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Chapter 1

Introductory Kinematics

“In this class I hope you will learn not merely results, or formulae applicable to cases that may
possibly occur in our practice afterwards, but the principles on which those formulae depend,
and without which the formulae are mere mental rubbish. I know the tendency of the human

mind is to do anything rather than think. But mental labour is not thought, and those who have
with labour acquired the habit of application, often find it much easier to get up a formula than

to master a principle”

— J.C. Maxwell, 1860

§1.1 Newtonian Mechanics

We know from basic classical mechanics, Newton’s Second Law states that ~F = d~p
dt . Today, we

will take a closer look at acceleration.

Definition 1.1.1. Acceleration: The acceleration of a body is defined as the second derivative
of its position with respect to time

~a =
d2~r

dt2
. (1.1)

Consider the differential motion of a single particle from ~A to ~A′. Setting a Cartesian coordinate
system and having the x and y orthonormal unit vectors as denoted by ex and ey (~ei · ~ej = δij),
we can denote any arbitrary position ~r = x~ex + y~ey. Then the infinitesimal change in position of

the particle from ~A to ~A′ can be written as d~r = dx ~ex + dy ~ey. It then follows that the velocity
and accelerations are respectively:

d~r

dt
= ẋ ~ex + ẏ~ey (1.2)

d2~r

dt2
= ẍ ~ex + ÿ~ey (1.3)

1
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§1.2 Time-Varying Coordinates

However, here we have made an implicit assumption! That is, the frame is time-invariant
(does not change with time). In fact, it is sometimes even more convenient to make use of time
varying coordinate systems. For instance, let’s say we are in some rotating frame (rotating in
the x, y-plane).

x

y

x′

y′

•

0

~r(t)

φ(t)

Figure 1.1: Rotating Frame

We denote the rotation by an angle φ, which parameterizes our unit vectors as such:

~er = cosφ~ex + sinφ~ey

~eφ = − sinφ~ex + cosφ~ey
(1.4)

Note that ~er is a function of φ. So we can simply write an arbitrary position as ~r = r~er. What

is its derivative in time then? Well, we have to use the chain rule to get ~̇r = ṙ~er + r~̇er since
time derivatives of unit vectors are no longer trivial. Using differential analysis, we can write
this as

~̇er =
~er′ − ~er
dt

=
(cos(dφ)− 1)~er − sin(dφ)~eφ

dt

≈
(
(1− dφ2

2! )− 1)
)
~er − (dφ− dφ3

3! )~eφ

dt

=
dφ

dt
~eφ = φ̇~eφ

⇒ ~̇er = φ̇~eφ

(1.5)

From this, we can thus write our velocity vector in radial coordinates as:

~̇r = ṙ~e~r + rφ̇~eφ (1.6)

where we used the Taylor expansion above and ignored higher order terms. We can then do the
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same for the acceleration (second derivative) to get:

~̈r = r̈~er + ṙ~̇er + φ̈r~eφ + φ̇ṙ~eφ + φ̇r~̇eφ

⇒ ~̈r = (r̈ − rφ̇2)~er + (φ̈r + 2ṙφ̇)~eφ
(1.7)

In equation (1.7) above, we have 4 second derivative terms which correspond, in order from left
to right, to 1) Linear, 2) centripetal, 3) angular and 4) Coriolis accelerations. When we rotate an
axis, it is also important to ask which axis we are rotating around and how fast we are rotating.
In 2D these can be encompassed by one vector quantity ~Ω = φ̇~ez. Here, φ̇ is the angular velocity
and ~ez is the axis of rotation. This gives a tool to elegantly derive the conjugate unit vector
velocities.

• Along the ~er direction

~̇er = ~Ω× ~er
= φ̇(~ez × ~er) = φ̇~eφ

(1.8)

• Along the ~eφ direction

~̇eφ = ~Ω× ~eφ
= φ̇(~ez × ~eφ) = φ̇(−~er)

(1.9)

In general, considering a 3D case, the axis of rotation can be in a generic direction ~eu, i.e.
~Ω = Ω~eu where Ω is the amplitude of the angular velocity. Given another generic unit vector ~ev,
its time derivative is given by ~̇ev = Ω× ~ev.

§1.3 Moving Local Frames

We now want to extend Newton’s second law into a local, possibly time varying reference frame.
To do this, we need to have a larger global fixed reference frame, from which we define relative
coordinates to the smaller local reference frame. Let us denote ~R as the vector from the global
origin to the local origin, and ~ρ as the local coordinate position. The global coordinate position
is then ~r = ~R + ~ρ. Also, we denote the global Cartesian coordinates with upper case X and Y ,
whereas the local Cartesian coordinates are denoted with lower case x and y.

X

Y

x

y •

0

0′

~r(t)

~R(t)

~ρ(t)

Figure 1.2: Moving Local Reference Frame w.r.t Global Frame
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Let’s first look at velocity ~̇r.

~̇r = ~̇R+ ~̇ρ

~̇R = Ẋ~ex + Ẏ ~ey + Ż~ez

~̇ρ =
(
ẋ~ex + ẏ~ey + ż~ez

)
+
(
x~̇ex + x~̇ex + x~̇ex

) (1.10)

We immediately see that we can use equationss (1.8) and (1.9) to simplify the ~̇ρ vector as:

~̇ρ =
(
ẋ~ex + ẏ~ey + ż~ez

)
+
(
x~̇ex + y~̇ey + z~̇ez

)
= ~̇ρr + ~Ω× ~ρ

(1.11)

For which we have defined ~̇ρr = ẋ~ex + ẏ~ey + ż~ez. Take note of this definition, it is important
and is essentially the time derivative of ~ρ if we take the local frame as stationary. We also used
the fact that

~̇ex = ~Ω× ~ex
~̇ey = ~Ω× ~ey
~̇ez = ~Ω× ~ez

(1.12)

As a result, we have the following simple form for the velocity:

~̇r = ~̇R+ ~̇ρr + ~Ω× ~ρ (1.13)

Now we move on to the acceleration ~̈r = d
dt

(
~̇R + ~̇ρr + ~Ω× ~ρ

)
. Again, we divide and conquer,

evaluating each second derivative individually as follows.

d

dt
~̇R = ~̈R = Ẍ~ex + Ÿ ~ey + Z̈~ez (1.14)

d

dt
(~Ω× ~ρ) = (~̇Ω× ~ρ) + (~Ω× d

dt
~ρ) = (~̇Ω× ~ρ) + (~Ω× ~̇ρr) + ~Ω× (~Ω× ~ρ) (1.15)

d

dt
~̇ρr = ~̈ρr + ~Ω× ~̇ρr (1.16)

All these put together gives:

~̈r = ~̈R+ ~̈ρr + (~̇Ω× ~ρ) +
(
~Ω× (~Ω× ~ρ)

)
+ (2~Ω× ~̇ρr) (1.17)

Where the 5 terms (from left to right) correspond to: 1) local frame origin, 2) object w.r.t local
frame, 3) angular component, 4) centripetal and 5) Coriolis accelerations.



Chapter 2

Systems of Particles and Rigid
Bodies

In this chapter, we will be looking at the dynamics of systems of many particles and rigid bodies.
We will be tackling these in sequence so let us first consider a system of many particles where each
particle is labelled by an index i. As such, the position of each particle is given by ~ri, whereby
they can experience internal forces ~fi and external forces ~Fi. As such, we have by Newton’s
second law that:

mi~̈ri = ~Fi + ~fi (2.1)

This may seem like a trivial restatement of Newton’s law but it would be good to internalize this
as we progress along the chapter.

§2.1 Center of Mass Motion

We now zoom out to look at the entirety of the system and sum over all the forces on the
individual particles. As such, we get:∑

i

mi~̈ri =
∑
i

(~Fi + ~fi) =
∑
i

~Fi ≡ ~F (2.2)

where we utilized Newton’s third law which says that for every internal force ~fi, there will be
an equal and opposite force such that the sum over all internal forces will result in a trivial net
force. As such, we can simply look at the center of mass of this system for much of our analysis.
The center of mass of a system of particles is defined by:

~rc =

∑
imi~ri∑
imi

=

∑
imi~ri
M

(2.3)

⇒ M~̈rc = ~F (2.4)

5
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§2.2 Kinetic Energy of a System of Particles

The total kinetic energy Ek of a system of particles is the sum of all the individual particle
kinetic energies.

Ek =
1

2

∑
i

miv
2
i (2.5)

To simplify our analysis, we define a vector ~ρi = ~ri−~rc (the position of particle i from the system
center of mass). From this, we have:

~ri = ~rc + ~ρi (2.6)

⇒ ~̇ri = ~̇rc + ~̇ρi (2.7)

⇒ v2
i = ~̇rc · ~̇rc + ~̇ρi · ~̇ρi + 2~̇rc · ~̇ρi (2.8)

⇒ Ek =
1

2

∑
i

mi~̇rc · ~̇rc +
1

2

∑
i

mi~̇ρi · ~̇ρi +
∑
i

mi(~̇rc · ~̇ρi) (2.9)

Looking at the third term in the sum above, we notice that

∑
i

mi(~̇rc · ~̇ρi) = ~̇rc ·

(∑
i

mi~̇ρi

)

= ~̇rc ·
d

dt

(∑
i

mi~ρi

)
= 0

(2.10)

The vanishing result is because ~ρi is the relative distance to the center of mass, for which by the
definition of the center of mass, the sum over all these relative distances weighted by the particle
masses will remain time-invariant. Thus, the kinetic energy simplifies to:

Ek =
1

2

∑
i

mi ~̇rc · ~̇rc +
1

2

∑
i

mi ~̇ρi · ~̇ρi (2.11)

Where the 2 terms (from left to right) correspond to: 1) the kinetic energy of the center of mass
2) the kinetic energy relative to the center of mass.

§2.3 Angular Momentum

The angular momentum ~H of a single particle at some position ~r is given by:

~H = ~r× ~p (2.12)

Now bringing this to the context of many-body systems in a fixed reference frame, we simply
index the above equation for the i-th particle. The total angular momentum of the system ~H is
then:

~H =
∑
i

~ri ×mi~̇ri (2.13)
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Let’s now take the time derivative of this. We get:

~̇H =
∑
i

(~̇ri ×mi~̇ri) +
∑
i

(~ri ×mi~̈ri)

=
∑
i

~ri ×mi~̈ri

=
∑
i

~ri × (~Fi + ~fi)

=
∑
i

~ri × ~Fi = ~M

(2.14)

where ~M is known as the momenta of external forces acting on the system. Make sure how we
get from each step to the next above. To restate the above result:

~̇H = ~M (2.15)

This all seems reasonable, but let’s now consider again a fixed reference frame and some point P
(~rP ) that is not the center of mass. We also have a particle labelled with i situated away from
P , with a relative position ~si. The position of the particle from the origin O is then ~ri = ~rP +~si.
If the particle is moving with velocity ~̇ri, its angular momentum with respect to P is:

~HP =
∑
i

~si ×mi~̇ri (2.16)

⇒ ~̇HP =
∑
i

~si ×mi~̈ri + ~̇si ×mi~̇ri (2.17)

We note that ~̇si = ~̇ri − ~̇rP and ~̇ri = ~̇rc + ~̇ρi where ~rc is the position to the center of mass and
~ρi is defined relative to that. So, the second term in the derivative of angular momentum above
becomes: ∑

i

(~̇ri − ~̇rP )×mi(~̇rc + ~̇ρi) = −
∑
i

~̇rP ×mi~̇rc = −~̇rP × ~̇rcM

⇒ ~̇HP =
∑
i

~si ×mi~̈ri − (~̇rP × ~̇rc)M

⇒ ~̇HP = ~MP − (~̇rP × ~̇rc)M

(2.18)

where we have defined M ≡
∑
imi. So this (equation 2.18) is the more general version of

equation 2.15, where equality between these 2 equations hold only if:

• The position of the point P is itself at the center of mass.
• All particles are stationary (~̇rP or ~̇rc).
• All particles have velocity parallel to ~̇rc.
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§2.4 Rigid Body kinematics

Definition 2.4.1. Rigid Body: A system of particles for which their relative distances ~ρij
are fixed in magnitude.

‖~ρij‖ = constant (2.19)

X

Y

x

y

••

0

0′

~rA
~rB

~ρAB

Rigid body

Figure 2.1: 2 Points A and B on a Rigid Body

Consider 2 points on a rigid body A and B which a relative position vector between them
~ρAB = ~rB − ~rA. Let’s also say that the rigid body is rotating with ~ω with respect to it’s local
reference frame (denoted with axes x and y). Then we have:

~̇rB = ~̇rA + ~̇ρAB + ~ω× ~ρAB

= ~̇rA + ~ω× ~ρAB
(2.20)

where the second term drops out because there is no relative motion between the points following
the rigid body definition (2.4). The acceleration is then:

~̈rAB = ~̈rA + ~̈ρAB + (~ω× ~ω× ~ρAB) + (~̇ω× ~ρAB) + 2(~ω× ~̇ρAB)

= ~̈rA + (~ω× ~ω× ~ρAB) + (~̇ω× ~ρAB)
(2.21)

So in summary, we get the 2 dynamical equations that summarize rigid body kinematics
as:

~̇rB = ~̇rA + ~ω× ~ρAB (2.22)

~̈rAB = ~̈rA + (~ω× ~ω× ~ρAB) + (~̇ω× ~ρAB) (2.23)

§2.4.1 Moment of Inertia

Earlier we saw that if we have any of the 3 conditions 1) the point is question is at the center

of mass or 2) we are considering fixed points or 3) the particles have velocity parallel to ~̇rc, this
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implies ~̇H0 = ~M0 where the subscript 0 indicates a specific particle/point. For an entire rigid
body system of particles, we can get the angular momentum as follows:

~H =

∫
ρ(~rc × ~v)dv

=

∫
ρ
(
~rc × ( ~̇Rc + ~ω× ~rc)

)
dv

=

∫
ρ(~rc × ~ω× ~rc)dv

(2.24)

Where ~Rc is the center of mass position and ~rc is the position of an arbitrary point on the rigid
body relative to the center of mass. Think about why some of the terms above have vanished
allowing for the final simplification. Taking a closer look at the integrand:

~rc × ~ω× ~rc = ~rc ×
(
(zωy − yωz)~ex + (xωz − zωx)~ey + (yωx − xωy))~ez

)
=
(

+ ωx(y2 + z2)− ωy(xy)− ωz(xz)
)
~ex

+
(
− ωx(yx) + ωy(x2 + y2)− ωz(yz)

)
~ey

+
(
− ωx(zx)− ωy(zy) + ωz(x

2 + y2)
)
~ez

(2.25)

Already, we see some remnants of a matrix structure starting to take shape, so let us define the
following real, symmetric matrix:

Î =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 (2.26)

where the matrix components are defined as follows:

Ix =

∫
ρ(y2 + z2)dV, Iy =

∫
ρ(z2 + x2)dV, Iz =

∫
ρ(x2 + y2)dV

Ixy =

∫
ρ(x · y)dV, Ixz =

∫
ρ(x · z)dV, Iyz =

∫
ρ(y · z)dV

(2.27)

Î is often referred to as the inertia tensor (matrices are 2-rank tensors). From this, we get:

~H = Î~ω (2.28)

where ~ω = ωx~ex+ωy~ey +ωz~ez. What if we want to compute the moment of inertia for an object
that has a more complex shape? We can utilize 3 properties of the moment of inertia to aid us
in this. These properties are:

1. Parallel Axis Theorem:
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Theorem 2.4.1. Parallel Axis Theorem: Given a system’s moment of inertia about
an axis through the object’s center of gravity (unprimed) and the relative position ~R
from center of mass axis to a parallel axis (primed), we have the moment of inertia
about the primed axis as:

I ′ij = Iij +M(
∥∥∥~R∥∥∥2

δij −RiRj) (2.29)

where M is the rigid body mass and δij is the Kronecker-delta function.

2. Î in Rotated Coordinates:

x

y

x′

y′

0
θ

Figure 2.2: Rotated Coordinates

As show in the figure above, if we consider the rotated primed coordinates by an angle θ
about the z-axis, we can represent this rotation by the rotation matrix :

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.30)

Of course, this is not the general form of a rotation matrix one can construct. The moment
of inertia in these rotated coordinates is then given by:

Î ′ = RÎRT (2.31)

Note: The reason why we have to left and right multiply a rotation matrix is
because Î is a 2-rank tensor (has 2 indices), so we have to transform both indices
(as opposed to just once like for vectors with 1 index).

The axes whereby the angular momentum tensor is strictly diagonal are as the principal
axes.

3. Linearity of Moment of Inertia Îtotal =
∑
j Îj :

This is simply saying that the total moment of inertia of a rigid body is equal to the sum
of the moments of inertia of its constituent parts.
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§2.4.2 Kinetic Energy of Rigid Bodies

Consider some rigid body with a differential element of volume dV moving with constant velocity
~v, the kinetic energy of this element is given by:

Ek,dV =
1

2
ρ(~v · ~v)dV (2.32)

As such, the kinetic energy of the entire rigid body would be the of all the kinetic energy
contributions from all differential volume elements:

Ek =
1

2

∫
ρ(~v · ~v)dV

=
1

2

∫
ρ(~vc + ~ω× ~rc) · (~vc + ~ω× ~rc)dV

=
1

2

∫
ρ‖~vc‖2dV +

∫
ρ~vc · (~ω× ~rc)dV +

1

2

∫
ρ(~ω× ~rc) · (~ω× ~rc)dV

=
1

2
M‖~vc‖2 +

~ω

2
·
∫
ρ
(
~rc × (~ω× ~rc)

)
dV

=
1

2
Mv2

c +
1

2
~ω · ~Hc

(2.33)

In our analysis above, there are a few important things to take note of. First, we saw that∫
ρ~vc ·(~ω×~rc)dV = 0. This is due to the fact that ~vc and ~ω are constant, making the average over

velocities relative to the center of mass vanish. Also, we utilized the fact that ~Hc = ~rc× (~ω×~rc)
to simplify our answer in the final step. As such, we restate the elegant result just derived
again:

Ek =
1

2
Mv2

c +
1

2
~ω · ~Hc (2.34)

Recall that M =
∑
imi.



Chapter 3

Analytical Mechanics

We are now moving away from the Newtonian approach to mechanics to a new formalism of
studying dynamical systems. This is known as the Lagrangian formalism which is a reformu-
lation of classical mechanics by Joseph-Louis Lagrange in 1788. We will be introducing this new
means of analysis via an example.

§3.1 Newton vs Lagrange

Consider a system pendulum system as illustrated in figure 3.1. We will work through this
problem using both the Newtonian and Lagrangian means of analysis to show the differences in
application and to hopefully give some motivation as to why we would want to adopt Lagrange’s
approach.

m~g

~eθ

~er

~S

O

θ

m

L

Figure 3.1: Simple Pendulum System

§3.1.1 The Newtonian Method

We will utilize polar coordinates (r, θ) here for convenience to describe our system. By Newton’s
second law, we have:

m~̈r =
∑

~F

m
(
(r̈ − rθ̇2)~er + (rθ̈ + 2ṙθ̇)~eθ

)
= m~g + ~S

(3.1)

12
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where ~S is the so called constraint force. It is called as such because it constrains the mass to
only swing along the circumference of the circle with radius L. Now if we decompose the forces
acting on the mass into the ~er and ~eθ components, we have the following 2 equations:

m(r̈ − rθ̇2) = mg cos θ − S (3.2)

m(rθ̈ + 2ṙθ̇) = −mg sin θ (3.3)

As seen above, the first equation defines the constraint force whereas the second can be used
to find the equation of motion of the mass. Now, we enforce the constraint that is inherently
applied on this system. We have that r = L ⇒ ṙ = r̈ = 0. Application of this constraint leads
to:

θ̈ = − g
L

sin θ (3.4)

§3.1.2 The Lagrangian Method

In Lagrangian mechanics, the way we approach/think about a problem is slightly different. The
first step is to identify the number of degrees of freedom of the system.

Definition 3.1.1. Degrees of Freedom: For a given mechanical system, its degrees of freedom
are the number of independent parameters required to uniquely define its configuration.

For this example, we see that we only require one dynamical variable θ to comprehensively
describe the relevant dynamics. So the number of degrees of freedom here is simply 1. Fur-
thermore, we term any such dynamical variable that specifies the system configuration as a
generalized coordinate (Often denoted as qj). Right now, we are simply going to state the
Euler-Lagrange equation which is the general form for a system’s equation of motion given its
Lagrangian L(qj , q̇j).

d

dt

∂L
∂q̇j
− ∂L
∂qj

= 0 (3.5)

Where the Lagrangian of a system is defined as:

L(qj , q̇j) = T (qj , q̇j)− V (qj) (3.6)

Where T (qj , q̇j) is the kinetic energy of the system and V (qj) is the potential energy.

Note: The lagrangian is not the total energy of the system since there is a negative sign
attached to the potential energy V (qj).

So going back to our pendulum system, we only have one generalized coordinate q1 = θ. So our
Lagrangian can be written as follows:

L =
1

2
m(Lθ̇)2 − (−mg cos θ) =

1

2
mL2θ̇2 +mg cos θ (3.7)
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Substituting this into equation 3.5, we get:

d

dt
(mL2θ̇) +mgL sin θ = 0

⇒ θ̈ = − g
L

sin θ
(3.8)

which is exactly the equation of motion we derived from the Newtonian approach (just much
faster). So we see that in analytical mechanics, instead of computing accelerations and working
with constraint forces, we simply define generalized coordinates and work with energy functions
to derive the equations of motion. All accelerations are implicitly computed when we apply the
Euler-Lagrange equation. Amazing!

§3.2 Virtual Displacement and Work

We are now going to explore the concepts of virtual displacement and virtual work which will
then lead to a derivation of the Euler-Lagrange equation (3.5). First, let us consider a rigid body
that moves in 3D space with respect to some origin O. We pick some point P on this body
and denote the position of this point with respect to the origin as ~r. In general, this vector is a
function of time and spatial coordinates ~r = ~r(t, x, y, z).

Additionally, we have that this body is subject to a constraint (fixture) such that the point on
the body attached to the fixture (not point P ) cannot move but the body can rotate about that
point. If we apply an external force on this body, it would move to a new position such that
point P would move from ~r to ~r′ by d~r = ~r′ − ~r. We then use the product rule to expand out
this differential:

d~r =
∂~r

∂dt
dt+

∂~r

∂x
dx+

∂~r

∂y
dy +

∂~r

∂z
dz (3.9)

We call this the actual displacement and is consistent with the constraints imposed on the body
along with the differential equation of motion.

Similarly, we can define a virtual displacement of the body. To do this again consider the system
we described above. The main difference between the virtual and actual displacements is that
although it is consistent with the system’s constraints, it does not satisfy the equation of motion
(i.e. only a displacement with respect to the spatial coordinates, time is held fixed).

δ~r = ~r′′ − ~r =
∂~r

∂x
δx+

∂~r

∂y
δy +

∂~r

∂z
δz (3.10)

The idea here is that virtual displacement is any possible displacement (or variation in path) that
adheres to the constraints. So it is as though we are taking a snapshot in time and observing all
available (but not necessarily physically realizable) paths our particle can take. As an extension
of this idea, we can also define a virtual work from this virtual displacement. First recall the
conventional definition of work:
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Definition 3.2.1. The work done by a force ~F is the path integral of its scalar tangential
component along the path at its point of application.

W =

∫ b

a

~F · d~s (3.11)

So drawing from this intuition, the virtual work of a force ~F over a virtual displacement δ~r is
given by:

δW = ~F · δ~r (3.12)

Note: If the direction of the force and virtual displacements are orthogonal, then the
virtual work is 0 by definition.

§3.3 Constraints and Constraint Forces

Consider 2 particles that move in 3D space while being connected by a rigid rod of fixed length
L. We shall denote the positions of the particles by ~r1 and ~r2. The rigid rod imposes a kinematic
constraint which we can write as (~r2 − ~r1) · (~r2 − ~r1) = L2. In a more general sense, constraints
that can be written in the form:

f(t, ~r1, ~r2, ...) = 0 (3.13)

are called holonomic constraints.

Definition 3.3.1. Holonomic Constraints: For a given physical system, holonomic con-
straints are constraints that:

1. Are equality constraints.
2. Depend only on the configuration of the system and not the velocities.

In this class, we will only consider holonomic constraints. A simple example of a holonomi-
cally constrained system is a slider that moves along a circular guide of radius R in the x, y-
plane.

O

slider

constraint

R−R

Figure 3.2: Slider Constrained to a Circle
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The motion of the slider can be described by 2 coordinates (x and y) but there exists a non-
trivial relation between them (holonomic constraint) which can be written as x2 + y2 = R2. On
the other hand, an example of a non-holonomic constraint is a particle that is constrained to
move along or inside the circle, which renders the constraint being x2 + y2 ≤ R2. The point of
formalizing this is because only holonomic constraints give rise to constraint forces ~F c. As such,
we can decompose constraint forces into 2 components:

~F c = ~F cideal + ~F cnon−ideal (3.14)

where the ideal constraint forces ~F cideal are forces perpendicular to virtual displacement. As

such, the component of virtual work done by ~F cideal will always vanish (equate to 0).

δW~F c
ideal

= ~F cideal · δ~r = 0 (3.15)

§3.4 Generalized Coordinates

We will now look at the concept of generalized coordinates which will allow us to explore param-
eterization of the configuration of a mechanical system.

Definition 3.4.1. Generalized Coordinates: A non-unique set of independent coordinates
that uniquely represent the configuration of a system at every moment of time.

The number of generalized coordinates is the same as the number of degrees of freedom (3.1.2)
of the system in question. In general (as mentioned previously), we denote these generalized
coordinates with qj . So for instance, if some system has n degrees of freedom, then we can
introduce n generalized coordinates:

~ri = ~ri(t, q1, q2, ..., qn) (3.16)

There is a simple but powerful relation for the number of degrees of freedom that will be essential
in solving any mechanics problem via the Lagrangian approach.

(No. constrained DoF) = (No. unconstrained DoF)− (No. of constraints) (3.17)

where DoF stands for degrees of freedom. Let’s consider 2 simple examples to make sure we
know how to apply this concept.

Example 1:

Consider again the slider contrained to move along a circle as illustrated in figure 3.2. The
unconstrained coordinates which uniquely describe the slider would be x and y since we
are only considering motion in the x, y-plane. However, x and y are related by constraint
relation, making them not independent and hence not generalized coordinates. So let us
now apply our formula 3.4. We have:

1. 2 unconstrained degrees of freedom (x and y).
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2. 1 holonomic constraint (x2 + y2 = R2).
As such, the number of constrained degrees of freedom = 2 − 1 = 1. This means we can
simply introduce just 1 generalized coordinate (e.g. θ, s = Rθ, etc) that will allow us to
fully describe the dynamics of our system.

Example 2:

Now consider instead a rigid wheel constrained to spin around the z-axis in the x, y-plane.
This is illustrated in figure 3.3. Rigid bodies in 3D have 6 degrees of freedom, 3 of which
are translational and the remaining 3 are rotational. Our set-up is such that we have
imposed 3 constraints:

1. 2 rotational constraints since we only permit rotation along the z-axis.
2. 1 translational since we only permit translation in the x, y-plane.

As such, we get that the number of constrained degrees of freedom = 6− 3 = 3, which for
instance could have the generalized coordinates x, y and θ.

x

y

z

wheel
ω

~rc = {xc, yc}

Figure 3.3: Rigid Wheel Rotating in the x, y-Plane

§3.5 D’ALembert’s Principle

Previously, we have seen that the Euler-Lagrange equation does not depend on the constraint
forces. However, it is still unclear on how we were allowed to do this. D’Alembert’s principle
gives us an answer to this question. Let us consider a simple system of a point mass m with
position denoted by ~r and subject to a path constraint. The forces acting on this point mass are
1) gravity (mg) 2) constraint forces. Let’s first try to do a little massaging to Newton’s second
law:

m~̈r =
∑

~F

⇒
∑

~F + (−m~̈r) = 0
(3.18)

We now define ~F I = −m~̈r as the inertial force. The equation above is also often referred to as
the equation of dynamic equilibrium. Thus for our simple system in question, we have:∑

~F + ~F I = m~g + ~F cideal + ~F cnon−ideal + ~F I = 0 (3.19)
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Recalling our definition of virtual work, if we instead consider the virtual work done on the point
mass, we get:

δW =
(
m~g + ~F cideal + ~F cnon−ideal + ~F I

)
· δ~r

=
(
m~g + ~F cnon−ideal + ~F I

)
· δ~r = 0

(3.20)

where the ~F cideal has dropped out due to orthogonality and we are left with a scalar condition
for dynamic equilibrium. So in general, we get the relation:

(∑
~Fnon−constraint + ~F cnon−ideal

)
· δ~r +

(
~F I
)
· δ~r = 0 (3.21)

The result above is known as the D’Alembert’s principle.

D’Alembert’s Principle:

The sum of virtual work done by non-constraint and non-ideal constraint forces and the
virtual work done by inertial forces must vanish.

δW + δW I = 0 (3.22)

This principle is key to deriving the Euler-Lagrange equations of motion.

§3.6 The Euler-Lagrange Equation

Going back to our analysis of the single particle along a constrained trajectory, it gave us 2
components in the result,

(
~F + ~F cnon−ideal

)
· δ~r and

(
~F I
)
· δ~r where are just denoting all non-

constraint forces as ~F . Since the particle is moving along this guided path, it has 1 degree of
freedom, implying only one generalized coordinate. Hence, we have that ~r = ~r(q). So we have
that:

δ~r =
∂~r

∂q
δq (3.23)

⇒ δW =
(
~F + ~F cnon−ideal

)
· δ~r =

(
~F + ~F cnon−ideal

)
·
(∂~r
∂q
δq
)

⇒ δW =
((
~F + ~F cnon−ideal

)
· ∂~r
∂q

)
δq ≡ Qqδq (3.24)

So we have this new quantity Qq which we will call the generalized force. On the other hand, we
still have the virtual inertial work, from which we can do a similar derivation from that above
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and get the generalized inertial force QIq :

QIq = −m~̈r · ∂~r
∂q

= −m
[ d
dt

(
~̇r
∂~r

∂q

)
− ~̇r d

dt

(∂~r
∂q

)]
= −m

[ d
dt

(
~̇r
∂~̇r

∂q̇

)
− ~̇r
(∂~̇r
∂q

)]
= − d

dt

∂

∂q̇

[1

2
m~̇r · ~̇r

]
+

∂

∂q

[1

2
m~̇r · ~̇r

]
=
[
− d

dt

∂

∂q̇
+

∂

∂q

]
T

(3.25)

where T is the kinetic energy of the system. So we see that we can immediately compute the
generalized inertial forces from just knowing the kinetic energy of the system! Now going back
to D’Alembert’s princple, we require that:

δW + δW I = 0

⇒ (Qq +QIq)δq = 0

⇒ Qq +QIq = 0

⇒ d

dt

∂T

∂q̇
− ∂T

∂q
= Qq

(3.26)

It is then common practice that we split the generalized force into conservative and non-
conservative components Qq = Qcq + Qncq , the reason being that conservative forces can be
easily derived knowing the potential energy function of the system. Thus, for a conservative
system (Qq = Qcq), we have that:

d

dt

∂T

∂q̇
− ∂T

∂q
= Qcq (3.27)

We also know that:

δW c = −δV = −∂V
∂q

δq = Qcqδq (3.28)

where V is the potential energy of the system. These combine to give:

d

dt

∂T

∂q̇
− ∂T

∂q
= −∂V

∂q
(3.29)

Note: The potential energy function cannot depend on generalized velocities (−∂V∂q̇ = 0).

Keeping the above note in mind, we can rearrange all these terms to give:

d

dt

∂(T − V )

∂q̇
− ∂(T − V )

∂q
= 0 (3.30)



CHAPTER 3. ANALYTICAL MECHANICS 20

Finally, we define the Lagrangian of a system as L = T −V , which results in the Euler-Lagrange
equation for a system with a single degree of freedom:

d

dt

∂L
∂q̇
− ∂L
∂q

= 0 (3.31)

Note: The Euler-Lagrange equation above (3.6) is valid only for conservative systems.
For non-conservative systems, we need to utilize the more general form in equation 3.6.

For a system with more than 1 degree of freedom, we simply add an index to our generalized
coordinates to get the previously presented equation (3.5). With this, we can then have a
systematic work-flow to employ this new tool in tackling dynamics problems.

Lagrangian Work-Flow:

1. Identify the number of degrees of freedom of the system n.

2. Introduce the generalized coordinates {q1, q2, ..., qn}.

3. Compute the kinetic energy:

T = T (t, q1, ..., qn)

.
4. Compute all conservative forces:

Qcj = −∂V (q1, ..., qn)

∂qj

5. Compute all non-conservative forces:

δWnc =

n∑
j=1

Qncj δqj

6. Form the Euler-Lagrange equation of motion:

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Qcj +Qncj

Note: If we are considering rigid body mechanics, we can separate the kinetic energy term
into 2 components: 1) kinetic energy due to translation of the center of mass, Ttrans,CoM
2) kinetic energy due to rotation about the center of mass, Trot,CoM .

The Lagrangian satisfies a few neat properties. These are listed below.



21 3.6. THE EULER-LAGRANGE EQUATION

Lagrangian Properties:

1. The Lagrangian is a scalar function. This follows from the nature of which it is
defined.

2. For a system with only conservative forces, the Lagrangian scaled by a constant
factor α gives us the same equations of motions and thus the same physics. The
constant will drop out in the Euler-Lagrange equation.

3. Adding a scalar constant to the Lagrangian itself gives us the same equations of
motion. L ∼ L′ = L+ α

4. If we define L′ = L+ d
dtf(q, t), this does not change the physics either since

S′ =

∫ t2

t1

L′dt =

∫ t2

t1

(
L+

d

dt
f(q, t)

)
dt

=

∫ t2

t1

Ldt+ f(q, t)|t2t1

= S + constant

and adding constants do not change the action minimization problem.



Chapter 4

Conservation Laws

This week, we will look at conservation laws within the Lagrangian framework. Simply speaking,
conserved quantities are quantities that remain invariant under time evolution. Specifically, we
will be looking at the conservation of energy and momentum. In general, we know that an n degree
of freedom mechanical system can be described by n its generalized coordinates {q1, q2, ..., qn}. An
arbitrary conserved quantity of the system is also known as an integral of motion, and can be
written as:

d

dt
I(t, q1, q1, ..., qn, q̇1, q̇2, ...q̇n) = 0 (4.1)

⇒ I(t, q1, q1, ..., qn, q̇1, q̇2, ...q̇n) = constant (4.2)

We will begin our adventure into conserved quantities by first looking at a simple example.

x

y

O

k, r0

m

θ

Figure 4.1: Spring-Mass System on a Plane

Example

Consider a spring-mass system, with a spring with spring constant k, rest length r0 and
the mass with mass m (ignoring gravity). This system has 2 degrees of freedom and as
such, can be described by the 2 generalized coordinates {r, θ}. We know from Newtonian
mechanics that energy and angular momentum are conserved. These are written as:

22
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1. Energy Conservation:

E = T + V

=
1

2
m
(
ṙ2 + r2θ̇2

)
+

1

2
k(r − r0)2 = C1

(4.3)

2. Angular Momentum Conservation:

~̇HO = 0

⇒ ~HO = constant

⇒ ~HO = ~r×m~v = r~er ×m(ṙ~er + rθ̇~eθ)

⇒ ~HO = mr2θ̇~ez = constant

⇒ mr2θ̇ = C2

(4.4)

where C1 and C2 are constants. These 2 conservation laws in fact complete describe the
motion of the system! Furthermore, the angular momentum conservation also elucidates
a particular physical insight. That is, if the mass moves closer to the origin O, the
angular velocity has to increase and vice versa. We will now look to how Lagrangian
mechanics gives a natural segue to deriving these quantities and a generalization of this
to all mechanical systems.

§4.1 Momentum Conservation

In this section, we will be looking at a conserved quantity that arises through coordinate-
translation invariance. We start with a definition.

Definition 4.1.1. Cyclic Coordinates: Generalized coordinates that do not explicitly occur
in the Lagrangian of the system.

To better understand what a cyclic coordinate implies, consider again an n degree of freedom
conservative system. For this, we can write the Euler-Lagrange equation as:

d

dt

∂L
∂q̇j
− ∂L
∂qj

= 0, j ∈ {1, ..., n} (4.5)

where the Lagrangian is a function of time t, generalized coordinates qj and generalized velocities
q̇j . Let us now say that qk is a cyclic coordinate for some 1 ≤ k ≤ n. This means that this
coordinate no longer shows up in the Lagrangian. This means that the Euler-Lagrange equation
for this coordinate is:

d

dt

∂L
∂q̇k

= 0 (4.6)

because d
dt

∂L
∂q̇k

= 0. So immediately we see that we have a conserved quantity here! We thus
define this conserved quantity as the generalized momentum.
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Definition 4.1.2. Generalized Momentum: The generalized momentum of a system is de-
fined as the partial derivative of the Lagrangian with respect to generalized velocity associated
to a cycle coordinate qk.

pk =
∂L
∂q̇k

(4.7)

§4.2 Hamiltonian Conservation

In this next section, we look at another conserved quantity which arises from time-translation
invariance. Often times, this quantity turns out to be the total mechanical energy of a system,
but is not strictly always the case. First consider an n degree of freedom system such that its
Lagrangian is not an explicit function of time. That is to say:

L = L(q1, ..., qn, q̇1, ..., q̇n) (4.8)

⇒ ∂L
∂t

= 0 (4.9)

The claim is that from this, we get another integral of motion
∑
j
∂L
∂q̇j

q̇j − L = constant. Our

goal now is to prove/derive this. Keep in mind that ∂L
∂t = 0 does not imply L is an integral of

motion since here, we are taking just the partial and not the total time derivative.

Claim

Given a system with a Lagrangian that is not an explicit function of time, we will have
the following integral of motion: ∑

j

∂L
∂q̇j

q̇j − L (4.10)

Proof. Let us start by first taking the total time derivative of Lagrangian:

d

dt
L =

n∑
j=1

∂L
∂q̇j

q̈j +

n∑
j=1

∂L
∂qj

q̇j +
∂L
∂t

(4.11)
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Also once again recall the Euler-Lagrange equation for conservative systems:

d

dt

∂L
∂q̇j

=
∂L
∂qj

⇒ d

dt
L =

n∑
j=1

∂L
∂q̇j

q̈j +

n∑
j=1

d

dt

∂L
∂q̇j

q̇j +
∂L
∂t

⇒ d

dt
L =

d

dt

 n∑
j=1

∂L
∂q̇j

q̇j

+
∂L
∂t

⇒ d

dt

 n∑
j=1

∂L
∂q̇j

q̇j − L

 = −∂L
∂t

(4.12)

So we see that if our Lagrangian is indeed not an explicit function of time, we get that:

d

dt

 n∑
j=1

∂L
∂q̇j

q̇j − L

 = 0 (4.13)

which proves our claim.

However, this quantity seems kind of complicated and not very insightful for us. We will now
work toward showing that this quantity is in fact (for the specific case where position is fully
specified using only the generalized coordinates) total mechanical energy of our system. This
integral of motion in the most general form is known as the Hamiltonian. Recall that L = T −V ,
where V only depends on the generalized coordinates. That is to say:

V = V (q1, ..., qn)

⇒ ∂V

∂q̇j
= 0

⇒ ∂L
∂q̇j

=
∂T

∂q̇j

⇒
n∑
j=1

∂T

∂q̇j
q̇j − T + V = constant

(4.14)

Then for a system of particles where the vector coordinates are only functions of the generalized
coordinates (i.e. ~rj = ~rj(q1, ..., qn)), we have:

∂T

∂q̇j
=

∂

∂q̇j

∑
i

mi

2
~vi · ~vi

=
∑
i

mi

2

∂~vi
∂q̇j
· ~vi

=
∑
i

mi

2

∂~ri
∂qj
· ~vi

(4.15)
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Combining this with our previous result, we get:

n∑
j=1

∂T

∂q̇j
q̇j =

n∑
j=1

∑
i

miq̇j
∂~ri
∂qj
· ~vi

=
∑
i

mi~vi · ~vi = 2T

(4.16)

⇒

n∑
j=1

∂T

∂q̇j
q̇j − T + V = 2T − T + V

= T + V = constant

(4.17)

where T + V is exactly the total mechanical energy of the system and thus, energy is indeed
conserved for systems with a Lagrangian not being an explicit function of time and positions being
specified by generalized coordinates. Let us now consider an example to illustrate identifying
these conserved quantities in a given mechanical system.

Example

Consider again the hinged, spring-mass system that we saw in 4.1. The first step is to
write down the Lagrangian of this system. We have already previously identified the
kinetic and potential energies in this system using the 2 generalized coordinates r and θ.
As such, we have:

L = T − V =
1

2
m(ṙ2 + r2θ̇2)− 1

2
k(r − r0)2 (4.18)

From here, we see that this Lagrangian is a function of only r, ṙ, θ̇ (i.e L = L(r, ṙ, θ̇)).
This means that by our derivations in this chapter, we have the 2 conserved quantities
associated to θ and t which this Lagrangian is not an explicit function of. As such, this
gives us that the following quantities are conserved:

∂L
∂t

= 0 ⇒ ∂L
∂ṙ
ṙ +

∂L
∂θ̇
θ̇ − L = C1 (4.19)

∂L
∂θ

= 0 ⇒ ∂L
∂θ̇

= C2 (4.20)

Working this out, we get:

1

2
m(ṙ2 + r2θ̇2) +

1

2
k(r − r0)2 = C1 (4.21)

mr2θ̇ = C2 (4.22)

Which are exactly the total mechanical energy (4.21) and angular momentum (4.22) of
the system that we knew (from Newtonian mechanics) would be conserved as said at the
beginning of the chapter.

To give a quick overview of what we’ve seen in this chapter, we have seen 2 conserved quantities
arise from 2 separate conditions in the Lagrangian of a given mechanical system. The conditions
and associated conserved quantities are summarized below:
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1. Conservation of Generalized Momentum
Condition: Lagrangian is not an explicit function of generalized coordinate qk (i.e. qk is a
cyclic coordinate).

∂L
∂qk

= 0

⇒ ∂L
∂q̇k

= constant

(4.23)

2. Conservation of the Hamiltonian
Condition: Lagrangian is not an explicit function of time t.

∂L
∂t

= 0

⇒
∑
j

∂L
∂q̇j

q̇j − L = constant
(4.24)



Chapter 5

Oscillations

In this chapter, we will be looking at oscillators starting from the most ideal and simple scenario.
This is most commonly known as simple harmonic motion. From there, we will then progres-
sively work up to analysis for more complicated oscillatory systems. A good grasp of oscillator
dynamics is essential for all scientists and engineers, with its uses proven invaluable time and
time again.

§5.1 Single Mode Slit

k

m

Figure 5.1: Spring-Mass System

Consider a simple spring-mass system, with parameters k (spring constant) and m (mass) as
seen in figure 5.1. The equation of motion for this system is given as:

mẍ = −kx (5.1)

for which we have seen before many times. We can solve for a general solution by taking the
ansatz as:

x(t) = A cos(ωt) +B sin(ωt) (5.2)

Plugging this back into the simple harmonic equation of motion above, we get:

LHS = m
d2

dt2
(A cos(ωt) +B sin(ωt))

= −m
(
ω2A cos(ωt) + ω2B sin(ωt)

)
= −mω2x(t)

(5.3)

28



29 5.2. DAMPED OSCILLATORS

Comparing this with the RHS of the equation, we get that:

mω2 = k

⇒ ω =

√
k

m
(5.4)

Now let’s say that the initial conditions of our system as given as:{
x(t = 0) = x0

ẋ(t = 0) = ẋ0

(5.5)

With this, if we plug in t = 0 into our ansatz and compare coefficients with the given initial
conditions, we will see that our general solution will take the form:

x(t) = x0 cos(ωt) +
ẋ0

ω
sin(ωt) (5.6)

This is a rather simple and elegant form for a general solution to simple harmonic systems.
However, do not aim to memorize this but rather, keep in mind the ansatz we started with
(linear combination of sines and cosines) as it will be essential for our analysis of oscillatory
systems throughout this chapter.

§5.2 Damped Oscillators

Now consider a again a spring-mass system, but now with a damper added in parallel to the
spring. A visualization of this is provided in figure 5.2 below.

γ

k

m

Figure 5.2: Spring-Damper-Mass System

The damping force is proportional to the velocity ẋ of the mass with a proportionality constant
γ/2. As such, the equation of motion for this system is:

ẍ+ 2γẋ+
k

m
x = 0 (5.7)

To solve this differential equation, we shall use the following ansatz:

x(t) = Ceλt (5.8)
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Substituting this ansatz into the equation of motion, we get:

C(λ2 + 2γλ+
k

m
)eλt = 0 (5.9)

Recall that without the damper, we had that the characteristic angular frequency of a spring-
mass system is given by

√
k/m. As such, we shall define:

ω0 =

√
k

m
(5.10)

With this, we solve the quadratic equation above for λ to get:

λ1,2 = −γ ±
√
γ2 − ω2

0 (5.11)

So we have 2 solutions to for λ and as such, the general solution to our second order differential
equation (equation of motion) can be constructed by using both these quantities as follows:

x(t) = C1e
λ1t + C2e

λ2t (5.12)

= C1e

(
−γ+
√
γ2−ω2

0

)
t

+ C2e

(
−γ−
√
γ2−ω2

0

)
t

(5.13)

where C1 and C2 can be found via knowing the initial conditions of our system. Let’s dig a little
deeper into this system. There are 3 scenarios we can look at here.

1. γ = 0:

Here, we see that our solution parameter becomes λ1,2 = ±iω0. With this, we simply
retrieve the result previously attained for the case of no damping. This case is known as
no damping.

t

x(t)

Figure 5.3: No Damping

2. γ2 > ω2
0 :

With this, we get that both λ1 and λ2 are real numbers. As such, we see that the system
will only decay exponentially. In this case, the system is said to be over damped.

t

x(t)

Figure 5.4: Over Damping
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3. γ2 < ω2
0 :

With this, we get that both λ1 and λ2 are complex numbers. As such, we get oscillations
restricted to an exponential decay envelope. In this case, the system is said to be under
damped. The frequency of this system deviates from the natural undamped frequency ω0

by ω =
√
ω2

0 − γ2.

t

x(t)

Figure 5.5: Under Damping

4. γ2 = ω2
0 :

For this, we also get a pure exponential decay as we only have a −γ as a prefactor in the
exponent. In this case, the system is said to be critically damped.

t

x(t)

Figure 5.6: Critical Damping

This solution, though similar to the over damped case, differs from that since we have a
linear factor in t attached to the exponent as opposed to purely exponential decay terms:

x(t) = e−γt(A+Bt) (5.14)

§5.3 Forced Oscillations

We now continue to augment our system for further analysis by adding an external time-
dependent force on the mass.

F (t)

γ

k

m

Figure 5.7: Spring-Damper-Mass System
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For simplicity, we can consider an external periodic force that is a pure sinusoidal function:

F (t) = F0 sin(ωt) (5.15)

Note that the ω used for the external force here is not the characteristic frequency of our undriven
system. As such, our equation of motion can be written as:

ẍ+ 2γẋ+
k

m
x =

F0

m
sin(ωt) (5.16)

where we defined γ in this way for mathematical convenience. We learn in our study of ordinary
differential equations that a general solution to a non-homogeneous, linear differential equation
can be constructed by taking a linear combination of the homogeneous solution and a particular
solution. As such, we get that our solution to this equation of motion is written as:

x(t) = xh(t) + xp(t)

=

[
C1e

(
−γ+
√
γ2−ω2

0

)
t

+ C2e

(
−γ−
√
γ2−ω2

0

)
t
]

+ [A sin(ωt) +B cos(ωt)]
(5.17)

The thought process used to find our particular solution is as follows. First, our particular
solution must satisfy the follow relation:

ẍp(t) + 2γẋp(t) +
k

m
xp(t) =

F0

m
sin(ωt) (5.18)

Physically, we know that because the external driving does not die out even if the parameters
would ordinarily cause the natural oscillations of the undriven system to do so, we conclude
that there must be consistent oscillations occurring in the long run (steady state). This must
be encoded in the particular solution and as such, we can construct the particular solution as a
linear combination of sine and cosine functions as done above. Looking just at the differential
equation for xp(t):

(ω2
0 − ω2) [A sin(ωt) +B cos(ωt)] + 2γω [A cos(ωt)−B sin(ωt)] =

F0

m
sin(ωt)

⇒
[
(ω2

0 − ω2)A− 2γωB
]

sin(ωt) +
[
(ω2

0 − ω2)B + 2γωA
]

cos(ωt) =
F0

m
sin(ωt)

(5.19)

⇒
(ω2

0 − ω2)A− 2γωB =
F0

m

(ω2
0 − ω2)B + 2γωA = 0

(5.20)

Note: We could look at the sine and cosine prefactors independent since sine and cosine
are orthogonal functions. That is to say:

1

T

∫ T

0

sin(ωt) cos(ωt)dt = 0 (5.21)

where T = 2π
ω is the driving period (the integral over one period is the inner product for

continuous, periodic functions).
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As such, we can write the 2 equations for A and B as a linear system in matrix form as fol-
lows: [

ω2
0 − ω2 −2γω
2γω ω2

0 − ω2

] [
A
B

]
=

[
F0

m
0

]
(5.22)

⇒
A =

F0

m (ω2
0 − ω2)

(ω2
0 − ω2)2 + (2γω)2

B =
−2γω F0

m

(ω2
0 − ω2)2 + (2γω)2

(5.23)

⇒ xp(t) =

(
F0

m

)
(ω2

0 − ω2)2 + (2γω)2

[
(ω2

0 − ω2) sin(ωt)− 2γω cos(ωt)
]

(5.24)

To extract more physical insights to this result, we recall the trigonometric identity A sin(x) +
B cos(x) =

√
A2 +B2 sin(x+ φ) where φ is some phase given by tan−1(−B/A). Utilizing this,

we get that our particular solution becomes:

xp(t) =

(
F0

m

)
(ω2

0 − ω2)2 + (2γω)2
sin

[
ωt+ tan−1

(
2γω

ω2
0 − ω2

)]
(5.25)

So our general solution for this system can be written as:

x(t) =

[
C1e

(
−γ+
√
γ2−ω2

0

)
t

+ C2e

(
−γ−
√
γ2−ω2

0

)
t
]

+

(
F0

m

)
(ω2

0 − ω2)2 + (2γω)2
sin

[
ωt+ tan−1

(
2γω

ω2
0 − ω2

)] (5.26)

As further analysis, we can generate a plot of the amplitude of xp(t) against ω (as shown in
figure 5.8 below) to see how the steady state solution amplitude varies with ω.

Note: We often refer to the particular solution as the steady state solution since we
have that the homogeneous solution will be damped out after a long time (decays away),
leaving only the particular solution.

ω

(F0
m )

(ω2
0−ω2)2+(2γω)2

0

F0

mω0

ω0

Figure 5.8: Oscillation Amplitude vs Angular Frequency Plot

There are several things we can already see from just eyeballing the plot above.
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• We see that if ω >> ω0, we get that
(F0

m )
(ω2

0−ω2)2+(2γω)2
→ 0.

• We see that the maximum amplitude does not occur at ω0, although close by. The maxi-
mum amplitude only coincides with ω0 when γ = 0.

• When there is no driving frequency (ω0 = 0), the driving amplitude does not vanish but
tends to F0/(mω0) instead.

§5.4 Multi-Mode Oscillators

Now, we will take a step back again removing damping and external forces on our oscillator
system. However, we will instead be looking at oscillators of multiple modes (a system of several
oscillators). As such, these would turn out to be systems in which the energies are functions
of several generalized coordinates (T = T (q̇1, q̇2, ..., q̇n) and V = V (q1, q2, ..., qn)). For a purely
mechanical system, we have that the kinetic energy is given by:

T =
∑
j

1

2
mj q̇

2
j (5.27)

Now if we consider a region close to the equilibrium position of the system and only small
perturbations around this position, we have that:

V ≈
∑
ij

1

2
kijqiqj (5.28)

This is because, performing a Taylor expansion around any local potential-well gives us a
quadratic potential (ignoring higher order terms and taking that at equilibrium, ∇V (q∗j ) = 0).
Knowing Lagrangian mechanics, we can write down the equations of motion from these energy
functions as:

q̈i +
kii
mi

qi +
∑
j 6=i

kij
2mi

qj = 0 (5.29)

where the term that sums over index j represents the couplings between adjacent oscillators in
the oscillator lattice. If we take the ansatz to be qi(t) = Cie

iωt, this gives us:

ω2qi =
kii
mi

qi +
∑
j 6=i

kij
2mi

qj (5.30)

Note: be sure to distinguish between the index i and complex number i =
√
−1. This is

somewhat sloppy notation but relatively unambiguous.
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We can then represent these equations indexed by i as a linear system in matrix form as fol-
lows: 

. . .
ki−1,i+1

2mi
ki,i
mi

ki+1,i−1

2mi

. . .





...
qi−1

qi
qi+1

...

 = ω2



...
qi−1

qi
qi+1

...

 (5.31)

We actually also have that
ki,j
2mi

=
kj,i
2mi

, meaning that the matrix of spring constants and reciprocal
masses is in fact symmetric (due to Newton’s second law). We can relabel the linear system
above in the following way:

(M−1K)~q = ω2~q (5.32)

where the matrix entries Mij indicate adjacent masses whereas the entries Kij indicate the
spring constants connecting masses mi and mj . We see that in fact, the equation above is an
eigenvalue problem, where we require to look for the eigen-decomposition of the matrix M−1K
(with eigenvalues ω2

i and eigenvectors ~q). We often refer to the eigenvalues of the M−1K matrix
as the eigen-frequencies, and the eigenvectors as eigen-modes. By closely following the chosen
ansatz, we can already draw several interesting conclusions by simply looking at the parity of
ω2.

1. ω2 > 0:

Here, we get that qi is a linear combination of sines and cosines, causing the system to
undergo oscillations indefinitely. The functional form would thus be:

q(t) = Aeiωt +Be−iωt (5.33)

2. ω2 < 0:

Here, we get that qi ∝ ei(±iω)t, which means we get a linear combination of real exponential
functions:

q(t) = Aeωt +Be−ωt (5.34)

If we further assert that the initial conditions of our system are q(0) = ε and q̇(0) = 0,
then we arrive at the solution:

q(t) =
ε

2
(eωt + e−ωt) = ε sinh(ωt) (5.35)

which means that the generalized coordinate of our system grows exponentially, implying
our system was likely at a maxima (or unstable point) to begin with.

Let’s now look at an example to learn how to utilize this method of eigen-modes and eigen-
frequencies to solve an oscillating system.
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k1

m1

k2

m2

k3

Figure 5.9: Multi-Mode System of Springs and Masses

Example:

Consider the following coupled system of springs and masses as seen in figure 5.9. With
this, we can write the equations of motion as:

m1ẍ1 = −k1x1 + k2(x2 − x1) (5.36)

m2ẍ2 = −k2(x2 − x1) + k3x2 (5.37)

where x1 and x2 denote the displacements of masses m1 and m2 respectively. We write
this in a matrix representation as follows:[

m1 0
0 m2

] [
ẍ1

ẍ2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
(5.38)

Now we pick the following ansatz and assert the following definitions:

~x = eiωt~x0 (5.39)

M =

[
m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
(5.40)

where ~x0 is a time-independent eigenmode. We simply attach this complex phase (eiωt) to
the initial conditions as a means to find the ω solutions. We also know that these complex
exponentials give general solutions to second order differential equations. Plugging in this
ansatz produces:

ω2M~x0 = K~x0

⇒ M−1K~x0 = ω2~x0

(5.41)

For further simplicity, let us assume that m1 = m2 = m and k1 = k2 = k3 = k. With
this, we can solve the eigenvalue problem as follows:

det
(
M−1K − Iω2

)
= 0

⇒ det

{
k

m

[
2 −1
−1 2

]
− ω2

[
1 0
0 1

]}
= 0

⇒ (2− mω2

k
)2 − 1 = 0

⇒ mω2

k
= 1 or 3

(5.42)

⇒ ω =

√
3k

m
or

√
k

m
(5.43)

As for the eigen-modes, we have to find the eigen-modes corresponding to each eigen-
frequency found above as follows:
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1. (mω
2

k = 1): [
2 −1
−1 2

] [
x1

x2

]
−
[
x1

x2

]
= ~0

⇒ x1 = x2

⇒
[
x1

x2

]
=

[
1
1

] (5.44)

This eigen-mode is telling us is that the 2 masses are moving by the same displace-
ment in the same direction ‘in sync’.

2. (mω
2

k = 3): [
2 −1
−1 2

] [
x1

x2

]
− 3

[
x1

x2

]
= ~0

⇒ x1 = −x2

⇒
[
x1

x2

]
=

[
1
−1

] (5.45)

This eigen-mode is telling us is that the 2 masses are moving by the same displace-
ment in opposite directions.

Realize that from the example above, we see that the 2 eigen-modes are orthogonal. In fact,
this is true for all eigen-modes since the M−1K matrix will always be a real symmetric matrix (
by the spectral theorem). Moreover, these eigen-modes span the entire vector space of possible
vibrational modes! As such, we can always write any arbitrary vibration of a system as a linear
combination of its eigen-modes with their corresponding phases tacked on. This is more clearly
written as:

~x(t) =
∑
j

Aje
iωjt~ηj (5.46)

where Aj are real coefficients and ~ηj are the eigen-modes.

§5.5 Beat Phenomena

In oscillatory systems, a unique phenomena can emerge in which the periodic variations in
vibrational amplitudes occur at a rate that is the difference of two characteristic frequencies (ω1−
ω2) of the system under certain ‘tuned’ conditions. This is known as beat phenomenon, and arises
from the interference between two oscillations of slightly different frequencies. Mathematically,
this simply results from the properties of trigonometric functions, but reveals rather insightful
physics. We will be exploring how this arises in the dynamics of the Wilberforce pendulum.
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§5.5.1 Wilberforce Pendulum

O

k, d, L0

m

θ

z

Figure 5.10: Wilberforce Pendulum

Consider a mass hanging on a spring that is free to oscillate in both the standard longitudinal
mode and the torsional mode. When the mass is lifted above its equilibrium point and released
from rest, it oscillates up and down along a vertical line, but due to the coupling between this
longitudinal and the torsional motion, rotation of the mass can also be observed. This constitutes
the Wilberforce pendulum and is illustrated in figure 5.10, where k is the longitudinal stiffness,
d is the torsional stiffness and L0 is the rest length of the spring. For simplicity, we will consider
a linear coupling between the torsional and longitudinal modes parameterized by the constant ε.
As such, our energy functions are given by:

T =
1

2
mż2 +

1

2
Iθ̇2 (5.47)

V =
1

2
k(z − L0)2 +

1

2
dθ2 +

ε

2
θz −mgz

=
1

2
kz2 +

1

2
dθ2 + z

(ε
2
θ − kL0 −mg

)
+

1

2
kL2

0

(5.48)

The potential energy function here is slightly inconvenient since it would result in an affine system
as opposed to a purely linear one. As such, we can do an appropriate coordinate transformation
(change of reference frame) such that we simplify our computations. To do so, let us define our
new coordinates as:

z̃ = z + z0 (5.49)

θ̃ = θ + θ0 (5.50)

where z̃ and θ̃ are the coordinates in the new frame and z0 and θ0 are the associated ‘boosts’
(transformation factors). The goal is to have z0 and θ0 such that our potential energy function
reduces to:

Ṽ (θ̃, z̃) =
1

2
kz̃2 +

1

2
dθ̃2 +

ε

2
θ̃z̃ = V (θ, z) (5.51)
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As such, we substitute in our newly proposed generalized coordinates into Ṽ to get:

Ṽ (θ, z) =
1

2
kz2 + kzz0 +

1

2
kz2

0

+
1

2
dθ2 + dθθ0 +

1

2
dθ2

0

+
ε

2
θz +

ε

2
(θz0 + θ0z) +

ε

2
θ0z0

=
1

2
kz2 +

1

2
dθ2

+ z
(ε

2
θ +

ε

2
θ0 + kz0

)
+ θ

(ε
2
z0 + dθ0

)
+

(
1

2
zL2

0 +
1

2
dθ2

0 +
ε

2
θ0z0

)
(5.52)

From here, we compare Ṽ (θ, z) and V (θ, z). Let’s write them side by side for clarity.

Ṽ (θ, z) =
1

2
kz2 +

1

2
dθ2

+ z
(ε

2
θ +

ε

2
θ0 + kz0

)
+ θ

(ε
2
z0 + dθ0

)
+

(
1

2
zL2

0 +
1

2
dθ2

0 +
ε

2
θ0z0

)
V (θ, z) =

1

2
kz2 +

1

2
dθ2

+ z
(ε

2
θ − kL0 −mg

)
+

1

2
kL2

0

(5.53)

From this, we simply compare the coefficients of z and θ to solve for z0 and θ0 (ignoring the
constant term since it drops out of the Lagrangian):

θ0 =
L0 + mg

k
2d
ε −

ε
2k

, z0 =
2d
(
L0 + mg

k

)
ε
(
ε

2k −
2d
ε

) (5.54)

Great, now we have that our Lagrangian in this new coordinate system is effectively given
by:

L = T (
˙̃
θ, ˙̃z)− Ṽ (θ̃, z̃)

=

[
1

2
m ˙̃z2 +

1

2
I

˙̃
θ2

]
−
[

1

2
kz̃2 +

1

2
dθ̃2 +

ε

2
θ̃z̃

] (5.55)

To reduce notation, we will drop the tilde on our generalized coordinates which simply gives:

L =

[
1

2
mż2 +

1

2
Iθ̇2

]
−
[

1

2
kz2 +

1

2
dθ2 +

ε

2
θz

]
(5.56)

From here, we derive our conjugate forces and momenta using the standard methodology and
plug these into the Euler-Lagrange equation to get the following equations of motion:

mz̈ + kz +
1

2
εθ = 0 (5.57)

Iθ̈ + dθ +
1

2
εz = 0 (5.58)

⇒
[
m 0
0 I

] [
z̈

θ̈

]
= −

[
k ε

2
ε
2 d

] [
z
θ

]
(5.59)
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We then plug in the multi-mode oscillator ansatz to get:[
k
m

ε
2m

ε
2I

d
I

] [
z
θ

]
= ω2

[
z
θ

]
(5.60)

The solutions for this eigenvalue problem are then the normal modes and eigen-frequencies of
our double-mode oscillator system, given as:

ω2
± =

1

2

( k

m
+
d

I

)
±

√(
k

m
+
d

I

)2

− 4

(
dk

mI
+

ε2

4mI

) (5.61)

To further simplify our analysis, let’s say we tune the parameters of our system in such a way
that k

m = d
I . This reduces our eigen-frequencies to:

ω2
± =

k

m
± ε

2
√
mI

(5.62)

⇒ ω± ≈
√
k

m

(
1± mε

4k
√
mI

)
(5.63)

where we have assumed that ε is small and taken the Taylor expansion. These have the associated
eigen-modes:

~η+ =

[
1√
m
I

]
, ~η− =

[
1

−
√

m
I

]
(5.64)

The general solution of this system is thus given by:[
z(t)
θ(t)

]
= C+

[
1√
m
I

]
cos(ω+t+ φ+) + C−

[
1

−
√

m
I

]
cos(ω−t+ φ−) (5.65)

where φ± are the phase shifts determined by the initial conditions of the system. Let’s now say
that we set-up the system with the following initial conditions:[

z(0)
θ(0)

]
=

[
A
0

]
,

[
ż(0)

θ̇(0)

]
=

[
0
0

]
(5.66)

which corresponds to initially stretching the spring by a length A (with no torsional rotation),
then letting it go to allow free evolution of the undamped system. With these initial conditions,
we solve for φ± and C± to get:

C+ = C− =
A

2
, φ+ = φ− = 0 (5.67)

Rendering our dynamical solution as:[
z(t)
θ(t)

]
=
A

2

[
1√
m
I

]
cos(ω+t) +

A

2

[
1

−
√

m
I

]
cos(ω−t) (5.68)

⇒
z(t) =

A

2
[cos(ω+t) + cos(ω−t)]

θ(t) =
A

2

√
m

I
[cos(ω+t)− cos(ω−t)]

(5.69)
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Here is where the magic happens. First, recall the following trigonometric identities:

cos(A) + cos(B) = 2 cos

(
A+B

2

)
cos

(
A−B

2

)
cos(A)− cos(B) = 2 sin

(
A+B

2

)
sin

(
A−B

2

) (5.70)

With this, this gives us that our dynamical solutions can also be written as:

z(t) = A cos [(ω+ − ω−)t] · cos [(ω+ + ω−)t] = A cos

(
t

√
k

m

)
· cos

(
t

ε

4
√
kI

)
(5.71)

θ(t) = A

√
m

I
sin [(ω+ − ω−)t] · sin [(ω+ + ω−)t] = A

√
m

I
sin

(
t

√
k

m

)
· sin

(
t

ε

4
√
kI

)
(5.72)

The resulting solutions will thus take on the forms as shown in figures 5.11 and 5.12.

t

z(t)

Figure 5.11: z(t) vs t Plot

t

θ(t)

Figure 5.12: θ(t) vs t Plot

which exactly displays the emergence of beat phenomena we alluded to at the start of this section!
Beat phenomena is seen not just in mechanical systems, but any physical system that consists of
wave solutions. In fact, beat phenomena is what allows us to transmit information in the form
of radiowaves through the air! It is also common place in the study of acoustics, where beat
phenomenon causes fluctuations in the volume of sounds from some source.



Chapter 6

Kepler’s Laws

From here on in the notes, advanced topics will be covered that are not usually touched on in the
standard edition of 30.104 Dynamics. Naturally, these will require understanding of the material
from the previous chapters as we will be studying more sophisticated systems and concepts. The
first of these will be on Kepler’s laws of planetary motion. These were formulated by Johannes
Kepler between 1609 and 1619 while he was studying the motion of planets around the Sun.

§6.1 Statement of Kepler’s Laws

Kepler’s 3 laws that model the motion of Earth around the Sun are succinctly stated as fol-
lows:

1. Planetary orbits are elliptical.
2. The areas swept out per unit time around the Sun are constant ( ddtA = constant).
3. The square of a planet’s orbital period around the Sun is proportional to the cube of the

semi-major axis (T 2 ∝ a3).

In this chapter, we embark on an involved analysis of these laws in a constructive manner. To
provide a more coherent picture, We begin by first proving Kepler’s second law of planetary
motion.

§6.1.1 Kepler’s Second Law

The area swept out per unit time of a planet orbiting around the Sun is constant.

Consider 2 bodies of masses M (the Sun) and m (the planet) in orbit about their collective center
of mass. Following Newton’s second law, the forces on these masses are given by:

M~̈rM =
GMm

r2
~rr, m~̈rm = −GMm

r2
~rr (6.1)

⇒ ~̈r = −Gµ
r2
~er (6.2)

42
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Where we define ~r = ~rm + ~rM and also µ = m+M . Since we take that there is no net external
force acting on this 2 mass system, we have:

d2

dt2
(M~rM +m~rm) = ~0 (6.3)

From the result of Newton’s second law, we see that there is only a force along the ~er direction.
But we know from our earlier study of dynamics that this is not true in general (~̈r = (r̈−rθ̇2)~er+
(rθ̈ + 2ṙθ̇)~eθ). As such, we get the term associated to the ~eθ direction must vanish:

⇒ rθ̈ + 2ṙθ̇ = 0

⇒ 1

2

d

dt
r2θ̇ = 0

⇒ r2θ̇ = constant

⇒ r2

2

dθ

dt
=
dA

dt
= constant

(6.4)

where we utilized the fact that dA = r · rdθ/2. From this, we see that the area of the orbit is
indeed time-invariant, proving Kepler’s second law.

§6.1.2 Kepler’s First Law

The orbits of planets around the Sun are elliptical.

Taking a step back, we now proceed to derive Kepler’s first law using the results obtained
from the second. For convenience, we will be calling the conserved quantity earlier derived as
r2

2
dθ
dt = dA

dt = h
2 . Utilizing the result obtained from center of mass frame, the ~er component gives

us:

r̈ − rθ̇2 = −Gµ
r2

(6.5)

From the earlier derivation, we have r2θ̇ = h and hence, rθ̇2 = h2

r3 . Making use of a simple
identity, we get:

ṙ = −r2 d

dt

1

r
=
h

θ̇

d

dt

1

r
= −h d

dθ

1

r
(6.6)

Taking the another derivative of this, we get:

r̈ =
d

dt

(
−h d

dθ

1

r

)
= −h

2

r2

d2

dθ2

1

r

⇒ −Gµ
r2

= −h
2

r2

d2

dθ2

1

r
− h2

r3

⇒ Gµ

h2
=

d2

dθ2

1

r
+

1

r

(6.7)
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Solving this differential equation, we get:

1

r
= (e cos θ + 1)

Gµ

h2

⇒ r =

(
h2

Gµ

)(
1

1 + e cos θ

) (6.8)

For which e is known as the eccentricity and determines the orbit of the masses. This thus proves
Kepler’s first law. The various orbits corresponding to various values of the eccentricity is given
as follows:

1. e = 0: Circular Orbit
2. e < 1: Elliptical Orbit
3. e = 1: Parabolic Orbit
4. e > 1: Hyperbolic Orbit

Now to prove the third law.

§6.1.3 Kepler’s Third Law

The square of the planet’s orbital period is proportional to the cube of the semi-major
axis.

We start by reasserting a result we have already found, that is dA
dt = h

2 . Since we have an
elliptical orbit, we have:

πab =
h

2
T (6.9)

where a and b are the semi-major and semi-minor axes respectively, and T is the period of orbit.
Let us also define the perihelion and aphelion of the ellipse as r1 and r2. Then we know by
geometry of the ellipse that:

2a = r1 + r2 (6.10)

We also use the result from the second law derivation to get:

r(0) + r(π) =
h2

Gµ

1

1 + e
+
h2

Gµ

1

1− e
= 2a

⇒ a =
h2

Gµ

1

1− e2

⇒ b = a
√

1− e2

⇒ πa(a
√

1− e2) =
T

2

√
Gµa(1− e2)

⇒ T
√
Gµa

2
= πa

⇒ T 2 ∝ a3

(6.11)

Which gives exactly the statement of Kepler’s third law.
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§6.2 Lagrange Points in 3 Body Systems

Continuing on in the analysis of planetary motion, We will now look at a simplified model of
the 3 body problem. The simplification we are adopting is that we are in the limit where one
of the masses is negligible compared to the mass of the other 2 bodies. As such, we define our
system by the 2 bodies of larger mass being M1 and M2, and the third body of much smaller
mass being m. The assumption here is that the smaller mass does not affect the dynamics of the
larger mass (but not vice versa). As such, we have:

Ẍ1 = − GM2(X1 −X2)(
(X1 −X2)2 + (Y1 − Y2)2

)3/2 (6.12)

Ẍ2 = − GM1(X2 −X1)(
(X1 −X2)2 + (Y1 − Y2)2

)3/2 (6.13)

ẍ3 = − GM1(x3 −X1)(
(x3 −X1)2 + (y3 − Y1)2

)3/2 − GM2(x3 −X2)(
(x3 −X2)2 + (y3 − Y2)2

)3/2 (6.14)

where {Xj , Yj} is the position associated to Mj with respect to some global reference frame,
and similar for {x3, y3} to m. A further assumption we shall assert for simplicity is that
the 2 larger masses undergo circular orbits about their collective center of mass. As such,√

(X1 −X2)2 + (Y1 − Y2)2 = R which gives us:

(Ẍ1 − Ẍ2) = −G(M1 +M2)

R3
(X1 −X2) (6.15)

⇒ Ω =

√
G(M1 +M2)

R3
(6.16)

Now, let’s consider an axis that rotates along with the 2 larger bodies, where the x-axis is along
the line that joins the both of them with the origin at their center of mass (center of mass
frame). we now study the dynamics of the smaller mass in this frame. We employ equation 1.17,
for which we have the orthogonal unit vectors being ~ex and ~ey instead of ~er and ~eθ. We thus
have:

d2x

dt2
− Ω2x− 2Ω

dy

dt
= − GM1(x3 −X1)(

(x3 −X1)2 + (y3 − Y1)2
)3/2 − GM2(x3 −X2)(

(x3 −X2)2 + (y3 − Y2)2
)3/2 (6.17)

d2y

dt2
− Ω2y − 2Ω

dx

dt
= − GM1(y3 − Y1)(

(x3 −X1)2 + (y3 − Y1)2
)3/2 − GM2(y3 − Y2)(

(x3 −X2)2 + (y3 − Y2)2
)3/2 (6.18)

for which the Ω2xj terms constitute centripetal acceleration, and the 2Ωẋj terms constitute
Coriolis acceleration (xj ∈ {x, y}). As a means to better understand the system, we look for

stable points (solutions to ∇V (x) = ~0). To do this, explore treatments to the pseudopotential
(a.k.a effective potential). We first separate our potential into 2 parts:

V = Vg − VΩ

=

[
− GM1√

(x+ r1)2 + y2
− GM2√

(x− r2)2 + y2

]
−
[

Ω2

2
(x2 + y2)

]
(6.19)
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where Vg is the gravitational contribution to the potential and VΩ the centrifugal. A visualization
of this effective potential can be seen below in figure 6.1.

Figure 6.1: Effective Potential

As seen in the figure, there are certain points (L1, L2, L3, L4, L5) in this potential that due to the
combined gravitational forces of 2 large bodies balancing with the centrifugal forces, this creates
points of equilibrium. These equilibria are known as Lagrange points.



Chapter 7

Ideal Material Analysis

We have covered some rudimentary wave mechanics in chapter 5 in the form of discrete coupled
oscillators. What we are about to do here is in essence generalize this to a continuum limit.
We will see how this infinite series of coupled-differential harmonic oscillators can be used to
nicely model some elastic bulk materials. After this, we will take a detour to inelastic but flexible
materials, for which equilibrium configurations will be explored. Utilization of differential analysis
and elementary knowledge of bulk material mechanics will be key in this chapter.

§7.1 Elastic Beams

Consider a beam of elastic material with total length L oriented along the x-axis and some
cross-sectional area A. We also assert that the material has constant elasticity throughout its
volume with a Young’s modulus E. Now consider a differential segment of the beam of length
dx as shown in figure 7.1 below.

x

u(x, t) u(x+ dx, t)

dx

A

Figure 7.1: Differential Element of Elastic Beam

Above, we have taken u(x) to be the x-displacement of the material at any point x along its
length. As such, we have that:

σ = E
∂u(x, t)

∂x
(7.1)

47
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where σ is the applied axial stress on the material and ∂u(x)
∂x the strain. From here, we use

Newton’s second law on the differential segment, which gives us:

mü =
∑

F = A
∑

σ

⇒ ρAdx
∂2u(x, t)

∂t2
= A (σ(x+ dx)− σ(x))

(7.2)

where ρ is the density of the material. The right hand side of the expression above can be further
written as:

A (σ(x+ dx)− σ(x)) = A
∂σ(x)

∂x
dx

= A
∂

∂x

(
E
∂u(x, t)

∂x

)
dx

= AE
∂2u(x, t)

∂x2
dx

(7.3)

Putting this back into the original expression, we get:

∂2u(x, t)

∂t2
=
E

ρ
· ∂

2u(x, t)

∂x2
(7.4)

which is actually the famous wave-equation in classical wave mechanics! From this, we immedi-
ately see that the wave velocity (speed of wave propagation) is given by:

vwave = c =

√
E

ρ
(7.5)

with general solutions to this equation taking the form u(x, t) = f1(x− ct) + f2(x+ ct).

§7.2 Explicit Solutions

To solve for explicit solutions to u(x, t), we will consider the simple separable case. That is to
say, we assert that the solution can be written as a product of purely single-variable functions
as follows:

u(x, t) = A(x) ·B(t) (7.6)

Plugging this into our wave equation, we get:

∂2

∂t2
[A(x) ·B(t)] = c2 · ∂

2

∂x2
[A(x) ·B(t)]

⇒ 1

B(t)
· ∂

2B(t)

∂t2
=

c2

A(x)
· ∂

2A(x)

∂x2

(7.7)
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which effectively separates out the variables into the left and right hand sides of the equation.
They are thus related by a separation constant which we shall call −c2p2. With this, we now
have the following 2 equations:

∂2B(t)

∂t2
= −c2p2B(t) (7.8)

∂2A(x)

∂x2
= −p2A(x) (7.9)

These are in fact just the equations for a simple harmonic oscillator, which gives us purely
sinusoidal solutions:

B(t) = bp sin(cpt) + b̃p cos(cpt) (7.10)

A(x) = ap sin(px) + ãp cos(px) (7.11)

This assertion of separability may seem an unlikely scenario in real life, but what these ideal
solutions allow us to do is construct arbitrary wave solutions by linear combination. This stems
from the fact that the wave equation is a linear equation. As such, we have that general wave
solutions can always take the form:

u(x, t) =
∑
p

[
ap sin(px) + ãp cos(px)

]
·
[
bp sin(cpt) + b̃p cos(cpt)

]
(7.12)

where the ap, ãp, bpb̃p coefficients can all be found by looking at the boundary conditions and
initial conditions of the system.

§7.3 Boundary Conditions

In this section, we will be exploring the behaviour of an elastic beam when it is subject to
boundary conditions. Boundary conditions are constraints at the boundary of a system (material
volume) that result in often unique and interesting system dynamics. The physical system subject
to boundary conditions we will be studying is an elastic beam rigidly attached at one end.

§7.3.1 One-Sided Rigid Attachment

As mentioned, consider a beam rigidly attached to a surface at one end. Gravity is ignored for
purposes of our analysis. For clarity, we will label the free end of the beam with letter A, and
the rigidly attached end as B. This physical constraint imposes the following relation on our
wave solution:

u(x = xB , t) = 0 (7.13)

Furthermore, since there are no forces acting on the end at A, we have that the strain at A
should vanish:

⇒ A · ∂
∂x
u(x = xA, t) = 0 (7.14)
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Now consider if we perturb the beam such that we send a wave propagating through the material.
We know all non-trivial solutions cannot have both the wave solution and its first spatial deriva-
tive vanish at the same point (by the theorem on uniqueness). Using this and the 2 boundary
conditions asserted above, we see that propagating waves at both ends will be reflected, however
there will only be a change of parity (flip) of the reflected wave at boundary B.

x

B

0

f1(x− ct) f2(x+ ct)

Fictitious Region

Figure 7.2: Solutions at Boundary B

x

A

0

f1(x− ct) f2(x+ ct)

Fictitious Region

Figure 7.3: Solutions at Boundary A

The solutions near the boundaries are illustrated in figures 7.2 and 7.3 above, whereby the
fictitious regions indicate regions past the boundary (outside the material volume). These are
included for mathematical convenience. Note that the wave which propagate through the material
are longitudinal (since u(x, t) are x-directional displacements). Due to this parity flip upon
reflection off boundary B, we see that the wave form experiences periodicity with a period of

T = 4(xB−xA)
c (cycles over its configuration states).

From here, we now look to finding explicit forms for u(x, t) when subject to these boundaries.
Before we do this, we can simplify our calculations by defining xA = 0 and xB = L. Utilizing
the separable solutions found earlier, we have:

u(x = L, t) = 0

⇒ ap sin(pL) + ãp cos(pL) = 0
(7.15)

∂

∂x
u(x = 0, t) = 0

⇒ p · ap cos(0)− p · ãp sin(0) = 0
(7.16)

⇒ ap = 0, p =
(2n+ 1)

2L
π (7.17)

where n ∈ Z. With this result, we can write the general wave solution explicitly as follows:

u(x, t) =
∑
p

[
ãp cos

(
(2n+ 1)π

2L
x

)]
·
[
bp sin

(
(2n+ 1)π

2L
ct

)
+ b̃p cos

(
(2n+ 1)π

2L
ct

)]
(7.18)

§7.4 Catenary Curvature

Let us now study effective 1D materials (strings) which are inelastic, but perfectly flexible (e.g.
frictionless chains, ideal cables). The particular set-up we will be considering is such a string
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attached at both ends, allowed to freely hang under the effect of gravity. The aim of this study
is to determine the resulting shape of the string from equilibrium analysis of its differential
segments. This physical system is known as a catenary and can be generalized to 2D membranes
as well.

Consider first a differential segment of the string with length ds. We know intuitively that if
there is some slack, the string will sag, causing its segments to tilt at some angle θ. This can be
visualized as follows:

~T (s+ ds)

~T (s)

θ

~g

Figure 7.4: Differential Segment of String

Above, ~T (s) is the axial tensile force on the string a distance s along from the lowest point, and
~g is the force of gravity. Setting up a Cartesian coordinate system (+x being horizontal and
rightward, +y being vertical and upward), we have that:

ds =

√
1 +

(
dy

dx

)2

dx (7.19)

At equilibrium, resolution of forces along the Cartesian axes gives us:

T cos θ = T0, T sin θ = λgs (7.20)

⇒ tan θ =
dy

dx
=
λgs

T0
(7.21)

where T0 is the tension at the lowest point C on the string and λgs constitutes the weight of
string segment s away from C. Taking derivatives of these compoenents with respect to s, we
get:

d

ds
T cos θ = 0,

d

ds
T sin θ = λg (7.22)

⇒ d

ds
tan θ =

λg

T0
(7.23)

⇒ 1√
1 +

(
dy
dx

)2

d

dx

(
dy

dx

)
=
λg

T0
(7.24)
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From this, we get a second order differential equation in x for the function y(x):

d2y

dx2
=
λg

T0

√
1 +

(
dy

dx

)2

(7.25)

By substituting z = dy
dx , we get that the solutions to this differential equation are hyperbolic

cosine functions:

y(x) =
T0

λg
cosh

(
λg

T0
x+ α

)
+ β (7.26)

where α and β are geometry dependent constants determined by the relative locations of the
pins from the defined Cartesian coordinates. In this analysis, we arrived at cosh functions since
they are symmetric about the origin, for which we defined the lowest position of the string to
have coordinate x = 0. It is well known that our system is mirror symmetric about this points
about the y-axis.



Chapter 8

3D Rigid Body Dynamics

Earlier on in the course, we have looked at rigid body systems whereby the mass distribution,
or moment of inertia of these bodies remains time-invariant. In this chapter, we drop this
assumption, which extends our analysis of such dynamical systems. We will also be looking at
an interesting new way of approaching dynamical analysis of a 3D rigid body system through the
use of Euler angles.

§8.1 Rigid-Body Coordinates

Recall that the angular momentum of a rigid body is defined as ~H = I~ω, where I is the inertia
tensor. If we now take the time derivative of this, we get:

~̇H =
d

dt
(I)ω + I

d

dt
(ω) (8.1)

The difficulty of approaching such a calculation lies in the time derivative of the inertia tensor.
To simplify our analysis, we can instead consider some coordinate system that we fix to the rigid
body, which will effectively allow us to utilize principal axes properties. First we note that we
can write the momenta of forces as:

~̇H = ~̇Hr + ~ω× ~H

= I~̇ω + ~ω× (I~ω)
(8.2)

The goal now is to be able to perform a coordinate transformation such that we move into a
reference frame with our inertia tensor being purely diagonal (principal axis). Explicitly, we
want some map that takes:

Mi = Ḣi − εijk(Hjωk −Hkωj) → Mi = Iiω̇i − εijk(Ij − Ik)ωjωk

The principal axis reference frame is ideal as we will have that:

Mi = Iiω̇i − εijk(Ij − Ik)ωjωk = 0 (8.3)
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Before we continue, it would first be useful to introduce the concept of Euler angles and Euler’s
rotation theorem.

Theorem 8.1.1. Any arbitrary rotation in 3-dimensional Euclidean space can be param-
eterized by just 3 real valued parameters.

From the theorem above, we can actually represent any rotation via the product of 3 consecutive
matrices, each defined by a single parameter (making up the 3 rotation parameters). Since we
are dealing with rigid rotations, these parameters will naturally be angular coordinates, which
we denote as φ, θ and ψ (Euler angles). To define these angles, consider an unprimed ({x, y, z})
and a primed ({x′, y′, z′}) coordinate system. The unprimed coordinates denote the initial state,
whereas the primed the rotated state.

Note: Since we are only dealing only with rotations, the origin of the primed and un-
primed coordinate systems remain coincident.

The Euler angles are thus defined (with their associated rotation matrices) as follows:

1. φ: The first rotation about the z-axis.

R1(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (8.4)

2. θ: The second rotation about the current x′-axis (θ ∈ [0, π]).

R2(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (8.5)

3. ψ: The third rotation about the current z′-axis.

R3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (8.6)

In order to accurately produce the given rotation via this 3 parameter decomposition, the matrices
must be applied to the initial coordinates in the correct sequence (i.e. left multiply R1 then R2

then R3). Explicitly, we write this as:x′y′
z′

 = R3(ψ)R2(θ)R1(φ)

xy
z


=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

xy
z

 (8.7)

The progressive rotations can be visualized as in figure 8.1 below.
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Figure 8.1: Progressive Rotations by Euler Angles

Due to the way in which we have defined the rotations, the appropriate unit vectors to use would
be the set of {k̂, î′, k̂′}, where k is the direction of the z-axis, i′ the x′-axis and k′ the z′-axis.
Using this, we know that the angular velocity of our rigid body in terms of time-derivatives of
the Euler angles is:

~ω = φ̇k̂ + θ̇î′ + ψ̇k̂′ (8.8)

At the same time, we also know that via the rotation matrices applied to the original {̂i, ĵ, k̂}
unit vectors, we have:

~ω = φ̇
(

sinψ cos θî+ cosψ sin θĵ + cos θk̂
)

+ θ̇
(

cosψî− sinψĵ
)

+ ψ̇k̂

=
(
φ̇ sinψ sin θ + θ̇ cosψ

)
î+
(
φ̇ cosψ sin θ − θ̇ sinψ

)
ĵ +

(
φ̇ cos θ + ψ̇

)
k̂

=

φ̇ sinψ sin θ + θ̇ cosψ

φ̇ cosψ sin θ − θ̇ sinψ

φ̇ cos θ + ψ̇


(8.9)

From here, what we can do is project the angular momentum onto its Cartesian coordinate
components (in angular variables), which will allow us to construct a set of coupled differential
equations for the Euler angles. This is done as follows:

~H = H
(

sin θ sinψî+ sin θ cosψĵ + cos θk̂
)

=
(
φ̇ sinψ sin θ + θ̇ cosψ

)
î+
(
φ̇ cosψ sin θ − θ̇ sinψ

)
ĵ +

(
φ̇ cos θ + ψ̇

)
k̂

(8.10)

⇒ H sin θ sinψ = Ix

(
φ̇ sinψ sin θ + θ̇ cosψ

)
H sin θ cosψ = Iy

(
φ̇ cosψ sin θ − θ̇ sinψ

)
H cos θ = Iz

(
φ̇ cos θ + ψ̇

) (8.11)



Chapter 9

Hamiltonian Mechanics

The final chapter will introduce yet another formalism of classical mechanics. Here, we utilize
the Hamiltonian to analyze the mechanics of a dynamical system (instead of the Lagrangian).
The Hamiltonian formalism is extremely useful in the study of quantum mechanics, and so gives
a natural segue into further studies of physics. We begin by building an intuition of Hamiltonians
from Lagrangian mechanics which we have now familiarized ourselves with. This will be done via
the Legendre transformations.

§9.1 Legendre Transformations

Derived by Adrien-Marie Legendre, the Legendre transform is an involutive transformation on
the real-valued convex functions of one real variable. Simply put, it converts one set of conjugate
variables to another.

Definition 9.1.1. Convex Function: Given a function f(x) over a domain X, we say that
f(x) is convex if ∀x1, x2 ∈ X and ∀t ∈ [0, 1], we have that

f(t · x1 + (1− t) · x2) ≤ t · f(x1) + (1− t) · f(x2) (9.1)

f(x) is strictly convex if the equality is dropped in (9.1) .

In classical mechanics, we use this transformation to move between the Lagrangian and Hamil-
tonian and can be thought of as analogous to moving between the time and frequency domains
with Fourier transforms.

Definition 9.1.2. Legendre Transform: Given a strictly convex and differentiable function
f : R→ R, the Legendre transform G(p) = L{f(x)}(p) is defined as

L{f(x)}(p) = max
x
{xp− f(x)} (9.2)

or G(p) = xpp− f(xp) (9.3)

56
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Where in (9.3), xp solves the relation p = f ′(xp). Alternative, we can rewrite (9.3) to reverse
the independent and dependent variables, which gives:

f
(
xp(p)

)
+G(p) = f ′

(
xp(s)

)
· xp(p) (9.4)

This way of writing the definition allows use to use a geometric approach to understand what
the Legendre transform is. The Legendre transform is the difference between the height of the
tangent and the function value which shows a geometric duality transformation. It is useful now
to present some properties and proofs of the Legendre transform. Properties:

1. Preservation of Convexity: The Legendre transform of a strictly convex function is also
strictly convex.

Proof. Let f(x) be a strictly convex and differentiable function, then its Legendre
transform is given as

G(p) = x(p)p− f
(
x(p)

)
(9.5)

Then considering the derivative of G(p) with respect to p,

dG(p)

dp
=

d

dp

(
x(p)p

)
− d

dp
f
(
x(p)

)
(9.6)

= x+ x′(p)p− f ′
(
x(p)

)
x′(p) (9.7)

= x+ x′(p)p− x′(p)p (9.8)

= x (9.9)

Now considering the second derivative,

d2G(p)

dp2
= x′(p) =

1

p′(x)
(9.10)

=
1

f ′′(x)
> 0 (9.11)

since f(x) is already convex, which thus shows that G(p) also fulfills the second
derivative test and is indeed strictly convex.

Notice in the above proof that we have dropped the subscript notation from xp for conve-
nience. We will adopt this notation as it is inferred for its use in classical mechanics.

2. Involution: G
(
G(p)

)
= L{L{f(x)}} = f(x)

Proof. Let f(x) be a convex differentiable function, then by definition,

G(p) = L{f(x)}(p) = x(p)f ′
(
x(p)

)
− f

(
x(p)

)
⇒ G

(
G(p)

)
= L{L{f(x)}} = pG′(p)−G(p)
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Then since

p = f ′(x), G′(p) = x

⇒ G
(
G(p)

)
= xf ′(x)−

(
xf ′(x)− f(x)

)
= f(x)

Showing that the Legendre transform is indeed an involution.

Now that we have established the necessary formalism, we return to the physics we are trying
to extract from it. As such, consider performing a Legendre transformation on the Lagrangian.
As a start, we look at a 1 dimensional system for simplicity of analysis and a common form of
the Lagrangian:

L(q, q̇) =
1

2
mq̇2 − v(q)

⇒ G(p) = L{L
(
q, q̇(p)

)
}(p) = pq̇(p)− L

(
q, q̇(p)

) (9.12)

Where the associated variables used here mapped from those defined in the Legendre transform
definition above are: {

x→ q̇

p→ p
(9.13)

⇒ p =
∂L
∂q̇

= mq̇

⇒ q̇ =
p

m
⇒ L

(
q, q̇(p)

)
=

p2

2m
− V (q)

⇒ G(p) =
p2

m
− p2

2m
+ V (q) =

p2

2m
+ V (q)

Then since we define that the Hamiltonian H is the Legendre transform of the Lagrangian,

H =
p2

2m
+ V (q) (9.14)

which is exactly T + V , the total energy of the system! However, the Hamiltonian is not always
the energy of the system, like for instance when T = T (q, q̇). With this transformation, we have
gone from a set of {qj , q̇j} variables to a set of {qj , pj} variables. Extending this to a general N
degree of freedom system, we can write the Hamiltonian as:

H(~p, ~q) =
∑
j

pj q̇j(~p)− L
(
~q, ~̇q(~p)

)
(9.15)

§9.2 Hamilton’s Equations

The next question is how do we retrieve the dynamics of a system from the Hamiltonian? The
answer lies in Hamilton’s equations which are the Hamiltonian equivalent of the Euler-Lagrange
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equations. How we arrive at these are as follows. Consider the differential of a Lagrangian:

dL =
∑
j

∂L
∂qj

dqj +
∑
j

∂L
∂q̇j

dq̇j

=
∑
j

ṗjdqj +
∑
j

pjdq̇j (9.16)

where we used the Euler-Lagrange equation to arrive at the result above. Then using the product
rule identity:

∑
j

pjdq̇j = d

(∑
j

pj q̇j

)
−
∑
j

q̇jdpj (9.17)

⇒ d

(∑
j

pj q̇j − L
)

= dH = −
∑
j

ṗjdqj +
∑
j

q̇jdpj

⇒ q̇j =
∂H
∂pj

, ṗj = −∂H
∂qj

(9.18)

Where the equations in (9.18) are the Hamilton’s equations (a.k.a. canonical equations). These
can be used to derive the equations of motion of a system just as the Euler-Lagrange equations
would. Notice that these are first order differential equations and are usually much easier to
solve analytically, but the complexity of Hamiltonian mechanics arises in the formulation of the
Hamiltonian itself. Hamiltonians are usually difficult to just write down and are most easily
found from the Lagrangian.

What is useful about using the Hamiltonian rather than Lagrangian formalism is that if we have
a Hamiltonian that is not an explicit function of time, it is always conserved! This holds even
for system where the energy is not.

Theorem 9.2.1. Given a system such that its Hamiltonian is not an explicit function of
time, then it follows that the Hamiltonian is conserved.

Proof. Looking at the definition of the total time derivative of the Hamiltonian,

dH
dt

=
∂H
∂t

+
∑
j

ṗj
∂H
∂pj

+
∑
j

q̇j
∂H
∂qj

(9.19)

=
∂H
∂t

+
∑
j

pj q̇j −
∑
j

q̇jpj =
∂H
∂t

(9.20)

Hence we see that the total time derivative of the Hamiltonian is exactly equal to its
partial derivative, making both terms vanish of the Hamiltonian has no explicit time
dependence. This implies conservation.
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§9.3 Poisson Brackets

In this section, we look at another means to derive conserved quantities using a formalism known
as Poisson brackets. To understand where the Poisson bracket comes from, we first consider a
generic function f(p, q, t) of conjugate variables in 1 dimension. Taking its total time derivative
gives:

d

dt
f(p, q, t) =

∂f

∂t
+ q̇

∂f

∂q
+ ṗ

∂f

∂p

=
∂f

∂t
+
∂H
∂p

∂f

∂q
− ∂H

∂q

∂f

∂p

⇒ d

dt
f − ∂

∂t
f =

∂H
∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
≡ [H, f ] (9.21)

where [H, f ] is known as the Poisson bracket of the Hamiltonian H with f . From this, we see
that if the function f we are working with is not an explicit function of time, (9.21) reduces
to

d

dt
f(p, q) = [H, f ] (9.22)

which implies that f(p, q) is conserved if and only if [H, f ] = 0. There is however, a case where
f is a time-explicit function while having its Poisson bracket with the Hamiltonian vanish. This
occurs if f is only time dependent, which is to say f = f(t).

d

dt
f(t) =

∂

∂t
f(t) (9.23)

⇒ [H, f ] =
d

dt
f(t)− ∂

∂t
f(t) = 0 (9.24)

But in this scenario, this does not imply that f is conserved. Equation (9.21) actually gave a
specific example of a Poisson bracket. We can generalize the definition as follows.

Definition 9.3.1. Poisson Bracket: Given 2 functions of the conjugate variables f(~p, ~q, t)
and g(~p, ~q, t), their Poisson bracket is defined as

[f, g](p,q) ≡
∑
j

( ∂f
∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
(9.25)

The subscripts on the bracket are often dropped when the variables in use have been stated.
The formalism of Poisson brackets may not seem extremely useful within the confines of the
content covered in these notes, but its mathematical structures extend far into many other areas
of physics (e.g. manifesting as commutators in quantum mechanics). It would be good to now
look at several properties of Poisson brackets.

Properties:

1. Anti-symmetric: [f, g] = −[g, f ]

2. Distributive: [f + g, h] = [f, h] + [g, h]
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3. Product Rule: [f · g, h] = f [g, h] + g[f, h]
⇒
[
f2, g

]
= 2f [f, g]

4. Jacobi’s Identity : [f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

5. Canonical Relations: [qj , qk] = [pj , pk] = 0, [pj , qk] = δjk

6. [f, α] = 0, where α is some constant.

7. [f, f ] = 0

8. [f, qj ] = ∂f
∂pj

, [f, pj ] = − ∂f
∂qj

The proof for these properties are generally considered trivial (albeit some being rather tedious)
and do not reveal anything much about the physics of things, hence will not be shown here.
From these properties (especially the Jacobi identity), we can construct the Poisson’s theorem
which gives us an invaluable tool to derive conserved quantities given others.

Theorem 9.3.1. Given 2 integrals of motion f and g that are not explicit functions of
time i.e.

df

dt
=
∂f

∂t
= 0,

dg

dt
=
∂g

∂t
= 0 (9.26)

then it follows that the Poisson bracket of f with g is also conserved.

⇒ d

dt
[f, g] = 0 (9.27)

Proof. By the properties of f and g asserted at the beginning of the theorem, it follows
that

[H, f ] = [H, g] = 0 (9.28)

Then utilizing the Jacobi identity, we get

[H, [f, g]] + [f, [g,H]] + [g, [H, f ]] = 0 (9.29)

⇒ [H, [f, g]] = 0 (9.30)

⇒ d

dt
[f, g] = 0 (9.31)

where we used the fact that f and g are not explicit functions of time.

It is now good to establish, just as we have with Lagrangian mechanics, a systematic work-flow
for Hamiltonian mechanics problems. The sequence of steps are as follows.

Hamiltonian Work-Flow:

1. Choose a set of generalized coordinates {qj , q̇j} best suited for the problem.

2. Write the kinetic energy, potential energy and thus Lagrangian (T (~q, ~̇q), V (~q) and

L(~q, ~̇q)) expressed in terms of the chosen generalized coordinates.
3. Compute the conjugate momenta pj = ∂L

∂q̇j
of the system.
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4. Formulate the Hamiltonian H(~p, ~q) =
∑
j pj q̇j(~p)− L

(
~q, ~̇q(~p)

)
.

5. Utilize the Hamilton’s equations of motion (9.18) to construct the equations of
motion of the system.

Looking through the steps above, it seems rather redundant to utilize the Hamiltonian approach
if we first have to formulate the Lagrangian anyway. Is there then a means to construct the
Hamiltonian without the Lagrangian? Turns out the answer is yes! These are primarily done in
2 methods.

1. “Guess and Check”

If the mechanical system we are dealing with is simple enough, it is often possible to
determine its generalized coordinates and momenta from simply eyeballing it. Of course
we cannot just stop there and blindly work with these guesses, we need a way to verify them.

To do so, we utilize the Poisson bracket properties. That is, any canonical set of vari-
ables chosen for a problem must satisfy the canonical relations. Presenting this explicitly,
consider first having a set of canonical variables {qj , pj} that we want to transform to an-
other set of canonical variables {Qj , Pj}. We assume that the original set {qj , pj} satisfies
the canonical relations. We then also require our new set {Qj , Pj} to do the same which
means,

[Qj , Qk]p,q = 0, [Pj , Pk]p,q = 0, [Pj , Qk]p,q = δj,k (9.32)

where we have performed these Poisson brackets with respect to the old set of canonical
variables {qj , pj}.

2. Generator Functions

This next approach is far more mathematically rigorous and consistent than the previous
one, making it the more widely adopted method of Hamiltonian formulation (refer to the
following section for more details).

§9.4 Generator Functions

The motivation behind this goes back to a property of the Lagrangian, whereby adding a to-
tal time derivative term to a Lagrangian does not change the physics (resultant equations of
motions). To exploit this, we have to use the principle of least action.

Principal of Least Action

For the Lagrangian L = L(q, q̇, t), the trajectory (motion) of the system always minimizes
the ‘action’ S, defined as

S =

∫ t2

t1

L(q, q̇, t)dt (9.33)
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for given start and end points q(t1) and q(t2) respectively.

From this principle, we see that the variation of the action must vanish on the trajectory that
minimizes the action:

⇒ δ

∫ t2

t1

Ldt = δ

∫ t2

t1

(∑
j

pj q̇j −H(~p, ~q, t)
)
dt = 0 (9.34)

Also say that we want to go from one set of canonical variables to another, (~p, ~q)→ (~P , ~Q), which

would cause our Hamiltonian to transform as H(~p, ~q, t) → K(~P , ~Q, t). As such, our variational
principle can be rewritten as

δ

∫ t2

t1

(∑
j

PjQ̇j −K(~P , ~Q, t) +
d

dt
F (~q, ~p, ~Q, ~P , t)

)
dt = 0 (9.35)

where we have exploited the Lagrangian property mentioned above for some arbitrary function
F (~q, ~p, ~Q, ~P , t), which is known as a generator function. Let us first consider a particular case

where F = F (~q, ~Q, t).

dF (~q, ~Q, t) =
∂F

∂t
+
∑
j

∂F

∂qj
dqj +

∑
j

∂F

∂Qj
dQj (9.36)

⇒ d

dt
F (~q, ~Q, t) =

∂F

∂t
+
∑
j

q̇j
∂F

∂qj
+
∑
j

Q̇j
∂F

∂Qj
(9.37)

⇒
∑
j

pj q̇j −H =
∑
j

PjQ̇j −K +

(
∂F

∂t
+
∑
j

q̇j
∂F

∂qj
+
∑
j

Q̇j
∂F

∂Qj

)
=
(∑

j

Pj −
∂F

∂Qj

)
Q̇j +

∑
j

∂F

∂qj
q̇j −

(
K − ∂F

∂t

)
(9.38)

If we compare the right and left-hand sides of equation (9.38), we see that we get definitive
relations between the canonical coordinates. These relations are∑

j

(
Pj −

∂F

∂Qj

)
= 0, pj =

∂F

∂qj
, H = K − ∂F

∂t
(9.39)

This shows that choosing some function of the form F (~q, ~Q, t) allows use to ‘generate’ relations
between the canonical variables, which would then allow us to construct our Hamiltonian! These
coordinate transformations are known as point transformations. In fact, there are 4 different
forms of generator functions with different associated point transformations. The one we have
just done is known as a generator function of the 1st kind. We will list all of them and their
point transformations below.

1. Generator Functions of the 1st Kind :

F1 = F (~q, ~Q, t) (9.40)

⇒ Pj =
∂F1

∂Qj
, pj =

∂F1

∂qj
, K = H+

∂F1

∂t
(9.41)
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2. Generator Functions of the 2nd Kind :

F2 = F (~q, ~P , t)− ~Q · ~P (9.42)

⇒ Qj =
∂F2

∂Pj
, pj =

∂F2

∂qj
, H = K +

∂F2

∂t
(9.43)

3. Generator Functions of the 3rd Kind :

F3 = F (~P , ~Q, t) + ~q · ~p (9.44)

⇒ qj = −∂F3

∂Pj
, Pj = − ∂F3

∂Qj
, H = K +

∂F3

∂t
(9.45)

4. Generator Functions of the 4th Kind :

F4 = F (~p, ~P , t)− ~Q · ~P + ~q · ~p (9.46)

⇒ qj = −∂F4

∂pj
, Qj =

∂F4

∂Pj
, H = K +

∂F4

∂t
(9.47)

Equipped with these generator functions, the difficulty now comes in choosing which of them
would be best to use for the particular system we are dealing with. In addition, the form of the
generator function would have to be inferred from the transformation of canonical variables we
want to achieve.

§9.5 Hamilton-Jacobi Equation

Despite appearances, the very fact that we have the freedom to choose your generator functions
actually make them a powerful tool! To see this, consider a 1 degree of freedom system, having
the canonical variables {p, q}. Then let’s say we want to perform some point transformation on
these variables to another set of canonical variables such that

{p, q} → {P,Q} (9.48)

H(p, q, t)→ K(P,Q, t) (9.49)

Then using the generator function relation of the Legendre transforms

pq̇ −H(p, q, t) = PQ̇−K(P,Q, t) +
d

dt
F (p, q, P,Q, t) (9.50)

If we pick specifically a generator function of the 2nd kind, this would give the point trans-
forms,

F2 = F (q, P, t)−QP (9.51)

⇒ Q =
∂F2

∂P
, p =

∂F2

∂q
, K = H+

∂

∂t
F (9.52)

From here, due to our liberty to choose any generator function of our choice that includes a
subset of all the canonical variables, let us choose F such that

K(P,Q, t) = H(p, q, t) +
∂

∂t
F (p, q, P,Q, t) = 0 (9.53)
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An immediate result of this choice guarantees that our new canonical variables {P,Q} are con-
served quantities, since

Ṗ = −∂K
∂Q

= 0, Q̇ =
∂K
∂P

= 0 (9.54)

keeping in mind that P and Q are constants, then we can write the generator as

F (q, P, t) = S(q, t) +A (9.55)

where A is some constant term. Finally, since

p =
∂F2

∂q
=
∂S

∂q
, Q =

∂S

∂P
(9.56)

⇒ H(q,
∂s

∂q
, t) +

∂S

∂t
= 0 (9.57)

where (9.57) is known as the Hamilton-Jacobi equation. As mentioned earlier, what is good
about picking a generator that satisfies this form is that it allows us to always retrieve canonical
variables which are conserved quantites.

It was not by random selection that we have chosen S as the name of our generator function
above. To see why we have done so, consider the following.

S = S(q, t)

⇒ dS

dt
= q̇

∂S

∂q
+
∂S

∂t
= q̇p−H(p, q, t)

where we used (9.56) and (9.57). Then by the definition of a Legendre transformation,

dS

dt
= L(q, q̇, t)

⇒ S(q, t) =

∫ t2

t1

L(q, q̇, t)dt (9.58)

which is exactly the definition of the Action (9.33)!

§9.6 Infinitesimal Time Translations

In this section, we will look at how the Hamiltonian is itself a special generator function which
generates small time translations. The idea behind this is that if we were to use the Hamiltonian
as the generator of point transformations, the new canonical variables would simply be the old
canonical variables shifted by a small amount in time! To show this, we first look the generator
functions of the 2nd kind. We can actually write them in a different way from how it was
previously presented, and we will denote this alternate form with a prime.

F ′2 = ~q · ~P + εG(~q, ~P ) (9.59)
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Its associated point transformations are then

pj =
∂F ′2
∂qj

= Pj + ε
∂G

∂q
(9.60)

Qj =
∂F ′2
∂Pj

= qj + ε
∂G

∂Pj
(9.61)

Notice that in the limit as ε→ 0, this causes Pj → pj and hence,

lim
ε→0

∂G(~q, ~P )

∂Pj
=
∂G(~q, ~p)

∂pj
(9.62)

Now let ε = dt and G(~q, ~P ) = H(~q, ~p) and substitute these into the point transformation above.
As a result, we get

Pj = pj − dt
∂H
∂qj

, Qj = qj + dt
∂H
∂Pj

(9.63)

⇒ Pj = pj + ṗjdt, Qj = qj + q̇jdt

⇒ Pj(t) = pj(t+ dt), Qj(t) = qj(t+ dt) (9.64)

Hence, we see from (9.63) and (9.64) that the Hamiltonian is indeed the generator of time
translation.

§9.7 Phase Space

In the analysis of a dynamical systems, we now know how to assess the degrees of freedom
of a system and to represent them as generalized coordinates. We also know how to perform
point transformations on these coordinates with the aid of generator functions into new sets of
canonical variables. It is only natural to then ask, is there a plot we could construct with these
abstract coordinates to give us visual insights into our system? The answer to this lies in what
is known as phase space diagrams.

Definition 9.7.1. Phase Space: In a mechanical system, phase space is a multidimensional
space in which every state of the system and their trajectories over time are represented.
Every canonical momentum and position variable is an axis in the phase diagram.

Phase diagrams are most easily read if the system can be represented by one canonical position
and momentum pair. This is known as a phase plane. An example of this would be a simple
pendulum system undergoing small oscillations.

A useful property of phase space is that all phase space trajectories do not intersect. This is
due to the fact that every conjugate variable pair {qj , pj} has a unique corresponding {q̇j , ṗj}
pair.
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§9.7.1 Liouville’s Theorem

An important aspect of looking at the phase space of a system is that it adheres to Liouville’s
theorem. To appreciate this theorem, we first need to know the definition of a the phase space
distribution function.

Definition 9.7.2. The phase space distribution function determines the probability that a
system will be found in some infinitesimal phase space volume.

From here, we state Liouville’s theorem.

Theorem 9.7.1. The phase space distribution function remains constant in Hamiltonian
evolution. That is to say, the phase space hypervolume remains constant in time.

Note that the term hypervolume in the theorem above is used to generalize the theorem to higher
dimensions. To prove this theorem, we first need knowledge of the divergence (Gauss’) theorem,
which will be simply stated in these notes.

Theorem 9.7.2. Given some vector field ~F and some region of space with volume V and
boundary ∂V , the volume integral of the divergence of ~F and the surface integral of the
field are related as follows: ∫

V

∇ · ~FdV =

∫
∂V

~F · d ~A (9.65)

The proof of Liouville’s theorem is then given as follows:

Proof. We first prove this in the case of a single degree of freedom system (one pair of
conjugate variables). Let us first think of the trajectory of some differential area of phase
space: [

dq
dp

]
=

[
q̇
ṗ

]
dt = ~vdt (9.66)

where ~v is the velocity at some instance of time over time interval dt. To compute the
change in area of the whole phase space region in question over time interval dt, we
perform an integral:

dA =

∫
C

dl(~n · ~v)dt (9.67)

where ~n denotes the unit-normal vector to the boundary contour and C indicates an
integral over the entire phase space boundary. From here, we can exploit the use of the
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divergence theorem to get:

dA

dt
=

∫
C

dl(~n · ~v)

=

∫
A

∇ · ~vdA

=

∫
A

dA

(
∂

∂q
q̇ +

∂

∂p
ṗ

)
=

∫
A

dA

(
∂

∂q

∂H
∂p
− ∂

∂p

∂H
∂q

)
(9.68)

Since partial derivatives commute, we see that the term above vanishes dA
dt = 0 and we

indeed get that the area of the phase space is conserved. The extension of this proof into
systems with higher degrees of freedom is trivial since the divergence theorem is valid in
N dimensions as well.

The final result in the proof is known as Liouville’s equation, and has the general form for a
multi-degree of freedom system as presented below:

d

dt
ρ(qj , pj) =

∂ρ

∂t
+
∑
j

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)
= 0 (9.69)

Whereas the motion of an individual member of the ensemble is given by Hamilton’s equations,
Liouville’s equations describe the flow of the whole distribution.


	Introductory Kinematics
	Newtonian Mechanics
	Time-Varying Coordinates
	Moving Local Frames

	Systems of Particles and Rigid Bodies
	Center of Mass Motion
	Kinetic Energy of a System of Particles
	Angular Momentum
	Rigid Body kinematics
	Moment of Inertia
	Kinetic Energy of Rigid Bodies


	Analytical Mechanics
	Newton vs Lagrange
	The Newtonian Method
	The Lagrangian Method

	Virtual Displacement and Work
	Constraints and Constraint Forces
	Generalized Coordinates
	D'ALembert's Principle
	The Euler-Lagrange Equation

	Conservation Laws
	Momentum Conservation
	Hamiltonian Conservation

	Oscillations
	Single Mode Slit
	Damped Oscillators
	Forced Oscillations
	Multi-Mode Oscillators
	Beat Phenomena
	Wilberforce Pendulum


	Kepler's Laws
	Statement of Kepler's Laws
	Kepler's Second Law
	Kepler's First Law
	Kepler's Third Law

	Lagrange Points in 3 Body Systems

	Ideal Material Analysis
	Elastic Beams
	Explicit Solutions
	Boundary Conditions
	One-Sided Rigid Attachment

	Catenary Curvature

	3D Rigid Body Dynamics
	Rigid-Body Coordinates

	Hamiltonian Mechanics
	Legendre Transformations
	Hamilton's Equations
	Poisson Brackets
	Generator Functions
	Hamilton-Jacobi Equation
	Infinitesimal Time Translations
	Phase Space
	Liouville's Theorem



