive into Superposition: Elitzur-Vaidman Bombs

Now we look at a working bomb and perform a similar analysis.

Notice that the probabilities of being either an upper or lower beam
after BS1 are equal.

P(|u〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
, P(|l〉) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

⇒ P(|u〉) = P(|l〉) =
1

2

Evidently if the photon does in fact enter the lower path, the bomb
detonates and the experiment is undoubtedly over (not too great).

But if the photon enters the upper path:

(BS2) |u〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
(2)

Amazingly, we retrieve the same result with an equal probability for
the beams to be detected by D1 and D2!

RW (SUTD) TQW IAP 2019 21 / 31



A Dive into Superposition: Elitzur-Vaidman Bombs

Detector outcomes Pdefective Pworking

Photon enters D1 0 1/4

Photon enters D2 1 1/4

Bomb is detonated 0 1/2

Table: Elitzur-Vaidman Bomb Detection Outcomes

We are able to detect a working Elitzur-Vaidman obomb without detonating
it with a 1/4 probability.
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The Quantum World: Day 1

Break
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Overview

1 Why Quantum Mechanics

2 A Dive into Superposition

3 Quantum Promotions
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Quantum Promotions: Matter Waves

As earlier discussed, matter at very small scales exhibit wave-like
properties (diffraction and interference).

Because of this, we no longer look to classical dynamical variables
{x(t), ẋ(t)} to determine the state of a system, but a wave function
Ψ(x , t).

Probability Density of the wave function:

Definition

The probability density ρ(~x , t), of a wavefunction is the probability per
unit volume of locating a particle at some position.

ρ(~x , t) = |Ψ(~x , t)|2 = Ψ∗(~x , t)Ψ(~x , t)

This nicely mirrors the unit-norm condition imposed on quantum
states in the Mach-Zehnder interferometry experiment.

RW (SUTD) TQW IAP 2019 25 / 31



Quantum Promotions: Matter Waves

As earlier discussed, matter at very small scales exhibit wave-like
properties (diffraction and interference).

Because of this, we no longer look to classical dynamical variables
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Quantum Promotions: Operators

Since these wave function descriptions of matter exhibit wave-like
properties, why not try the simplest classical wave solution:

Definition

A 1D plane wave travelling in the positive x-direction with parameters
{k, ω}, has the form:

Ψ(x , t) = e i(kx−ωt)

Taking a derivative of this with respect to x :

−i~ ∂
∂x

Ψ(x , t) = ~kΨ(x , t) = pΨ(x , t)

Taking a second derivative with respect to x :

− ~2

2m

∂2

∂x2
Ψ(x , t) =

p2

2m
Ψ(x , t) = EΨ(x , t)
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Quantum Promotions: Operators

Let’s then give names to these operators (denoted with hats) we have
found thus far.

Definition

The momentum operator which acts on a wave function described in the
position basis is defined as,

p̂ = −i~ ∂
∂x

Definition

The kinetic energy operator which acts on a wave function described in
the position basis is defined as,

Ê =
p̂2

2m
= − ~2

2m

∂2

∂x2
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Quantum Promotions: Activity 1

Can you construct the position operator x̂?

(Hint: Think about the simplest form of an operator that can act on a wave
function to give you the position x .)
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Quantum Promotions: The Schrödinger Equation

Let’s instead try taking a derivative with respect to time:

i~
∂

∂t
Ψ(x , t) = ~ωΨ(x , t) = EΨ(x , t)

Amazingly, taking both the time and 2 spatial derivatives extract the
energy of the wave function!

Putting these results together, we get the free-particle Schrödinger
equation (FPSE):

i~
∂

∂t
Ψ(x , t) = − ~2

2m

∂2

∂x2
Ψ(x , t)
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Quantum Promotions: The Schrödinger Equation

Taking from classical Hamiltonian Mechanics, we know that the
Hamiltonian of a non-dissipative system is always conserved.

As such, we will use the Hamiltonian in quantum mechanics as well,
where we promote the conjugate variables to operators.

Ĥ = − ~2

2m

∂2

∂x2
+ V (x)

We extend the kinetic energy operator in the FPSE with the
Hamiltonian to get the time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(x , t) = ĤΨ(x , t)
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Ĥ = − ~2

2m

∂2

∂x2
+ V (x)

We extend the kinetic energy operator in the FPSE with the
Hamiltonian to get the time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(x , t) = ĤΨ(x , t)
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The Quantum World: Day 1

Thank you!
https://tinyurl.com/TQWday1
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