Reuben R. W. Wang, Ph.D. Candidate

🗹 reuben.wang@colorado.edu

https://reubenwangrongwen.github.io/

https://www.linkedin.com/in/reuben-wang-10b9ab137/

Education

2019 – current	Ph.D., JILA, University of Colorado Boulder Physics. Advisor: <i>Prof. John L. Bohn.</i>
	Research: Heat death of an ultracold dipolar gas.
2019 – 2022	M.S., University of Colorado Boulder Physics.
2017 – 2018	U.G., Massachusetts Institute of Technology Physics.
2015 – 2019	B.Eng. (Summa Cum Laude), Singapore University of Technology and Design EPD.

Research Experience

2019 – current	Graduate Research Assistant, JILA. Theoretical research in atomic and molecular physics with advisor Prof. John Bohn, with a focus on collective dynamics in nondegenerate dipolar gases and ultracold collisions. See publication list below.
2017 – 2018	Undergraduate Research Assistant, MIT. Theoretical research in X-Ray Scattering under the supervision of Prof. Riccardo Comin to perform numerical simulations for spectroscopy of quantum materials.
2017	Undergraduate Research Assistant, SUTD-MIT IDC. Theoretical research in quantum many-body open systems supervised by Prof. Dario Poletti. Wrote proprietary numerical solvers in C++ to simulate a dissipative, periodically driven Bose- Hubbard dimer system which showcased clear signatures of period doubling [10].
2015 – 2016	Undergraduate Research Assistant, SUTD. Experimental research under Prof. Cheah Chin Wei to synthesize ferroelectric KNbO ₃ and CNT/graphene electrospun nanofibers for studies on photocatalytic dye degradation.

Teaching Experience

2022	Graduate Teaching Assistant, <i>Classical Mechanics 2 (PHYS3210</i>), CU Boulder. Held weekly office hours for undergraduate students.
2018	Instructor, The Quantum World (mini course), SUTD. Devised and conducted a 4 day workshop to teach introductory concepts on quantum me- chanics and quantum computation, targeted at engineering students with no prior knowledge of quantum theory. All workshop materials are openly available on my personal website.
2017	Teaching Assistant, Engineering in the Physical World (10.008), SUTD. Undergraduate teaching assistant, facilitating in-class learning and engagement amongst students during weekly recitation sessions. Held office hours for students.
2016/2018	Teaching Assistant, <i>Advanced Mathematics 2</i> (10.004), SUTD. Undergraduate teaching assistant, facilitating in-class learning and engagement amongst stu- dents during weekly recitation sessions. Held office hours for students.

Technical Experience

2019 **Robotics Engineer (Optimization Algorithms),** Bifrost (Singapore).

Designed optimization algorithms for path finding and optimal pose determination in an automated robotic pick-and-place system for pallet sorting, a proof of principle system for proprietary synthetic data based AI technologies at *Bifrost Pte. Ltd.*.

Technical Experience (continued)

2017	Electrical Engineer (Lights & Hardware), Praxis+. Designed, rigged-up and wired in access of 6000 LED lights to programmable circuit boards with high voltage power supplies for <i>Phosphene</i> , an arts and technology installation displayed at the <i>Singapore Night Festival 2017</i> .
2016	Mechanical Engineer (Drivetrain Design & Fabrication), MIT. Designed a drivetrain system for a manned electric powered boat using the 3D modelling software <i>SOLIDWORKS</i> . Fabricated the drivetrain which was used to propel a boat of proprietary design on the Charles river (Massachusetts).
Talks	
2023	ITAMP Luncheon Seminar (Cambridge, MA), ITAMP. "Thermalization in nondegenerate gases from quantum dipolar collisions".
	AMO-QIS Invited Seminar (New York, NY), Columbia University. "Thermalization in nondegenerate gases from quantum dipolar collisions".
	DAMOP (Spokane, WA), APS. Conference talk titled "Viscous damping of trapped hydrodynamic Fermi gases".
2022	CU-Prime (Boulder, CO), CU Boulder. Science communication talk catered to undergraduate students, entitled " <i>Tinkering with Bell Pairs: the 2022 Physics Nobel Prize</i> ". The CU-Prime series is focused on communicating current research topics in STEM in a jargon-free way to undergraduate students at CU Boulder.
	DAMOP (Orlando, FL), APS. Conference talk titled "Anisotropic Thermal Conduction in Ultracold Dipolar Gases"
	March Meeting (Chicago, IL), APS. Conference talk titled "Anisotropic sound propagation in dilute dipolar gases".
2019	Current Issues in Game Theory & Social Dynamics, SUTD. Invited speaker to give a talk entitled " <i>quantum information processing for decision modelling and games</i> " to researchers in the field of game theory and social dynamics. Organized by professor Zsombor Méder.

Awards and Achievements

Scholarships

2019		Graduate Student Fellowship, UCB.
2016		Global Leadership Program Scholarship, SUTD-MIT.
2015		Undergraduate Merit Scholarship, SUTD.
Awaro	ds	
2019		Honors List (Senior Year), SUTD.
2018		Laurel (Technology and Design) Award, SUTD.

- 2017 Honors List (Sophomore & Junior Years), SUTD.
- 2016 Honors List (Freshman Year), SUTD.

Skills

Mentorship	Mentoring and team leadership: trained by the Center for the Improvement of Men- tored Experiences in Research (CIMER).
Software	MATLAB, Mathematica, Python, C++, ЮЕХ, solidworks.
Experience	Academic research and writing, mechanical design and fabrication.
Languages	Reading, writing and speaking competencies for English and Mandarin Chinese.

Research Publications

Journal Articles

1	Wang, R. R. W., & Bohn, J. L. (2023a). Viscous dynamics of a quenched trapped dipolar fermi gas. <i>Phys. Rev. A, 108,</i> 013322. <i>O</i> doi:10.1103/PhysRevA.108.013322
2	Li, H., Halperin, E., Wang, R. R. W., & Bohn, J. L. (2023). Out-of-time-order correlator for the van der waals potential. <i>Phys. Rev. A, 107</i> , 032818. <i>Ø</i> doi:10.1103/PhysRevA.107.032818
3	Wang, R. R. W., & Bohn, J. L. (2023b). Anisotropic acoustics in dipolar fermi gases. <i>Phys. Rev. A, 107</i> , 033321. <i>§</i> doi:10.1103/PhysRevA.107.033321
4	Wang, R. R. W., & Bohn, J. L. (2022a). Thermoviscous hydrodynamics in nondegenerate dipolar bose gases. <i>Phys. Rev. A,</i> 106, 053307. 🔗 doi:10.1103/PhysRevA.106.053307
5	Wang, R. R. W., & Bohn, J. L. (2022b). Thermal conductivity of an ultracold paramagnetic bose gas. <i>Phys. Rev. A, 106</i> , 023319. <i>O</i> doi:10.1103/PhysRevA.106.023319
6	Patscheider, A., Chomaz, L., Natale, G., Petter, D., Mark, M. J., Baier, S., … Ferlaino, F. (2022). Determination of the scattering length of erbium atoms. <i>Phys. Rev. A</i> , <i>105</i> , 063307. <i>9</i> doi:10.1103/PhysRevA.105.063307
7	Li, JR., Tobias, W. G., Matsuda, K., Miller, C., Valtolina, G., De Marco, L., … Bohn, J. L. et al. (2021). Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. <i>Nature Physics, 17</i> (10), 1144–1148. Retrieved from <i>S</i> https://doi.org/10.1038/s41567-021-01329-6
8	Wang, R. R. W., & Bohn, J. L. (2021). Anisotropic thermalization of dilute dipolar gases. <i>Phys. Rev. A, 103</i> , 063320. <i>S</i> doi:10.1103/PhysRevA.103.063320
9	Wang, R. R. W., Sykes, A. G., & Bohn, J. L. (2020). Linear response of a periodically driven thermal dipolar gas. <i>Phys. Rev.</i> A, 102, 033336. <i>S</i> doi:10.1103/PhysRevA.102.033336
10	Wang, R. R. W., Xing, B., Carlo, G. G., & Poletti, D. (2018). Period doubling in period-one steady states. <i>Phys. Rev. E, 97,</i> 020202. <i>I</i> doi:10.1103/PhysRevE.97.020202
Pre	prints
1	Bohn, J. L., & Wang, R. R. W. (2023). Probability distributions of atomic scattering lengths. arXiv: 2309.15236 [physics.atom-ph]. Retrieved from 🔗 https://arxiv.org/abs/2309.15236

- 2 Polloreno, A. M., Wang, R. R. W., & Tezak, N. A. (2023). A note on noisy reservoir computation. arXiv: 2302.10862 [cs.LG]. Retrieved from *O* https://arxiv.org/abs/2302.10862
- Wang, R. R. W., & Bohn, J. L. (2023c). Prospects for thermalization of microwave-shielded ultracold molecules. arXiv: 2310.17812 [cond-mat.quant-gas]. Retrieved from *I* https://arxiv.org/abs/2310.17812

References

Available on Request