
01.112 Machine Learning

SUTD, Fall 2018

Reuben R.W. Wang

ii

Instructor: Professor Liang Zheng and Wei Lu.
Instructor office hours: 1200 - 1300 @1.409.
Instructor email: zheng_liang@sutd.edu.sg \ wei_lu@sutd.edu.sg.
Personal use only. Send any corrections and comments to reuben_wang@mymail.sutd.edu.sg.

Contents

1 Overview 1
1.1 Introduction to Machine Learning . 1

1.1.1 Performance . 2
1.2 Types of Machine Learning . 2

1.2.1 Supervised Learning . 2
1.2.2 Unsupervised Learning . 3
1.2.3 Reinforcement Learning . 4
1.2.4 Deep Learning . 4

2 Regression 5
2.1 Overview of Regression . 5
2.2 Methodology . 5

2.2.1 Features . 5
2.2.2 Training vs Testing Data . 6
2.2.3 Model Selection . 7

2.3 Model Optimization . 8
2.3.1 Loss and Risk . 8
2.3.2 Gradient . 8
2.3.3 Exact Solution and Gradient Descent . 8
2.3.4 Sub-Gradient . 9
2.3.5 Stochastic Gradient Descent (SGD) . 9

2.4 Multivariate Linear Regression . 10
2.4.1 Method of Least Squares . 10

2.5 Regularization . 12
2.5.1 Ridge Regression . 12

2.6 Hyperparameters . 13
2.6.1 Validation Set . 13

3 Classification 15
3.1 Overview of Classification . 15
3.2 Linear Classification . 15

3.2.1 Decision Regions . 16
3.2.2 Decision Boundaries . 17
3.2.3 Linearly Separable . 17
3.2.4 Constant Feature Trick . 17

3.3 The Perceptron Algorithm . 18
3.3.1 Zero-One Loss . 18

iii

CONTENTS iv

3.4 Hinge Loss . 19
3.5 Logistic Regression . 21

3.5.1 Probabilistic Model . 21
3.5.2 Sigmoid Function . 21
3.5.3 Sigmoid Neurons . 22
3.5.4 Label Probabilities . 23
3.5.5 Label Predictions . 23
3.5.6 Likelihood . 23
3.5.7 Logistic Gradient . 25

4 Clustering 27
4.1 What is Clustering? . 27
4.2 Basic Clustering Methodology . 27

4.2.1 Agglomerative Single-Link . 28
4.2.2 Agglomerative Complete-Link (Clique) . 28

4.3 Methods of Characterizing Clusters . 28
4.3.1 Classes . 28
4.3.2 Distance/Similarity Measure . 28
4.3.3 Deterministic vs Stochastic . 30
4.3.4 Hierarchical . 30
4.3.5 Checking Clustering Validity . 31

4.4 K-Means . 31
4.4.1 Initialization Issues . 33
4.4.2 Choosing K . 33

5 Recommendation 34
5.1 Collaborative Filtering . 34
5.2 K Nearest Neighbours . 35

5.2.1 User Similarity . 35
5.2.2 Weighted Prediction . 35

5.3 Subspace Learning and Matrix Factorization . 36
5.3.1 Subspace Learning . 36
5.3.2 Matrix Factorization . 36
5.3.3 Prediction . 37
5.3.4 Optimizing Training Loss . 38
5.3.5 Validation Set . 38

6 Support Vector Machines 39
6.1 Prerequisite Mathematics . 39

6.1.1 Lagrangian Multipliers . 39
6.1.2 Equality Constraints . 40
6.1.3 The Dual Paradigm . 40
6.1.4 The Analytical Approach . 40
6.1.5 Inequality Constraints . 41

6.2 Computing Margins . 41
6.3 SVM with Errors . 42

7 Deep Learning 44
7.1 FeedForward Networks . 45

7.1.1 Multi-Layered Neural Network . 45

v CONTENTS

7.2 Backpropagation . 45

8 Generative Models 49
8.1 Some Essential Math . 49
8.2 Maximum Likelihood Estimates (MLE) . 51
8.3 Variational Autoencoders (VAE) . 52
8.4 Generative Adversarial Networks (GAN) . 54

9 Kernel Methods and Convolutional Neural Networks 57
9.1 Kernel Methods . 57

9.1.1 Feature Mapping . 58
9.2 Convolutional Neural Networks . 59

9.2.1 Convolutional Filters and Layers . 59
9.2.2 Max Pooling . 60

10 Recurrent Neural Networks 62
10.1 Vanilla RNN Unit/Cell . 62

10.1.1 Vanilla RNN Forward Pass . 63
10.1.2 Sentiment Classification . 64
10.1.3 BackPropagation Through Time (BPTT) 65

10.2 Long Short-Term Memory (LSTM) . 66

11 Expectation Maximization 69
11.1 Generative Gaussian Mixture Model . 69

11.1.1 Mixture Model and Hidden Labels . 70
11.1.2 Cross-Validation . 71

12 Hidden Markov Models 73
12.1 Naive Bayes . 73
12.2 Supervised Hidden Markov Model . 75

12.2.1 Decoding . 77
12.3 Unsupervised Hidden Markov Model . 77

12.3.1 Max-Marginal Decoding . 81

13 Bayesian Networks 82
13.1 Simple Bayesian Networks . 82
13.2 Arbitrary Bayesian Networks . 85

13.2.1 Model Degrees of Freedom . 86
13.2.2 Independence of Nodes and Bayes’ Ball 87

13.3 Markov Blankets and Gibb’s Sampling . 89
13.4 Supervised Learning in Bayesian Networks . 90
13.5 Structure Learning in Bayesian Networks . 91

14 Reinforcement Learning 93
14.1 Robot Path Learning . 93

14.1.1 Value Iteration Algorithms . 95
14.2 General Reinforcement Learning Scheme . 97

Appendices 99

CONTENTS vi

A Lagrangian Dual Problem 100

Chapter 1

Overview

Machine learning distinguishes itself from the conventional techniques of hardcoding used in tra-
ditional software applications. It is a branch of artificial intelligence which consists of tasks,
performance of those tasks and experience. It is concerned with the design and development of
algorithms that allows a computer to evolve behaviours based on empirical data. As intelligence
requires knowledge, it is necessary for the computer to acquire such knowledge. The machine
optimizes a performance criterion using sample data from past experiences. Machine learning is
used when either, the necessary human expertise do not exist, humans are unable to find the un-
derlying insight from large volumes of data or the solution needs to be constantly adapted.

§1.1 Introduction to Machine Learning

We start with a model, which the machine uses to predict an output from a inputs to this model.
The model is trained/optimized during the training phase (phase of teaching the system how
to learn) and its accuracy is tested during the testing phase. It is important to make the
training and testing data similar so that the machine will perform optimally when implemented.
Commonly, ‘observable’ data constitutes a training set which is used in training. The testing
data however is unobserved and taken from the universal set. With the training data, we need
find an appropriate mathematical model for our data and make good assumptions so that the
tests will turn out favourably.

Training Data Model Optimization

Figure 1.1: Rudimentary Machine Learning Training Model

1

CHAPTER 1. OVERVIEW 2

Trained ModelTesting Data Output

Figure 1.2: Rudimentary Machine Learning Testing Model

§1.1.1 Performance

There are several factors that affect the performance of a machine’s learning. These are:

• Quality of training data.
• Form and extent of initial background (prior) knowledge.
• Type of feedback.
• Learning algorithm used.
• Modelling.
• Optimization.

§1.2 Types of Machine Learning

§1.2.1 Supervised Learning

(Inputs: {xn ∈ Rd, yn ∈ R}Nn=1)

Figure 1.3: Visualization of Supervised Learning

The data set contains labels for each data point, denoted as the yn entries. Hence the employed
techniques are:

• Prediction (e.g. Linear and non-linear regression are forms of supervised learning, where
choosing between linear and non-linear models is a hard problem).

• Classification (e.g. Linear and non-linear classifiers which partition data in the state space
are also forms of supervised learning - used in email spam filters, fraud detection, etc).

3 1.2. TYPES OF MACHINE LEARNING

§1.2.2 Unsupervised Learning

(Inputs: {xn ∈ Rd}Nn=1)

Figure 1.4: Visualization of Unsupervised Learning

The data set does not contains labels for each data point. Hence the employed techniques
are:

• Clustering (data is grouped according to distinct features which constitute data subsets).
• Probability distribution estimation.
• Finding association.
• Dimensionality reduction / Subspace learning (utilizes mathematical projective methods

to gain better insight of the data).

Semi-Supervised Learning

Figure 1.5: Visualization of Semi-Supervised Learning

A portion of the data has labels, whereas the remaining does not.

CHAPTER 1. OVERVIEW 4

§1.2.3 Reinforcement Learning

It is a form of decision making (robot tasks, chess player machine, etc). It is a state of the art ma-
chine learning technique, and is based on learning by rewards from a sequence of actions.

Example

Consider a robot agent tasked with improving the state of the environment. The robot
then takes some actions, after which feedback from the environment is fed to the robot
in the form of the environments posterior state. Simultaneously, rewards are given to the
robot based on the state of the environment. The robot then uses this feedback to train
its actions and learn which actions are beneficial for improving the environment.

§1.2.4 Deep Learning

Deep learning attempts to simulate the workings of the human brain (neural architecture). It con-
sists of a multi-layered structure/network which responds to different input ‘stimuli’ to produce
the required outputs. Some applications are: facial recognition, handwriting recognition, image
captioning, video prediction, person re-identification in videos, object recognition and distance
detection for self-driving cars, generative models, etc.

Deep learning is largely considered as a black box, and many researchers are working to explain
what goes on in this black box of innumerous parameters.

§ Learning Outcomes §
• Define machine learning in terms of algorithms, tasks, performance and experience.

• List four main types of machine learning.

• Describe some potential dangers in machine learning.

Chapter 2

Regression

Regression is a core class in machine learning, and a very classic machine learning task. In the
problem of regression, the task is to fit a mathematical model to the training data. We assess its
performance by calculating the prediction error (some distance measure between data points and
model).

§2.1 Overview of Regression

Following the ‘task, performance, experience’ paradigm of machine learning, we establish what
each of these steps imply for regression.

Regression Paradigm:

• Task: to find/propose a function f : Rd → R such that the ground truth output is
approximately equal to the predicted output. That is to say y ≈ f(x; θ).

• Experience: (or data used in learning) comes from training data, which is a d di-
mensional data set of features/vectors x = {(x1, x2, ..., xn)(1), ..., (x1, x2, ..., xn)(d)}.

• Performance: this is found by computing the prediction error, which is some
function of y − f(x; θ).

Let’s now delve a little deeper into these steps.

§2.2 Methodology

§2.2.1 Features

From our data set, we can extract parameters that will be used to characterized inputs. We
call these features (or feature vectors). These are mathematically represented as d dimensional
vectors x ∈ Rd where each entry denotes a parameter associated with characterization.

5

CHAPTER 2. REGRESSION 6

§2.2.2 Training vs Testing Data

We now look at 2 different subsets of data from the universal data set. For machine learning, we
partition data into training data sets Sn and the testing data sets S∗.

Definition 2.2.1. Training Data:

Sn = {(x(i), y(i))|i = 1, 2, ..., n} (2.1)

• Where the x(i) = (x
(i)
1 , ..., x

(i)
d)T ∈ Rd are the features/inputs.

• Where the y(i) ∈ R are responses/outputs.

Definition 2.2.2. Linear Model: The model (or hypothesis class) H is defined as a set of
linear functions f : Rd → R, described by

f(x; θ; θ0) = θ0 + θ1x1 + ...+ θdxd = θ0 + θTx (2.2)

where θ ∈ Rd and θ0 ∈ R are known as the model parameters.

In the above definition, each f ∈ H is what we call a predictor or hypothesis.

Definition 2.2.3. Training Loss/Objective: We define a functional called the training loss

L(f ;Sn) on our training data from which we use this functional to find a predictor f̂ that
minimizes the objective function L.

L(f ;Rn) =
1

n

∑
(x,y)∈Sn

1

2

(
y − f(x)

)2
(2.3)

Definition 2.2.4. Test Loss/Objective: Similar to test loss, given a specific predictor f̂ ∈ H,

the test loss function R(f̂ ;R∗) gives us a metric to determine how well f̂ generalizes to new
data. The test loss is defined as:

R(f̂ ;R∗) =
1

n

∑
(x,y)∈S∗

1

2

(
y − f̂(x)

)2
(2.4)

The smaller the test loss, the better the performance of our model on the data.

7 2.2. METHODOLOGY

Figure 2.1: Training and Prediction Scheme

Be clear about the difference or relation between the training and test loss. The training loss is
used to search for appropriate predictors whereas the test loss is used as a metric to assess the
effectiveness of our found predictor after training. We can visualize the training and prediction
scheme as in figure 2.1 above.

Note: The training loss and test loss functions on the same predictor f̂ can be quite
different.

The goal of machine learning is to find a predictor f̂ ∈ H that generalizes well, which is to say
that it predicts well on the test data set S∗.

Note: A key assumption of training and prediction is that the test data and training
data are identically distributed.

§2.2.3 Model Selection

When we are searching for a good model, there are 2 major issues that could arise. These are
known as underfitting and overfitting. Hence, model selection is finding a model of the right size
such that is fits well with both training and testing data.

1. Underfitting is when we use a model with too few parameters, causing a poor fit to the
training data. Consequently, it will also not fit well with testing data and is an unfavourable
model. If the model H is too small, then f̂ ∈ H performs poorly on training data and poorly
on testing data.

2. Overfitting is when we use a model with too many parameters, causing a overly good fit
to the training data. This causes the loss function to be higher in training data which is
unfavourable. If the model H is too big, then f̂ ∈ H performs well on training data but not
testing data.

Often, it is difficult to determine the number of parameters to use because the parameter space
can be very large.

CHAPTER 2. REGRESSION 8

§2.3 Model Optimization

§2.3.1 Loss and Risk

We define the loss function as:

Loss(z) =
1

2
z2 (2.5)

Where we square the error so as to penalizes big errors more heavily. The empirical risk otherwise
known as training loss (as earlier defined) can be decomposed to give relevant terms. These
are:

• Point loss: L1(θ;x, y) = Loss(y − f(x; θ))

• Average loss: Ln = 1
n

∑
(x,y)∈Sn

L1(θ;x, y) = 1
n

∑
(x,y)∈Sn

1
2

(
y − f(x; θ)

)2
Over here, we have introduced the θ model parameters as a function argument because they
sufficiently define our predictor function f̂ .

Note: The subscripts on the L loss functions are not indices, but indicate the size of the
training data set.

§2.3.2 Gradient

In any form of optimzation, it is essential that we compute the gradient of our object function.
As such, recall the gradient of a multivariable function. In our context of a training loss objective
function, its gradient with respect to the parameters θ would be:

∇Ln(θ;Sn) =


∂Ln

∂θ1
(θ;Sn)

∂Ln

∂θ2
(θ;Sn)
...

∂Ln

∂θn
(θ;Sn)

 =
1

n

∑
(x,y)∈Sn


∂L1

∂θ1
(θ;Sn)

∂L1

∂θ2
(θ;Sn)
...

∂L1

∂θn
(θ;Sn)


⇒ ∇Ln(θ;Sn) =

1

n

∑
(x,y)∈Sn

∇L1(θ;Sn)

(2.6)

So we see that the training gradient is the average of the point gradients.

§2.3.3 Exact Solution and Gradient Descent

If there are no constraints on the parameters, then we simply set the gradient to 0 and solve for
the parameters. We run through all the solutions to find the parameter that has the smallest
training loss. If an analytical solution is not a viable option, then the goal is now to have an
algorithm that decreases the value of the parameters Ln as we traverse the θ parameter space.
Let’s look at the gradient descent algorithm which accomplishes this.

9 2.3. MODEL OPTIMIZATION

Gradient Descent Algorithm:

• We first randomly initialize θ.
• We then follow the negative direction of the gradient, which is the direction that

causes the loss function to decrease. θ →
(
θ − ηk∇L(θ)

)
, where ηk is the learning

rate and k is the iteration index.
• We keep repeating step 2 until we converge to a minimum value.

We need to find an appropriate learning rate ηk that has high enough resolution not to miss
the minimum point, but also not too small to cause the algorithm to be unnecessarily slow.
When we apply the gradient descent algorithm, we check that our multivariable L(θ) function
is differentiable in the neighbourhood of θ, and decreases as we go away from θ in the −∇L(θ)
direction. If this is true, then it follows that for θk+1 = θk−η∇L(θ) for small enough η, we have
that L(θk) ≥ L(θk+1).

Note: Gradient descent leads us to a local minimum, which is not necessarily the global
minimum. This means that choosing different starting points (θ0) may lead to different
local minima. Typically, we perform gradient descent from several starting points, and
run through all the local minima to find the parameter that has the smallest training loss.
However, if our loss function is strictly convex, the local minimum is the global minimum.

§2.3.4 Sub-Gradient

In the event that not the entire loss function on your parameter space is differentiable, we use
what is called a sub-gradient to continue the gradient descent. The sub-gradient is any vector v
such that for all x′, we have

f(x′)− f(x) ≥ vT (x′ − x) (2.7)

The premise is that your initial randomly chosen θ0 has a local differentiable neighbourhood,
however as we traverse along the hypersurface with the gradient descent algorithm, we reach a θi
that has a non-differentiable neighbourhood. When this occurs, we use the sub-gradient method
to prevent the algorithm from coming to an abrupt stop.

Note: The sub-gradient method is not a descent method, and the function value can
increase in subsequent iterations.

§2.3.5 Stochastic Gradient Descent (SGD)

In practice however, the conventional gradient descent is not a very practical algorithm. This
is because if we have a very large data set, we will have to calculate the average of the point
gradients for every data point which will take an enormous amount of time. the trick is that we

CHAPTER 2. REGRESSION 10

estimate the gradient by averaging over a smaller randomly sampled minibatch (subset of the
training data).

∇Ln(θ;Sn) ≈∇Lm(θ;Bm)

=
1

m

∑
(x,y)∈Bm

∇L1(θ;x, y), where m < n (2.8)

Stochastic Gradient Descent Algorithm:

• Initialize θ randomly.
• Select a minibatch Bm of the data from Sn at random. We then perform the gradient

descent via θ → θ − ηk∇L(θ;Bm).
• Repeat step 2 until convergence.

As shown, steps for the SGD algorithm mirror closely the steps for the standard gradient descent
algorithm. The difference that we are using less data than the entire training set provides.

To further improve the SGD, we can make adjustments to certain algorithm parameters. For
instance, we can have the learning rate be a function of iteration steps so that it better ensures
convergence at the minimum (e.g. ηk = 0.9ηk−1). Be careful that during implementation, you do
not reduce the training rate so drastically per iteration such that it takes an exorbitant amount
of time to converge. We can also define a momentum which helps to reduce fluctuations of the
gradient while working with a data minibatch. The update thus look as such:

θ(k+1) → θ(k) − ηk∆(k) (2.9)

where ∆(k) = (1− ε)∆(k−1) + ε∇Lm(θ;Bm).

§2.4 Multivariate Linear Regression

§2.4.1 Method of Least Squares

Given a set of input/output data {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))} with x(i) ∈ Rd, y(i) ∈ R.
We use a linear model which is called linear because of the form of the predictor function
f(x; θ, θ0) = θ0 + θ1x1 + θ2x2 + ...+ θdxd with θ ∈ Rd, θ0 ∈ R. The method of least squares then
employs a loss function similar to what we have already seen:

L1(θ, θ0;x, y) =
1

2

(
y − (θTx+ θ0)

)2
Ln(θ, θ0;x, y) =

1

n

∑
(x,y)∈Sn

L1(θ, θ0;x, y)
(2.10)

But notice here our model of the predictor is affine in the features, and not purely linear. To
simplify this model, we can use a trick called the constant feature trick.

11 2.4. MULTIVARIATE LINEAR REGRESSION

Constant Feature Trick

To modify the predictor into a purely linear function, we simply increase the dimension of the
feature space by one.

(x ∈ Rd)→ (x̃ ∈ Rd+1) (2.11)

So our inputs and outputs are now {(x̃(1), y(1)), (x̃(2), y(2)), ..., (x̃(n), y(n))} which makes our pre-
dictor model f(θ̃; x̃) = θ0x0 + θ1x1 + θ2x2 + ... + θdxd = θ̃T x̃ where x0 = 1. Our model is now
purely linear. Often, we will drop the tilde notation and assume the use of the constant feature
trick.

Least Square Analysis

For our point loss function, the point gradient is computed to be

∇L1(θ;x, y) =


−x1(y − θTx)
−x2(y − θTx)

...
−xd(y − θTx)

 = −


x1
x2
...
xd

 (y − θTx) = −x(y − θTx) (2.12)

We can also employ a matrix representation to make our expressions a little more elegant. Let
us first define the following for clarity:

X =


x(1)

x(2)

...
x(n)

 =


x
(1)
1 x

(1)
2 ... x

(1)
d

x
(2)
1 x

(2)
2 ... x

(2)
d

...
. . .

...

x
(n)
1 x

(n)
2 ... x

(n)
d

 , Y =


y(1)

y(2)

...
y(n)

 (2.13)

With this, we can reformulate our training gradient into a a simple equation as such:

∇Ln(θ;x, y) =
1

n

∑
(x,y)∈Sn

−x(y − θTx)

=
1

n

∑
(x,y)∈Sn

(−xy + xθTx)

=
1

n

∑
(x,y)∈Sn

(−xy + xxT θ)

= (− 1

n
XTY +

1

n
XTXθ) ≡ −B +Aθ

(2.14)

So each iteration of the gradient descent algorithm becomes:

θ → θ − ηk(
1

n
XTY − 1

n
XTXθ) (2.15)

To find an exact solution to this problem, let us work under some implicit assumptions and then
express them explicitly after our analysis. First, given that our training loss is convex, we take

CHAPTER 2. REGRESSION 12

the global minimum as satisfying ∇Ln(θ̂) = 0. From the matrix expression we derived above
and the necessary condition for minima, we get

1

n
XTY =

1

n
XTXθ̂

⇒ θ̂ = (XTX)−1XTY (2.16)

We immediately we see that above in above analytical solution, we require that XTX be an
invertible matrix. This implies that we require n ≥ d (number of data point more than or equal
to the size of the feature vectors). Also if there is an immense number of features (d very large),
it would very computationally heavy to invert the matrix (best algorithm achieves a complexity
of O(n2.376)). In that case, it is practical to use the SGD instead.

§2.5 Regularization

Often times, unbounded optimization of parameters may lead to the parameters scaling to ex-
treme values. To curb this, we can impose a regularizer (much like a Lagrangian multiplier) to
limit the unmitigated scaling of our parameters.

§2.5.1 Ridge Regression

Consider a model with the linear predictor y ≈ θ0 + θ1x2 + ... + θdxd. How do we ensure that
θk = 0 when xk is irrelevant? We add a regularizer so that our objective function becomes:

Ln,λ(θ) =
1

n

∑
(x,y)∈Sn

1

2
(y − θTx)2 +

λ

2
‖θ‖2 (2.17)

where λ is the regularizer which puts ‘pressure’ to simplify the model (penalizes any increase
in the parameter values). Why this is called ridge regression is because in the method of least
squares, it is often that along certain parameter degrees of freedom on the hypersurface, we
have a long flat hyperline similar to a ridge. This additional regularizer term helps to break the
linearity of this ridge for minima search.

For the unconstrained optimization of a convex loss function, the exact solution can once again
be found as done in the previous section as follows:

∇Ln,λ(θ̂) = 0

⇒ 1

n
XTY =

1

n
XTXθ̂ + λθ̂

⇒ θ̂ = (nλI +XTX)−1XTY

(2.18)

With regularization, the descent algorithm iterations are as such:

θ → (1− ηkλ)θ − ηk(
1

n
XTY − 1

n
XTXθ) (2.19)

13 2.6. HYPERPARAMETERS

Note: Regularizers are used only during the training phase and applied to the training
loss but not the training error. This is so because it should only be used as a means to
better ‘tweak’ the predictor function but is not a modification to the error metric.

A visualization of how training and test errors could typically vary by adding a regularizer is
shown below (figure 2.2).

Figure 2.2: Error vs Regularization Parameter Plot

From figure 2.2, we can see that there is an optimal space of values for which to set the regularizer
which will achieve the lowest error.

§2.6 Hyperparameters

As seen in the previous section, the regularization parameter λ is an example of a hyperparam-
eter. Hyperparameters are parameters whose values are set before the learning process begins.
They affect the complexity of the model. The question then arises, how do we pick these hyper-
parameters if we do not generally have access to test data? The solution is to create a validation
set.

§2.6.1 Validation Set

With the introduction of hyperparameters, we now split our data into 3 subsets. These are:

• Test Set (S∗): This is used for evaluating and reporting performance at the end.
• Training Set (Sn): This is used to determine the optimal parameters in a model during

the training phase.
• Validation Set (Sval): This is used for model selection and acts as a proxy for the test

set.

Just as the training and testing sets had metrics to tune and ascertain the model’s effectiveness,
we can also define a validation loss function that will essentially have the same purpose as the
test loss objective function.

CHAPTER 2. REGRESSION 14

Example:

For ridge regression, our validation loss function is defined as:

R(θ̂;Sval) =
1

n

∑
(x,y)∈Sval

1

2

(
y − θ̂Tx)2 (2.20)

The validation essentially creates an added layer of deterministic testing from an observable data
set. We can think of this as an extension of the training and model picking phase, where we
are further optimizing our model (now with added complexity from the hyperparameter). A
visualization of this is shown below (figure 2.3).

Figure 2.3: Model Selection with a Hyperparameter

Chapter 3

Classification

For most of the pedagogical purposes of this class, we consider a 2-class classification paradigm.
This is the simplest case. Classification is a close cousin of regression, where instead of finding a
function that best models for the expected continuous output value of our data, we aim to group
our outputs into discrete classes.

§3.1 Overview of Classification

Similar to regression, classification follows the ‘task, performance, experience’ paradigm of ma-
chine learning. The result space assumes a binary classification problem {−1,+1} as mentioned
above (e.g. alive or dead, cancer vs. not cancer).

Classifier Paradigm:

• Task: We need to find a function/classifier h : Rd → {−1,+1} such that the ground
truth output is approximately equal to the predicted output y = h(x; θ) (note that
the mapping is onto a discrete space).

• Experience: (or data used in learning) comes from training
data, which is a d-dimensional data set of features/vectors x =
{(x1, x2, ..., xn)(1), ..., (x1, x2, ..., xn)(d)}.

• Performance is found by computing the prediction error, y − h(x; θ) (note that
the error is also discrete, for which it is either correct or incorrect).

§3.2 Linear Classification

Very similar to regression, we also have a training data set for classifiers.

15

CHAPTER 3. CLASSIFICATION 16

Definition 3.2.1. Training Data:

Sn = {(x(i), y(i))|i = 1, 2, ..., n} (3.1)

• Where the x(i) = (x
(i)
1 , ..., x

(i)
d)T ∈ Rd are the features/inputs.

• Where the y(i) ∈ {−1,+1} are the responses/outputs.

The model of a linear classifier is then given by: A set of linear classifiers h : Rd → {−1,+1},
defined by

h(x; θ, θ0) = sign(θdxd + ...+ θ1x1 + θ0)

= sign(θTx+ θ0)
(3.2)

where the ‘sign’ function is defined by:

sign(z) =

{
+1, z ≥ 0

−1, z < 0
(3.3)

Note: Some people define z(0) = 0 but we do not adopt that in this class.

The goal here (during training) is also to solve for the model parameters θ ∈ Rd and θ0 ∈ R.

Definition 3.2.2. Test Loss: The point and average loss functions for test data are defined
as:

R1(θ, θ0;x, y) = [[y 6= h(x; θ, θ0]] (3.4)

R(θ, θ0;S∗) =
1

n

∑
(x,y)∈S∗

R1(θ, θ0;x, y) (3.5)

where [[.]] is the indicator function that returns 1 if its argument is true, and 0 otherwise.

§3.2.1 Decision Regions

A classifier h partitions the space into decision regions that is separated by decision boundaries.
All the points in each region map to the same label. For linear classifiers, these regions are known
as half spaces.

Note: Several different regions could have the same label.

17 3.2. LINEAR CLASSIFICATION

§3.2.2 Decision Boundaries

For linear classifiers, the decision boundary is a hyperplane of dimension d − 1 given by the
equation

θTx+ θ0 = 0 (3.6)

where vector θ is orthogonal to the decision boundary and points in the direction of region
labelled +1. It then follows that if for some data point x0, having θTx + θ0 > 0 implies an
output of +1.

Figure 3.1: Visualization of Decision Boundaries in a Linear Classifier

§3.2.3 Linearly Separable

An important property we will be looking at for some of the more basic classification algorithms
to come is known as linear separability.

Definition 3.2.3. Linearly Separable: The training data Sn is linearly separable if there
exists a parameter θ and θ0 such that for all (x, y) ∈ Sn, we have

y(θTx+ θ0) > 0 (3.7)

§3.2.4 Constant Feature Trick

This is exactly the same as the constant feature trick we did for regression where we increase
the dimension of our x feature by 1 (d→ d+ 1) and renamed it x̃ with a constant 1 entry at the
end. The new model is then:

x→ x̃ ∈ Rd+1, θ → θ̃ ∈ Rd+1 (3.8)

⇒ h(x; θ, θ0) = sign(θ̃T x̃) (3.9)

and the test loss is then

R1(θ̃; x̃, y) = [[y 6= h(x̃, θ̃)]] (3.10)

Rn =
1

n

∑
(x,y)∈S∗

R1(θ̃; x̃, y) (3.11)

CHAPTER 3. CLASSIFICATION 18

§3.3 The Perceptron Algorithm

Linear classifiers are also often referred to as perceptrons. These were designed to resemble
neurons. The perceptron model is illustrated below.

Figure 3.2: Perceptron Model

§3.3.1 Zero-One Loss

We begin by first exploring the simplest instance of a loss function for classifiers. Here, we are
trying to define a function that behaves as follows:

L1(θ;x, y) =

{
1, y 6= h(x; θ)

0, otherwise
(3.12)

Above, the 1 outcome refers to a misclassification (point loss increases) and the 0 outcome
indicates that the data point is on the boundary. To construct such a loss function, We first note
that

1. y(θTx) ≤ 0 if (θTx) and (y) differ in sign (y(θTx) ≤ 0 ⇒ misclassification).

2. θTx = 0 implies that the data point is on the boundary.

As such, we can construct our loss function as:

L1(θ;x, y) = [[y(θTx) ≥ 0]] = Loss
(
y(θTx)

)
(3.13)

where Loss(z) = [[z ≥ 0]] is the zero-one loss with z = y(θTx).

Definition 3.3.1. Training Loss:

Loss(z) = [[z ≤ 0]] (3.14)

L1(θ;x, y) = Loss
(
y(θTx)

)
(3.15)

Ln(θ;Sn) =
1

n

∑
(x,y)∈Sn

L1(θ;x, y) (3.16)

19 3.4. HINGE LOSS

Because zero-one loss is discrete, we cannot use the gradient descent algorithm. Instead, we use
the mistake-driven algorithm in replacement.

Mistake-Driven Algorithm:

1. Initialize θ = 0
2. For each data point (x, y) ∈ Sn

(a) Check if h(x; θ) = y
(b) If not, update θ to correct the mistake

3. Repeat Step (2) until no mistakes are found.

A specific implementation of the mistake-driven algorithm is known as the perceptron algorithm.
This is given below:

Perceptron Algorithm:

1. Initialize θ = 0
2. For each data point (x, y) ∈ Sn, if y(θTx) ≤ 0, then we update θ ← θ + xy.
3. Repeat Step (2) until no mistakes are found.

Note: For the perceptron algorithm, notice that we initialize the θ parameter vector as
a vector of zeros and not an arbitrary point like in SGD.

Figure 3.3: Perceptron Algorithm Summary

§3.4 Hinge Loss

Using the zero-one loss is not a very useful tool on real data sets as it causes the model to fail if
there exists data that do not satisfy the linearly separable condition. This makes it non-robust
on real data sets. As such, we look for an alternate loss functions for classification. A better
alternative is known as hinge loss.

LossH(z) = max{1− z, 0}, z = y(θTx) (3.17)

Ln(θ;x, y) =
1

n

∑
data(x,y)

Loss(z) (3.18)

CHAPTER 3. CLASSIFICATION 20

This loss definition penalizes large mistakes, and accounts for ‘near-mistakes’ in cases like 0 ≤
z ≤ 1. A visualization of the hinge-loss function is given in figure 3.4 below.

x(θTx)

LossH

0

Figure 3.4: Hinge Loss Function

Because of the differentiable nature of the hinge loss function, we can find its gradient!

Ln =
1

n

∑
(x,y)∈Sn

Loss(y(θTx))

=
1

n

∑
(x,y)∈Sn

max{1− y(θTx), 0}
(3.19)

The gradient is then (using the chain rule):

∇θLoss(y(θTx)) =

{
0, y(θTx) > 1

−yx, otherwise
(3.20)

Now that we have a gradient, we can apply the stochastic gradient descent (SGD) algorithm
with hinge loss as follows:

Hinge Loss Algorithm:

1. Initialize θ = 0
2. Randomly select (x, y) ∈ Sn, if y(θTx) ≤ 1, then we update θ → θ + ηkxy.
3. Repeat Step (2) until convergence.

Note: The hinge loss algorithm differs from perceptron algorithm in the following ways:
• We check if z ≤ 1 rather than z ≤ 0.
• We have a decreasing ηk for each iteration instead of the constant η = 1.
• We select data at random rather than in sequence.

21 3.5. LOGISTIC REGRESSION

Figure 3.5: Hinge Loss Algorithm Summary

§3.5 Logistic Regression

§3.5.1 Probabilistic Model

To further improve on our classification model, we can attempt to model the conditional proba-
bility that the label y = +1 given a feature x. This is done by using a common statistical model
known as the sigmoid function.

h : Rd → [0, 1]

h(x; θ) = P(y = +1|x) = sigmoid(θTx)
(3.21)

§3.5.2 Sigmoid Function

Also known as the logistic function, the sigmoid function is the go-to for modelling the continuous
probability (also known as confidence) that a label y matches a feature x. A visualization of the
sigmoid function is shown below.

Figure 3.6: Sigmoid Function

CHAPTER 3. CLASSIFICATION 22

Mathematically, the sigmoid function is defined as:

sigmoid : R→ [0, 1] (3.22)

sigmoid(t) =
1

1 + e−t
(3.23)

Additionally, a useful relation between equivalent positive/negative values of t is as follows:

sigmoid(−t) =
1

1 + et

=
e−t

e−t+ 1

= 1− 1

e−t+ 1
= 1− sigmoid(t)

(3.24)

§3.5.3 Sigmoid Neurons

To improve the perceptron neuron model, they introduced the sigmoid neuron model as illus-
trated in the figure below.

Figure 3.7: Sigmoid Neuron Model

23 3.5. LOGISTIC REGRESSION

§3.5.4 Label Probabilities

Utilizing the sigmoid function in our context, we look to find the conditional probability of
attaining a y = ±1 classification given some data point x.

P(y = +1|x) = sigmoid(θTx) = sigmoid
(
y(θTx)

)
(3.25)

P(y = −1|x) = sigmoid(−θTx) = sigmoid
(
y(θTx)

)
(3.26)

⇒ P(y|x) = sigmoid
(
y(θTx)

)
, y ∈ {−1,+1} (3.27)

§3.5.5 Label Predictions

How do we now predict these probability quantities in relation to which label is more probable?
From our conventions, we have the inequality:

P(y = +1|x) ≥ P(y = −1|x) ⇐⇒ h(x; θ) ≥ 1

2
(3.28)

With this, we can see that we interpret the value of our classifier function as such:

• h(x; θ) ≥ 1/2 implies that we predict this x data point’s label is y = +1.
• h(x; θ) < 1/2 implies that we predict this x data point’s label is y = −1.

Recall that the decision boundary is defined by θTx = 0 (dropping the tilde notation). As such,
we have the following equivalences:

• h(x; θ) ≥ 1/2 ⇐⇒ sigmoid(θTx) ≥ 1/2 ⇐⇒ θTx ≥ 0
• h(x; θ) < 1/2 ⇐⇒ sigmoid(θTx) < 1/2 ⇐⇒ θTx < 0

Figure 3.8: Sigmoid Function Decision Boundary Visualization

§3.5.6 Likelihood

Given a training set Sn, we can define what is known as the likelihood function L.

L(θ;Sn) = P(y(1), ..., y(n)|x(1), ..., x(n))

= P(y(1)|x(1))...P(x(n)|y(n)) =
∏

(x,y)∈Sn

P(y|x) (3.29)

CHAPTER 3. CLASSIFICATION 24

Above, we have assumed that the data points are all independent. The goal is then to maximize
this likelihood function since each point’s conditional probability represents the probability of
attaining a correctly assigned label. Notice that the following optimization problems are equiv-
alent:

• max{L(θ;Sn)}
• max{logL(θ;Sn)}
• min{− 1

n logL(θ;Sn)}

As such, we define the logistic loss function by the last equivalent quantity above.

Definition 3.5.1. Logistic Loss:

Ln(θ;Sn) = − 1

n
logL(θ;Sn)

= − 1

n

∑
(x,y)∈Sn

logP(y|x)

= − 1

n

∑
(x,y)∈Sn

log
1

1 + e−y(θT x)

=
1

n

∑
(x,y)∈Sn

log
(

1 + e−y(θ
T x)
)

=
1

n

∑
(x,y)∈Sn

Loss
(
y(θTx)

)

(3.30)

As a little summary, we list all the training loss functions below.

§ Recap of Training Losses §

The training loss is given by:

Ln(θ;Sn) =
1

n

∑
(x,y)∈Sn

Loss(z), z = y(θTx) (3.31)

The respective point losses are given by:

• Zero-One Point Loss: Loss01 = [[z ≤ 0]]

• Hinge Point Loss: LossH = max{1− z, 0}
• Logistic Point Loss: LossL = log(1 + e−z)

25 3.5. LOGISTIC REGRESSION

Figure 3.9: Visualization of Different Point Loss Functions

§3.5.7 Logistic Gradient

Of course, we also compute the gradient of the logistic loss function with respect to its parameters
θ to minimize it.

∇θLossL
(
y(θTx)

)
=

{
x(sigmoid(θTx)− 1), y = +1

x(sigmoid(θTx)− 0), y = −1

= x(sigmoid(θTx)− [[y = +1]])

(3.32)

So we see that the training gradient is given by:

∇Ln(θ;Sn) =
1

n

∑
(x,y)∈Sn

x

(
1

1 + exp
(
− y(θTx)

) − [[y = +1]]

)
(3.33)

Logistic Gradient Descent Algorithm:

1. Initialize θ = 0
2. Update θ → θ − ηk

n

∑
(x,y)∈Sn

x(sigmoid(θTx)− [[y = 1]]).

3. Repeat Step (2) until convergence.

Figure 3.10: Logistic Regression Algorithm Summary

CHAPTER 3. CLASSIFICATION 26

Note: We need to distinguish between discriminative and generative models in classifica-
tion. Discriminative models are trying to learn conditional distributions P(X|Y) whereas
generative models are learning joint distributions P(X,Y).

Chapter 4

Clustering

Clustering belongs under the category of unsupervised learning. Recall that in unsupervised learn-
ing, we do not have any labels for our feature vectors. Some useful applications of unsupervised
learning are data compression (image compression via pixel RGB partitioning and quantization),
improvement of classification/regression, etc. Clustering is the process of partitioning a set of
data into a set of (hopefully) meaningful sub-classes, called clusters.

§4.1 What is Clustering?

Definition 4.1.1. Clusters: Collection of data points that are “similar” to one another
and collectively should be treated as a group. As a collection, data points differ sufficiently
between clusters.

The clustering problem is formally presented as follows:

Clustering Problem:

Given the input training data Sn = {x(1), x(2), ..., x(n)}, where each x(i) ∈ Rd, we want to
produce an output of clusters (pseudo-labels) C1, C2, ..., Ck ⊂ {1, 2, ..., n} such that every
data point is in one and only one cluster.

There are several ways to specify a cluster:

• Explicitly listing all its elements.
• Using a representative of its elements (e.g. centroid, exemplar, etc).

§4.2 Basic Clustering Methodology

There are 2 main approaches to clustering.

27

CHAPTER 4. CLUSTERING 28

1. Agglomerative: Pairs of items and smaller clusters are slowly linked together to form
larger clusters.

2. Divisive: Items are initially placed in one cluster and successively divided into separate
groups.

§4.2.1 Agglomerative Single-Link

A single-link connects all points that are within a threshold distance together. Before we get to
the algorithm, we define a quantity known as the intercluster distance as the distance between
the closest 2 points of 2 given clusters. The algorithm for doing this is as follows:

Algorithm:

• Start by first setting all n data points to be in their own cluster.
• Merge the 2 closest clusters, where close-ness is defined by the intercluster distance.
• Repeat step 2 n− k times to get k clusters.

§4.2.2 Agglomerative Complete-Link (Clique)

A complete-link has the implication that all points in a cluster must be within a certain threshold
distance. In the threshold distance matrix, a clique is a complete graph (every pair of graph
vertices are connected by an edge). Agglomerative complete-link algorithms then aim to find the
maximal clique of any chosen point.

§4.3 Methods of Characterizing Clusters

There are different techniques we can employ to characterize clusters in our data set. Some of
these are listed and elaborated on below.

§4.3.1 Classes

The label applied by a clustering algorithm. These labels could be hard or fuzzy labels.

• Hard label: Either is or is not a member of a cluster.
• Fuzzy label: Membership to a cluster is determined with probability.

§4.3.2 Distance/Similarity Measure

Definition 4.3.1. Distance Measure: A value indicating how similar 2 data points are.
For example, a common distance measure is the Euclidean distance between data points
dist(x, y) = ‖x− y‖.

29 4.3. METHODS OF CHARACTERIZING CLUSTERS

Note: Distance measures are also often referred to as loss functions.

Definition 4.3.2. Similarity Measure: A value that quantifies the similarity between 2 data

points. A common similarity measure is the cosine similarity cos(x, y) = xT y
‖x‖‖y‖ .

Note: Similarity measures are often referred to as kernel functions.

In distance calculation, we utilize feature vectors. Distance measures must satisfy the following
properties:

• They should be based on feature values
• For all objects xi, xj , they have to satisfy dist(xi, xj) ≥ 0 and dist(xi, xj) = dist(xj , xi).
• For any object xi, dist(xi, xi) = 0.
• dist(xi, xj) ≤ dist(xi, xk) + dist(xk, xj).

Some explicit forms of distance measures are given below:

• Euclidean Distance:
√∑|feature|

f=1 (xi,f − xj,f)2

• Manhattan Distance:
∑|feature|
f=1 |(xi,f − xj,f)|

• Minkowski (p) Distance:
p

√∑|feature|
f=1 (xi,f − xj,f)p

• Mahalanobis Distance: (xi−xj)∇−1(xi−xj)T , where ∇−1 is the covariance matrix of
the data.

• Mutual Neighbour Distance (MND): based on the number of nearest neighbours
count.

We can also construct distance and similarity matrices. These are symmetric matrices where
the (i, j) entries are the distance/similarity measures (di,j ∈ R or si,j ∈ {0, 1}) between items i
and j. The diagonal is all 0’s (distance) or all 1’s (similarity).

D =


0 d1,2 ... d1,n
d2,1 0 ... d2,n

...
. . .

...
dn,1 dn,2 ... 0

 , S =


1 s1,2 ... s1,n
s2,1 1 ... s2,n

...
. . .

...
sn,1 sn,2 ... 1

 (4.1)

Where for the entries above, ∀i, j ∈ {1, 2, ..., n}, we have di,j = dj,i and si,j = sj,i. This matrix
can also be visualized as a weighted/undirected graph. Each item is represented by a node, and
the edge weight/edges represent the distance/similarity between 2 items (nodes).

Definition 4.3.3. Clustering Training Loss: We define the clustering training loss as the
sum of squared distance measures (or simply distances) to the closest representative. We
have 3 possible training loss function forms that allow for optimization over representatives

CHAPTER 4. CLUSTERING 30

(cluster centers), clusters and both representatives and clusters respectively.

Ln,k(z(1), ..., z(k);Sn) =

k∑
i=1

min
1≤j≤k

∥∥∥x(i) − z(j)∥∥∥2 (4.2)

Ln,k(C1, ..., Ck;Sn) =

n∑
j=1

∑
i∈Cj

min
1≤j≤k

∥∥∥∥∥∥x(i) − 1

|Cj |
∑
i∈cj

x(i
′)

∥∥∥∥∥∥
2

(4.3)

Ln,k(C1, ..., Ck; z(1), ..., z(k);Sn) =

k∑
j=1

∑
i∈Cj

∥∥∥x(i) − z(j)∥∥∥2 (4.4)

These objective functions above are too complex and not often used in practice.

§4.3.3 Deterministic vs Stochastic

§4.3.4 Hierarchical

In the hierarchical method, data points are connected into clusters using a point hierarchical
structure. This is based on some methods of representing a hierarchy of data points. One example
of the hierarchical method is the hierarchical dendogram. The hierarchical agglomerative is as
follows:

Hierarchical Agglomerative Clustering:

1. Compute the distance matrix.
2. Put each data point in its own cluster.
3. Find the most similar pair of clusters by:

(a) Merging pairs of clusters.
(b) Updating the proximity matrix.
(c) Repeating until all patterns in one cluster.

A visualization of hierarchical clustering is given in figure below.

Figure 4.1: Hierarchical Dendograms

31 4.4. K-MEANS

§4.3.5 Checking Clustering Validity

An important but difficult question to solve is ‘how good are the clusters produced by a certain
algorithm’? In other words, are the clusters produced by your algorithm valid for the intended
purpose? Formulating an objective measure for this is non-trivial to say the least. Some ap-
proaches to validity checks are:

• External Assessment: Comparing clusters to a priori clusters.
• Internal Assessment: Determine if the clustering is intrinsically appropriate for the given

data.
• Relative Assessment: Compare the results of several clustering methods with the same

data set.

However, even before approaching the validity problem, it is first good to check some basic
considerations:

• Data Preparation: Setting up the data to apply your clustering algorithm on (e.g. extrac-
tion, normalization).

• Similarity/Distance Measures: Which construction of distance measure is appropriate for
our problem.

• Use of Domain Knowledge: Prior knowledge can affect/influence data preparation.
• Efficiency: How do we ensure that clusters are generated in a reasonable amount of time.

Example:

Voronoi diagrams are an example of clusterning. In a Voronoi diagram, we partition all
the points in the space into regions according to their closest representative.

§4.4 K-Means

k-means clustering is a method of vector quantization and works by partitioning the input data
set of n observations (data points) into k clusters such that each data point belongs to the
cluster with its nearest mean, serving as a representative/prototype of the cluster. This results
in a partitioning of the data space into what are known as Voronoi cells as mentioned earlier.
In order to achieve this, we can once again utilize several optimization (training loss minimiza-
tion min{L(x, y)}) algorithms. We will utilize the coordinate descent algorithm for k-means
clustering.

Coordinate Descent Algorithm:

1. Find optimal x while holding y constant (finding the best cluster given centroids).
2. Find optimal y while holding x constant (finding the best centroid given clusters).
3. Repeat until convergence.

Note: Even though coordinate descent ensures that the training loss always decreases in
each iteration, we may not arrive at the global minimum when the algorithm terminates.

CHAPTER 4. CLUSTERING 32

We now look at the k-means algorithm which utilizes this notion of coordinate descent. The
algorithm is as follows:

k-Means Algorithm:

1. Initialization: For the first iteration, we initialize the centroids {z(1), ..., z(k)} from
the data (pick k data points as our cluster centers/cluster representative).

2. Forming Clusters: We then look through all x(i) points and assign them such that
we have:

Cj = {i|x(i) is closest to z(j)} (4.5)

where j ∈ {1, ..., k}. That is to say, we run through all the data points and as-
sign each of them to a cluster by looking for their corresponding nearest cluster
representative.

3. Computing Cluster Centers: With these clusters, we then recompute the cluster
centers z(j) by taking the point closest to the mean of that cluster. The mean is
computed as follows:

z(j) =
1

|Cj |
∑
i∈Cj

x(i) (4.6)

4. Iteration: Repeat steps 2 and 3 until the clusters and cluster centers no longer vary
(convergence).

A visualization of what the k-means algorithm is doing in each iteration is given in figure 4.2
below.

Figure 4.2: k-Means Clustering Iterations

33 4.4. K-MEANS

§4.4.1 Initialization Issues

Some problems can arise with the use of k-means clustering. To avoid some of these, people have
proposed the following solutions to their respective problems:

• What if we pick an initial point (centroid) that gives us an empty cluster (all data points
fall outside of the Voronoi cell)? This is resolved by picking initial points that are already
data points.

• What if we encounter bad local minima (much larger than the global minimum)? We can
initialize the algorithm many times with different initial centroids, then compare and find
the initialization with the smallest training loss.

§4.4.2 Choosing K

Another question to ask when using k-means clustering is ‘what is the optimal number of clusters
to have with a given data set?’. There are 2 common approaches to tackling this:

• Elbow Method
• Semi-Supervised Method

Chapter 5

Recommendation

Recommendation is usually viewed as a stand alone research topic in the field of machine learning
and is not part of the classic machine learning paradigm (recommendation is more associated to
areas such as data mining). An example of an application of recommendation is when Netflix
saw a need to recommend relevant movies that their customers might be interested in based on
past views. So the idea of recommendation is predicting the type of object that will be preferable
to a user (e.g. missing data completion).

§5.1 Collaborative Filtering

Let’s start by defining the general recommendation problem (the recommendation problem is
also known as matrix/tensor completion problem). We have n users and m objects to be offered
to the users. This can be represented by an (n×m) matrix Y . Each row is then the preference
rating by each user for each movie (Yij = rating of object j by user i). However, our effective
data set is even smaller because not every user will rate every object or even rate at all (matrix
is incomplete)! The aim is then to complete the matrix and fill up all the entries.

Note: This problem is close to a regression problem because the outputs have semantic
relationships unlike in classification.

Collaborative filtering implies the notion of cross-users, which points out that users who share
similar interests on items in the past are more likely to hold similar opinions on other items com-
pared to randomly chosen users. There are different types of recommendation learning:

• Model Based: Here, we treat Yai as the responses. Given training data of the form
{(a, i), Yai}, we want to predict a function f : {1, ..., n}× {1, ...,m} → R.

• Memory Based: Here, we treat Yai as features. Given incomplete user ratings Ya ∈ Rm,
we find structure in the data to predict missing values.

34

35 5.2. K NEAREST NEIGHBOURS

§5.2 K Nearest Neighbours

k nearest neighbours is a memory based learning algorithm and the main idea is to find k users
b1, ..., bk that are similar (neighbours) to user a. So we are going to use information from users
b1, ..., bk to predict ratings of user a. To do this, we need some kind of similarity measure in
order to find a’s k nearest neighbours. A useful similarity measure is known as the correlation
coefficient, which is similar to cosine similarity as seen before.

Definition 5.2.1. Correlation Coefficient: A numerical measure of the statistical relation-
ship between two variables. For 2 vectors x and y, the correlation coefficient between x and
y is given by:

corr(x, y) = cos(x− x̄, y − ȳ) =
(x− x̄)T (y − ȳ)

‖x− x̄‖‖y − ȳ‖
(5.1)

where x̄ and ȳ are the averages of the entries of x and y.

Note: When we use correlation coefficients, we are subtracting away the mean value
which in practice means that we are subtracting away the user bias.

§5.2.1 User Similarity

To compute the similarity between users a and b, we

1. Find CR(a, b).
2. Let Za and Zb be the vector of ratings in CR(a, b) for each user.
3. We then compute the correlation coefficient between Za and Zb

sim(a, b) = corr(Za, Zb) ∈ [−1,+1] (5.2)

CR(a, b) stands for common ratings between user a and b, which is the set of objects rated by
both a and b.

§5.2.2 Weighted Prediction

Let Ȳb denote the average of object ratings by user b. To predict the rating Yai of user a for
object i, we:

1. Ranks users b who have rated object i according to the value of |sim(a, b)|.
2. Let kNN(a, i) be the set of k users with the highest similarity.
3. Let (Yai − Ȳa) be the weighted average of ±(Ybi − Ȳb), b ∈ kNN(a, i).
4. Let weight for ±(Ybi − Ȳb) be proportional to |sim(a, b)|.

So from these steps, we get the formula:

Ŷai − Ȳa =

∑
b∈kNN(a,i) sim(a, b)(Ybi − Ȳb)∑

b∈kNN(a,i) |sim(a, b)|
(5.3)

CHAPTER 5. RECOMMENDATION 36

Note: The above formula is not sensitive to the bias (mean) of each user, but is sensitive
to the spread (variance). Also, there is no training loss and no training algorithm for kNN .

§5.3 Subspace Learning and Matrix Factorization

§5.3.1 Subspace Learning

The main idea of subspace learning is that the current space of our learning is largely redundant
(we do not need such large dimentionality for our parameter space). Let’s say we have completed
rating vectors Ŷ1, ..., Ŷn ∈ Rm which lie in some k-dimensional subspace k << m (the rank is
generally much smaller than m and n). This means that we can find just k linearly independent
vectors to comprehensively represent Ŷa.

Ŷa = ua1V1 + ua2V2 + ...+ uakVk (5.4)

§5.3.2 Matrix Factorization

With Vj ∈ Rm and the coefficients uaj ∈ R. As such, we can effectively decompose our matrix
into an (n× k) matrix U of coefficients uij and an (m× k) matrix V where its columns are the
k rating ‘basis’ vectors. This is known as matrix factorization. The reason we do this is to find
a complete matrix of lower rank Ŷ that is ‘closest’ to the incomplete matrix Y . Ŷ is called the
low-rank approximation of Y .

U =


u11 u12 . . . u1k
u21 u22 . . . u2k

...
. . .

...
un1 un2 . . . unk

 , V =


...

...
...

V1 V2 . . . Vk
...

...
...

 (5.5)

Note: When we talk about how close the matrices are, we are only referring to non-empty
entries in Y to be used for comparison to Ŷ .

With this, we can write our low-rank approximation of Y as:

Ŷ = UV T (5.6)

Note: Although we get a lower rank matrix Ŷ , the dimension of the Ŷ matrix is still
(n×m) and not (k× k).

Now, it is good to look to an analogy to have a more tangible intuition of what is going here.

37 5.3. SUBSPACE LEARNING AND MATRIX FACTORIZATION

Analogy:

Ŷai = UTa Vi. What does this mean and how do we interprete this? Let’s say the objects we
are dealing with here are movies. When watching movies, user a may have preferences on
some genres (action, romance, etc) which constitute k factors. So we have that Ua ∈ Rk
characterizes user a’s preference on these k factors. Also, for some movie i, it can also
be accurately described by these k genres. Hence Vi ∈ Rk describes how the k factors
distribute in movie i. So, when we do the multiplication UTa Vi, we obtain how much user
a likes movie i.

§5.3.3 Prediction

For an unknown rating Yai of user a for movie i, we predict

Ŷai = (UV T)ai = Ua(V T)i (5.7)

where Ua denotes the a-th row of matrix U and Vi denotes the i-row of matrix V . We also call
these the factor vectors of user a and object i. Now that we have a prediction matrix Ŷ , we can
construct a training loss function once again to optimize! Remember that for a loss function, we
can only compute the loss against existing and observable data points, so we would have < n×m
data points since our data matrix is incomplete. As such, we construct our training loss function
as follows.

Definition 5.3.1. Recommendation Training Loss: We define the recommendation training
loss as the sum of squared differences between the entries of Ŷ and Y along with regularizer
terms to penalize unobserved data entries.

Ln,k,λ(U, V ;Y) =
∑

(a,i)∈D

1

2
(Ŷai − (UV T)ai)

2 +
λ

2
(‖U‖2 + ‖V ‖2) (5.8)

where D is the set of all (a, i) such that Yai is observed (has collected data).

In the definition, recall that U and V are matrices, so the norm that we are taking here is known
as the Frobenius norm.

Definition 5.3.2. Frobenius Norm: Given an (n×m) matrix A, the Frobenius norm of A
is defined as:

‖A‖ =

√√√√ n∑
i=1

m∑
j=1

A2
ij (5.9)

Also, it is important to add the regularizer terms in this training loss because data entries in
the low-rank approximation Ŷ which do not have a corresponding entry in the actual Y matrix
will not show up in the loss function. Hence, these entries could be scaled up to arbitrarily large
values if they are not kept in check in some way (i.e. via the regularizers).

CHAPTER 5. RECOMMENDATION 38

§5.3.4 Optimizing Training Loss

For recommendation learning, we have 2 matrix factors U and V that we need to account for.
Hence, it is natural that we lean toward using the coordinate descent algorithm in order to find
the minimum for our training loss function. To refresh your memory and also frame it for our
recommendation learning context, the coordinate descent algorithm is as follows:

Alternating Least Squares Algorithm:

1. Initialize V by randomly generating its rows V1, V2, ..., Vm ∈ Rk.
2. Fix the V elements and minimize the training loss function with respect to matrix
U (minU{Ln,k,λ(U, V ;Y)}), i.e. for each user a, find Ua that minimizes∑

i:(a,i)∈D

1

2
(Yai − UTa Vi)2 +

λ

2
‖Ua‖2 (5.10)

3. Fix the matrix U and minimize the training loss function with respect to matrix V
(minV {Ln,k,λ(U, V ;Y)}), i.e. for each object i, find Vi that minimizes∑

a:(a,i)∈D

1

2
(Yai − UTa Vi)2 +

λ

2
‖Vi‖2 (5.11)

4. Repeat steps 2 and 3 until convergence.

Additional, it would be good to think about the following considerations during implementation
of this algorithm. How do we account for biases in our data? Can we simply subtract the average
ratings of each user? Like k-means, the algorithm generally only converges to a local minimum,
it would be good to perform multiple initializations and pick best result. Lastly, it would make
our model more robust if we use a validation set (just as we did for regression) to pick the right
hyperparameters k and λ.

§5.3.5 Validation Set

As mentioned above, since we are making use of hyperparameters, we would now like to employ
the use a a validation set. So we now have the following data sets:

• Test Set (S∗): This is used for evaluating and reporting performance at the end.
• Training Set (Sn): This is used to determine the optimal parameters in a model during

the training phase.
• Validation Set (Sval): This is used for model selection and acts as a proxy for the test

set.

Chapter 6

Support Vector Machines

A support vector machine (SVM) is a linear classifier which finds an optimal partitioning solution
by maximizing the distance between the hyperplane decision boundaries and ‘difficult points’ close
to these boundaries. SVM is a supervised learning model. The idea here is that if there are no
points near the decision surface, then there are few uncertain classification decisions. The SVM
aims to maximize the margin around the separating hyperplane. If the decision boundary is a
hypersurface, the margin is a hypervolume whose outer hypersurfaces run parallel to the boundary.
Colloquially, we are trying to make the fattest hypervolume. The closest points to the decision
boundary are used to define the margin surfaces and are called the support vectors. Solving
SVMs is a quadratic programming problem and is seen by many as the most successful text
classification method as of today.

§6.1 Prerequisite Mathematics

First we look at some of the mathematics required to gain a comprehensive understanding of
support vector machines. This is largely to do with the method of Lagrangian multipliers as we
will be looking to solve a constrained optimization problem.

§6.1.1 Lagrangian Multipliers

In optimization, when we want to include constraints into our objective function, we utilize La-
grangian multipliers to do so. Let’s say we are given some primal objective function f(x) to
optimize and it is subject to several constraints. There are 2 ways to approach such an opti-
mization problem that we will be exploring, both of which utilize Lagrangian multipliers:

1. Dual Problem: This is where we set up a dual optimization problem where the constraints
are ‘nicer’, and it is easier to implement a gradient descent algorithm. A more rigorous
treatment of this topic can be found in chapter A of the appendix.

2. Exact Solution: This is an analytical method whereby we analytically solve the La-
grangian system of equations.

39

CHAPTER 6. SUPPORT VECTOR MACHINES 40

The new objective function built from the primal problem which incorporates the constraints
and Lagrangian multipliers is known as the Lagrangian.

§6.1.2 Equality Constraints

Here, we explore formulating the Lagrangian with constraints that only have equality. Given an
objective function f(x) subject to l constraints hj(x) = 0, the Lagrangian is given by:

L(x, λ) = f(x) + λ1h1(x) + ...+ λlhl(x) = f(x) +

l∑
j=1

λjhj(x) (6.1)

§6.1.3 The Dual Paradigm

In the dual paradigm, there are 2 ways to approach solving this optimization problem. These
are referred to as either playing the primal game or the dual game.

1. The Primal Game: Here, we first enforce the constraints and the aim to find x that
minimizes f(x).

p∗ = min
x

{
max
λ
{L(x, λ)}

}
(6.2)

2. The Dual Game: Here, we first compute the l(λ) = minx{L(x, λ)} functions for each λ
and then find the λ that maximizes l(λ).

d∗ = max
λ

{
min
x
{L(x, λ)}

}
(6.3)

The primal problem is lower bounded by the dual problem (p∗ = minx{maxλ{L(x, λ)}} ≥ d∗ =
maxλ{minx{L(x, λ)}}). If p∗ = d∗, then we say that we can exactly solve the primal problem by
solving the dual problem.

§6.1.4 The Analytical Approach

Now if we want to have an exact analytical solution, we can utilize our knowledge of multivariable
calculus and solve a system of equations using the necessary conditions for optimization.

Analytical Approach:

1. Write down the Lagrangian L(x, λ) = f(x) +
∑l
j=1 λjhj(x).

2. Solve for the critical points w.r.t x and λ:

∇xL(x, λ) = 0, ∇λL(x, λ) = 0 (6.4)

3. Pick the critical point which gives global minimum.

41 6.2. COMPUTING MARGINS

§6.1.5 Inequality Constraints

When our constraints consists of inequalities, this changes our problem slightly but thankfully
the steps we use to optimize our objective function remains relatively unchanged. Given an
objective function f(x) subject to m constraints gj(x) ≤ 0, the Lagrangian is given by:

L(x, α) = f(x) + α1g1(x) + ...+ αlgm(x) = f(x) +

m∑
j=1

αjgj(x) (6.5)

Inequalities require us to adopt additional necessary conditions to ensure that we are in fact
at the critical points. These are known as the Karush-Kuhn-Tucker (KKT) conditions and
complimentary slackness. The steps for an analytical solution are given below:

Analytical Approach:

1. ∇xL(x, λ) = 0
2. gj(x) ≤ 0 for all j ∈ [1,m]
3. αj ≥ 0 for all j ∈ [1,m]
4. αjgj(x) = 0 for all j ∈ [1,m]

§6.2 Computing Margins

As said in the introductory paragraph, our goal is to maximize the width of the margin around
our decision boundary.

Figure 6.1: The Distance from the Decision Boundary

As such, our goal is to maximize 1/‖θ‖ which is half the size of the decision boundary (size of
decision boundary is the normal distance between the 2 decision margin hyperplanes) subject to
the constraint y(θ̃T x̃) ≥ 1 for all data (x, y) where y ∈ {−1,+1}, for which the parity indicates

which class the data point x falls into. Equivalently, we can minimize 1
2‖θ‖

2
subject to the

constraint y(θ̃T x̃) ≥ 1 for all data (x, y).

CHAPTER 6. SUPPORT VECTOR MACHINES 42

Definition 6.2.1. Support Vector: Given a set of predicted parameters {θ̂, θ̂0} that define
the decision boundary, the support vector is any vector that satisfies the equality:

(θ̂Tx+ θ̂0)y = 1 (6.6)

where x is the feature vector and y is the response/label attached to that feature.

So from here, the Lagrangian for our minimization problem is:

L(θ, α) =
1

2
‖θ‖2 +

∑
(x,y)

αx,y
(
1− y(θ̃T x̃)

)
(6.7)

Applying the KKT condition, we finally get to the optimization problem:

max
α

{
l(α) =

∑
(x,y)

αx,y −
1

2

∑
(x,y)

∑
(x′,y′)

αx,yαx,′y′yy
′(x̃T x̃′)

}
(6.8)

Subject to αx,y ≥ 0 for all (x, y) (complimentary slackness). The complimentary slackness
condition ensures that only the support vectors affect the shifting of the decision boundary
(only for support vectors do we have non-trivial/non-zero αx,y values).

Note: Notice that for the dual problem above, we do not require the feature vectors
themselves but only the value of their dot products (x̃T x̃′). As such we can apply what
is known as the kernel trick to simplify the computation in an actual implementation.

§6.3 SVM with Errors

There are cases where the linearly separable assumption could be violated. In this case, we have to
change our primal problem by adding a slack variable. The primal problem then becomes:

Objective Function : min
θ

{
λ

2
‖θ‖2 +

1

n

∑
(x,y)

ξx,y

}
(6.9)

Constraints : y(θ̃T x̃) ≥ 1− ξx,y
ξx,y ≥ 0

(6.10)

and for all (x, y). These slack variables ξx,y allow constraints to be violated but for a cost/penalty.
Additionally, the new λ coefficient/parameters attached to the first term acts as a regularizer
which balances how much error we would allow past our margin. The dual problem is presented

43 6.3. SVM WITH ERRORS

as follows:

Objective Function : max
α

{∑
(x,y)

αx,y −
1

2

∑
(x,y)

∑
(x′,y′)

αx,yαx,′y′yy
′(x̃T x̃′)

}
(6.11)

Constraints :
1

λ
≥ αx,y ≥ 0∑

(x,y)

αx,y = 0
(6.12)

Chapter 7

Deep Learning

Deep learning is currently a state of the art technology and is widely used in both research and
applied areas. So what is deep learning? It is a form of machine learning used to handle complex
non-linear problems. It was developed based on our understanding of the human brain and is a
bio-inspired multilayer neural network. This neural network has an input layer, which will then
be fed through the network (hidden processing layers which consist of ‘neurons’) and then finally
produce an output at the output layer. A visualization of this is given in the figure below.

Figure 7.1: Neural Network Visualization

Examples of deep learning applications would be facial recognition, handwriting recognition, etc.
Some useful additional online materials can be found here.

44

http://neuralnetworksanddeeplearning.com/chap2

45 7.1. FEEDFORWARD NETWORKS

§7.1 FeedForward Networks

We begin our study of deep learning by looking at some essential mathematics required for a
formal understanding of the subject. First we define the neuron.

Definition 7.1.1. Neuron: A neuron is an activation function f (generally non-linear),
which takes an input weighted sum of a feature vector and outputs the function value given
this weighted sum input.

hw,b(x) = f(wTx) = f(

d∑
i=1

wixi + b) (7.1)

Depending on function f , neurons can be either be real-valued or binary-valued (probabilistic
or deterministic) but will never produce a negative value.

It is common that we use the ReLu (rectified linear unit f(z) = max{z, 0}) as our activation
function as is has been shown to produce good results experimentally.

§7.1.1 Multi-Layered Neural Network

Each neuron can be represented by a node in the graph, for which the edges have weights attached

to them. So we have w
(l)
ji as the weight from the i-th neuron in the (l − 1)-th layer to the j-th

neuron in the l-th layer. Then the associated output of the j-th neuron in the l-th layer is given
by:

a
(l)
j = f(

∑
i∈inputs

w
(l)
ji a

(l−1)
i + b

(l)
j) (7.2)

For the forward propagation of data processing through the neural network, we have:

z(l) = w(l)a(l−1) + b(l) (7.3)

a(l) = f(z(l)) (7.4)

where z(l) is the (already sorted) weighted input to the neurons in layer l and a(l) is the activation
of the l layer neurons. Additionally, we call the arrangement of neurons (e.g. number of neurons
in each layer) the neural network architecture.

§7.2 Backpropagation

The premise of backpropagation is that during the training phase, after we do the forward
pass/propagation, we want to compute some loss function at the last layer and feed this informa-
tion back to the earlier layers so we can amend the weights at each neuron such that the training
loss is minimized. As such, we define the training loss as follows:

CHAPTER 7. DEEP LEARNING 46

Definition 7.2.1. Backpropagation Point Loss:

J(W, b;x, y) =
1

2
‖hw,b(x)− y‖2 +

λ

2

L∑
l=1

Sl−1∑
i=1

Sl∑
j=1

(w
(l)
ji)2 (7.5)

where the regularization term here suppresses overly large weights (a sum over all the squared-
weights in the neural network). λ is known as the weight decay regularizer.

Definition 7.2.2. Backpropagation Training Loss:

J(W, b) =
1

m

m∑
i=1

(
1

2

∥∥∥hw,b(x(i))− y(i)∥∥∥2) +
λ

2

L∑
l=1

Sl−1∑
i=1

Sl∑
j=1

(w
(l)
ji)2 (7.6)

The core of backpropagation is to understand how changing the weights and biases in a network
changes the cost function. To do this, we require computing the partial derivative∇wJ (or∇bJ)
of the cost function J with respect to any weight w (or bias b) in the network. It is also useful

to define an intermediate quantity δ
(l)
j which measures the error of in the j-th neuron in the l-th

layer.

We can think of the process as having a little demon at the j-th neuron in the l-th layer ‘perturb-

ing’ the inputs. As inputs enter the neurons, the demon does a change by 4z(l)j to the neurons

weight inputs so that the output becomes f(z
(l)
j + 4z(l)j) instead of just f(z

(l)
j). This change

propagates through later layers in the network, finally causing the overall loss to change by an

amount ∂J

∂z
(l)
j

4 z
(l)
j . So the affect of this demon on the cost function is governed by the size of

the value

∣∣∣∣ ∂J∂z
(l)
j

∣∣∣∣.
Motivated by this story, we define the error δ

(l)
j as follows:

δ
(l)
j =

∂J

∂z
(l)
j

(7.7)

and δ(l) is used to denote the vector of errors associated with layer l. As such, backpropagation
will allow us to compute this error quantity for every layer and then relate that to the quantities of
interest∇wJ and∇bJ . Conventionally, we say that a neural network has L layers, so computing

the error in the output layer would mean we are computing δ
(L)
j .

δ
(L)
j =

∂J

∂z
(L)
j

=
∂J

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

=
∂J

∂a
(L)
j

f ′(z(L))

47 7.2. BACKPROPAGATION

To restate this for clarity, we have:

δ
(L)
j =

∂J

∂a
(L)
j

f ′(z(L)) (7.8)

Since a(L) = f(z(L)). The first term on the right measures how fast the cost is changing as
a function of the j-th output activation. The second term on the right measures how fast the

activation function f is changing with z
(L)
j . Recalling that J = 1

2

∑
j(yj−a

(L)
j)2, so we have that

∂J

∂a
(L)
j

= (a
(L)
j − yj) and δ

(L)
j = (a

(L)
j − yj) ∗ f ′(z(L)) where ∗ denotes elementwise multiplication.

Now we want to look at the relation of the error in an l-th layer with the error in the next
(l + 1)-th layer. This is relation is given by:

δ(l) =
(

(W (l+1))T δ(l+1)
)
· f ′(z(l)) (7.9)

where W is the neuron weight matrix. So starting with computing the error at the output layer
L and utilizing the relation above, we can recursively compute the errors in every layer of the
neural network. From this, how do we tweak the parameters (w and b) appropriately so as to
optimize our neural network? First we start by presenting the following propositions:

1.
∂J

∂b
(l)
j

= δ
(l)
j (7.10)

The proof for this is rather simple by employing the chain rule and recalling that z
(l)
j =∑

i(w
(l)
ji a

(l−1)
i) + b

(l)
j .

2.
∂J

∂w
(l)
ji

= a
(l−1)
i δ

(l)
j (7.11)

Similarly, the proof for this is also rather simple by just recalling the relevant definitions.

With these, we can formalize the full backpropagation algorithm.

Backpropagation Algorithm:

1. Input x: We initialize the weights of each neuron and the activation a(0) of the
first layer.

2. Feedforward: For each layer l ∈ [1, L], we compute z(l) = w(l)a(l−1) + b(l).

3. Output Error: We then compute the error in the output layer δ
(L)
j = ∂J

∂a
(L)
j

f ′(z(L)).

4. Backpropagate the Error: For l going from L to 1, we then compute the errors

for each layer δ(l) =
(

(W (l+1))T δ(l+1)
)
· f ′(z(l)).

5. Output: We compute the gradient of the cost functions ∂J

∂b
(l)
j

= δ
(l)
j and ∂J

∂w
(l)
ji

=

a
(l−1)
i δ

(l)
j .

CHAPTER 7. DEEP LEARNING 48

With the output of the backpropagation algorithm, we can apply the SGD algorithm in order to
find the optimal parameters which minimize the training loss J .

An example of a neural network implementation for deep learning is an autoencoder. The idea
of an autoencoder is that we are trying to train a multilayer neural network to reconstruct the
input from a dimension reduced representation (unsupervised learning). Some strategies for
dimensionality reduction are few hidden neurons and sparse activations. This will be touched
on in the next chapter.

Note: Although the backpropagation technique will always allow for a convergence to
a solution, the solution may not be the global optimal solution unless the error space is
strictly convex.

Chapter 8

Generative Models

Generative models are a method of learning a data distribution in an unsupervised fashion. The
goal is to predict the true data distribution of the training data set so that we can generate
new data points which follow this distribution. Two of the most common approaches are the
Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN). VAE
works by attempting to maximize the lower bound of the data log-likelihood whereas GAN finds
an equilibrium between generator and discriminator modules. These will be touched on in greater
detail through this chapter.

§8.1 Some Essential Math

The most commonly found distribution would be the Gaussian or normal distribution. In
machine learning, it is not often that our features have just a single dimension. As such, we look
at the Gaussian for general d-dimensional multivariate problems.

Definition 8.1.1. Multivarate Gaussian: The multivariate Gaussian for a vector of vari-
ables/states x ∈ Rd, given the parameters µ ∈ Rd and Σ ∈ Rd×d (positive definite) is a
probability density function defined as:

p(x|µ,Σ) =
1

(2π)d/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(8.1)

where µ is the mean vector of the observed data and Σ is the covariance matrix.

Definition 8.1.2. Covariance Matrix: Given a vector X whose row entries are random
variables Xj, the covariance matrix is defined as:

Σij = E[(Xi − µi)(Xj − µj)] (8.2)

So the ij-th entry is the covariance (joint variability) of 2 random variables Xi and Xj. The
inverse covariance matrix Σ−1 is known as the concentration or precision matrix.

49

CHAPTER 8. GENERATIVE MODELS 50

Computing the Covariance Matrix:

In machine learning, we are given data sets in which for a given random variable Xj , we
have an n sized set of observed values xj of this random variable. As such, our vector of
random variables becomes a (n×d) matrix whose j-th column is the vector of observations
of random variable Xj .

As such, we compute our covariance matrix as follows:
1. Compute the mean of each random variable µj = 1

n

∑n
i=1(Xj)i to give us a vector

of averages µ = {µ1, µ2, ..., µd}T .
2. Convert µ in a matrix µ̄ via the following operation µ̄ = µ∗row(1; d), where row(1; d)

is a d-length row vector of ones.
3. Finally we compute the covariance matrix via:

Σ =
1

2
(X − µ̄)T (X − µ̄) (8.3)

The most ideal form of a Gaussian is known as a spherical Gaussian, since its level curves map
out hyperspheres when projected on its d− 1 domain.

Definition 8.1.3. Spherical Gaussian:

p(x|µ, σ2) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖x− µ‖2

)
(8.4)

Essentially, it is a standard Gaussian but with the covariance matrix being diagonal with
equal variances:

Σ =


σ2 0 . . . 0
0 σ2 . . . 0
...

. . .
...

0 0 . . . σ2

 (8.5)

Figure 8.1: Spherical Gaussian of 2 Variables

If the covariance matrix is diagonal but with non-constant variances along its main diagonal,

51 8.2. MAXIMUM LIKELIHOOD ESTIMATES (MLE)

it would stretch/compress the hypershere along its the parameter (x1, x2, ...) axes. A non-
diagonal covariance matrix would result in hyperspheres that we stretch/compressed along arbi-
trary axes.

§8.2 Maximum Likelihood Estimates (MLE)

For our generator model, we will be utilizing the concept of maximum likelihood estimation which
is a means of estimating the parameters of a statistical distribution model. This is done in a
model for which we have the parameters θ ∈ Rd with associated distributions P(x|θ). We are also
given the set of observations S = {x(1), x(1), ..., x(n)} for which these are used to approximate

the parameters θ̂ ∈ Rd that best describes the data in S.

Definition 8.2.1. Likelihood Function: We define the likelihood function, or simply the
likelihood, as:

p(S|θ) =
∏
x∈S

p(x|θ) (8.6)

Which is the probability density function (distribution) given some fixed parameters θ.

Definition 8.2.2. Maximum Likelihood Estimate: The maximum likelihood estimates are
defined as as:

θ̂ = argmaxθp(S|θ) (8.7)

which are the parameters that maximize your likelihood.

Maximizing Log Likelihood:

An equivalent optimization problem for likelihood maximization is minimizing the nega-
tive log of the likelihood.

min{− 1

n
logP(x|θ)} = min

{
− 1

n
log
∏
x∈S

p(x|θ)
}

= min
{ 1

n

∑
x∈S

1

log p(x|θ)

} (8.8)

It is then convenient to define this objective function as the training loss.

Definition 8.2.3. MLE Point Loss:

L(θ;x) = − logP(x|θ) (8.9)

Definition 8.2.4. MLE Training Loss:

Ln(θ;S) =
1

n

∑
x∈S

1

logP(x|θ)
(8.10)

CHAPTER 8. GENERATIVE MODELS 52

Let us now look at an example of an application of least likelihood estimation.

Example:

Suppose we have a data set S = {x(1), x(2), ..., x(n)} that we assume to be independent
and identically distributed with a spherical Gaussian distribution (means µ ∈ Rd and
variance σ2). As previously defined, our loss function is given by:

Ln(µ, σ2;S) = − 1

n

∑
x∈S

log p(x|µ, σ2)

= − 1

n

∑
x∈S

log
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖x− µ‖2

)

=
d

2n

∑
x∈S

log
(
2πσ2

)
+

1

n

∑
x∈S

‖x− µ‖2

2σ2

=
d

2
log
(
2πσ2

)
+

1

2nσ2

∑
x∈S
‖x− µ‖2

(8.11)

To get the minimum likelihood estimator, we apply the necessary conditions and solve
for the parameters µ̂ and σ̂2. First looking at the parameter µ, we have:

∇µLn = 0

⇒ ∂Ln
∂µj

= − 1

nσ2

∑
x∈S

(xj − µj) = 0

⇒ µ̂ =
1

n

∑
x∈S

x

(8.12)

And similarly for σ2:

∂Ln
∂σ2

= 0

⇒ d

2σ2
− 1

2nσ4

∑
x∈S
‖x− µ‖2 = 0

⇒ σ̂2 =
1

nd

∑
x∈S
‖x− µ‖2

(8.13)

§8.3 Variational Autoencoders (VAE)

We will be looking at both supervised and unsupervised learning paradigms, and the goal of a
generative model for both these contexts. Recall that in supervised learning, we are trying to
map feature vectors x to label vectors y. Whereas for unsupervised learning, we are trying to look
for underlying/hidden structure within the data sets. Knowing this, we can use unsupervised
learning to understand the hidden structures in our visual world!

53 8.3. VARIATIONAL AUTOENCODERS (VAE)

‘What I cannot create, I do not understand.’

– Richard Feynman

In the context of generative models and image generation, we want to have algorithms that
generate image distributions such that the pmodel(x) is similar to pdata(x). How do we do this?
We can use the system of an autencoder. The goal of an autoencoder is to approximate an
identity function, that is to say the the autoencoder tries to learn a function hW,b(x) ≈ x. This
may seem like a trivial task, but the point is that this function will give us insights to structures
within the data.

Figure 8.2: Autoencoder Diagrammatic Flow

First, we explore the use of what is called a sparse autoencoder. Sparse autoencoders make use of
a sparsity constraint on the hidden neurons, for which this imposition still allows us to discover
interesting structure in the data, even if the number of hidden units is large. Along with this

constraint, we would like the average activation a
(l)
ji of each hidden neuron to be small (usually

0.05). This low average activation value can be written as:

ρ̂j =
1

m

m∑
i=1

aj(x
(i)) (8.14)

where aj denotes the activation value of hidden unit j and m is the number of data samples.
We introduce a sparsity parameter ρ = 0.05 such that ρ̂j = ρ (i.e. all activations of neuron j
are low/close to 0.05). To achieve this, we add an additional term to our objective/loss function
that will be 0 when ρ̂j = ρ and increase monotonically as ρ diverges from ρ̂j . The function we
utilize for this is the Kullback-Leibler-divergence (KL-divergence).

Definition 8.3.1. Kullback-Leibler Divergence: KL-divergence is a standard function that
gives a measure of the difference between 2 distributions and is defined as:

KL(p||p̂j) = p log
p

p̂j
+ (1− p) log

1− p
1− p̂j

(8.15)

As such, our loss function is now given by:

Jsparse(W, b) = J(W, b) + β

s∑
i=1

KL(p||p̂j) (8.16)

CHAPTER 8. GENERATIVE MODELS 54

where s is the number of neurons, β is another regularizer and J(W, b) is the standard backprop-
agation loss defined in definition 7.2.

§8.4 Generative Adversarial Networks (GAN)

‘GAN is the most important upcoming breakthrough in deep learning.’

– Yan LeCun

The basic architecture of a GAN model is first, we input a random noise feature vector into
a generative model G which produces an output (e.g. image). This output is then fed into a
discriminator D which compares/discriminates the generated output with an real observed data.
The output of the discriminator D is simply binary (output ∈ {0, 1}), and sorts the outputs 0 if
the output is classified as real data, and 1 if it is classified fake.

Figure 8.3: GAN Diagrammatic Structure

So the question is, how can we generate fake images that look real from random feature vec-
tors? Ian Goodfellow came up with the idea that we can achieve this via attempting to ‘fool’
the disciminator into making mistakes. Essentially, we are going to pit the generator and the
discriminator against each other in sorts of a competitive game. This is again can be mapped
into an optimization problem as follows.

Adversarial Otimization:

let’s look at images. As the name suggest, the idea is that now we think of D and
G as players competing against each other. D wins by correctly distinguishing real and
generated images wheres G wins if it fools D. So what we propose is a turn-based game. D
starts by practicing (deep learning) on a set of generated images from G. After sufficient
practice (optimizing its neuron weights for discrimination), the turn is then passed to

55 8.4. GENERATIVE ADVERSARIAL NETWORKS (GAN)

G which practices fooling D (optimizing its neuron weights for real-looking generated
images). This game is then repeated until the generated images look amazingly real.
Formally, this process is presented as follows:

First, we define a prior probability distribution pz(z) on the input noise variables
z. The generator network then gives a differentiable mapping to the data space
G(x; θg) which we can then use to learn our generators distribution pg.

Next, we define a map for our discriminator D(x; θd) which outputs 0 or 1 for
‘real’ or ‘generated’ classification (could also be a continuous output ∈ [0, 1] that
will give a probability of the images being real or generated).

We then define the objective function as:

V (G,D) = Ex∼pdata(x)

[
logD(x; θd)

]
+ Ez∼pz(z)

[
log
(
1−D[G(z; θg)]

)]
(8.17)

With this, we can run our little competition between the 2 networks.
1. Optimize V (G,D) while fixing G (in favour of D):

max
D
{VG(D)} = max

D

{ 1

m

m∑
i=1

[
logD(x; θd) + log

(
1−D[G(z; θg)]

)]}
(8.18)

To do this, we apply the gradient ascent (SGA) using the gradient with
respect to parameters θd, ∇θdVG(D).

2. Optimize V (G,D) while fixing D (in favour of G):

min
G
{VD(G)} = min

G

{
Ez∼pz(z)

[
log
(
1−D[G(z; θg)]

)]}
(8.19)

To do this, we apply the gradient descent (SGD) using the gradient with
respect to parameters θg, ∇θgVD(G).

The algorithm (pseudo-code) can be summarized as follows:

CHAPTER 8. GENERATIVE MODELS 56

Figure 8.4: Overview of the GAN Algorithm

Chapter 9

Kernel Methods and
Convolutional Neural Networks

The motivation of using Kernel methods is that during classification, the 2 classes are not linearly
separable. So we project the data from the original feature space into a higher dimensional space
such that we can find linear decision boundaries. If we are able to find some projection function
that does this effectively, then we are able to separate classes in linear way which we are familiar
with.

Figure 9.1: Higher Dimensional Projections for Linear Separability

§9.1 Kernel Methods

A basic concept in machine learning is the dot product. You often do dot products of the features
of a data sample with some weights w, the parameters of your model. Instead of doing explicitly
this projection of the data in 3D and then evaluating the dot product, you can find a kernel
function that simplifies this job by simply doing the dot product in the projected space for you,
without the need to actually compute projections and then the dot product. This allows you to
find a complex non-linear boundary that is able to separate non-linearly separable classes in the
data set.

57

CHAPTER 9. KERNEL METHODS AND CONVOLUTIONAL NEURAL NETWORKS 58

§9.1.1 Feature Mapping

In order to fully utilize the power of kernel methods, what we normally do is first construct a
map that takes the feature vectors from our original vector space into a higher dimensional space
that ensures linear separability. This map is called a feature map and is generally denoted as
φ(x),

φ : X → V (9.1)

where x is the feature vector from the original vector space X and V is the new linearly seperable
vector space equipped with an inner product 〈 , 〉V . To better understand this, consider the
following example. Let’s say with have a data set of 2D feature vectors x = (x1, x2) and
supposed the data is not linearly separable in the 2D space. We can construct some higher
dimensional space such that the data becomes linearly separable with the vector function φ and
classifier h(x; θ, θ0) defined as:

φ(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2) (9.2)

h(x; θ, θ0) = sign
(
θ · φ(x)

)
= sign

(6∑
j=1

θjφj(x)
)

(9.3)

We have now effectively allowed for linear separability. However, the size of our space has largely
increased, increasing the complexity of our algorithm (complexity of inner products is O(d)). So
we look to kernel functions to help us with this dimensionality problem.

Definition 9.1.1. Kernel Function: A function K : Rd × Rd → R is a kernel function iff:

1. It is symmetric: K(x, y) = K(y, x) for all x, y ∈ R

2. Given n ∈ N and x(1), x(2), ..., x(n) ∈ Rd, the Gram matrix K̂ with entries K̂ij =
K(x(i), x(j)) is positive semidefinite (eigenvalues ≥ 0).

What is essentially happening in a Kernel function is that it is computing the inner product of
φ(x) and φ(x′) on the inner product space V, but without having to explicitly specify the feature
map φ and thus not having to explicitly compute this higher dimensional inner product! The
hard part is defining an appropriate inner product function 〈φ(x), φ(x′)〉V that achieves this.
Some examples of commonly used Kernel functions are given below.

Kernel Examples:

1. Linear Kernel: K(x, x′) = x · x′ .

2. Polynomial Kernel: K(x, x′) = (x · x′ + 1)k .

3. Radial Basis Kernel: K(x, x′) = exp
(
− 1

2
‖x− x′‖2

)
For the radial basis kernel, the higher dimensional space is infinite dimensional but
the kernel function allows us reduce that to a finite dimensional space.

59 9.2. CONVOLUTIONAL NEURAL NETWORKS

Kernel functions have several useful properties:

1. Kernels can be constructed manually.
2. Inner (scalar) products 〈x, x′〉 are kernels.
3. Constant maps K(x1, x2) = 1 are kernels.
4. The product of kernels is a kernel K(x, x′) = K1(x, x′)K2(x, x′).
5. For every function φ : X → R the product K(x, x′) = φ(x)φ(x′) is a kernel.
6. Linear combinations of kernels K(x, x′) = a1K1(x, x′) + a2K2(x, x′) with positive coeffi-

cients are kernels.

As earlier mentioned but not discussed, the kernel trick is a strategy that allows us to only
have to compute the kernel function (not the actual feature maps φ(x)) to perform a learning
algorithm. This is useful because in general, computing the kernel is much less computationally
heavy than computing the feature map.

§9.2 Convolutional Neural Networks

Convolutional neural networks act as image classifiers and does so by learning and identifying
features of an image. To do this, we first note that often times, there are patterns which are
localized and do not require processing the entire image to pick out. How then do we use this
to our advantage for machine learning implementations? A convolutional neural network takes
advantage of this beautifully, and we will work through learning how it does so.

§9.2.1 Convolutional Filters and Layers

A CNN is a neural network with some convolutional layers (and possibly some other layers).
Each of these convolutional layers have a number of convolutional filters that do the convolutional
operations. We can treat these convolutional filters as the weights that we want to optimize using
back propagation (just as in a standard deep neural network). A convolution is essentially the
same operation as a dot/inner product, so each filter (acting as a neuron) maps features of an
image to a scalar value (which is essentially the neuron activation value to be fed into the next
layer). Before we move on, it is important that we familiarize ourselves with some common
terminologies used by people in the CNN field:

• Filter: A pixel grid (with weights attached to each pixel) smaller than the whole image
that we use to compute it’s dot product with the image pixels it is ‘placed over’.

• Stride: Number of pixels the filter shifts by for each convolution operation.

Ideally, the filter detects some pattern present in the image and weights that pattern positively.
All other entries in the filter matrix is weighted down (negative). As such, the output of the
filter’s inner product gives the likelihood of the feature being at a specific location (more positive
implies higher likelihood). It is best to use an example to illustrate this.

Example

Let’s say that we want to look for a particular local feature in an 6× 6 pixel image that

CHAPTER 9. KERNEL METHODS AND CONVOLUTIONAL NEURAL NETWORKS 60

corresponds to the following pattern: ∗ ∗
∗

 (9.4)

For simplicity, we also consider an image that only has binary (0 or 1) image pixel values.
What we could is use a 3×3 pixel filter that has weights which ‘look out’ for this pattern,
and move this filter around to generate a feature map. Our filter could be constructed as
follows: +1 −1 −1

−1 +1 −1
−1 −1 +1

 (9.5)

where we see that the diagonal pattern we are looking for would receive positive weightings
if our filter is applied to it, and all other unwanted features are down weighted. So let’s
say our image is given as follows: 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

 (9.6)

We can move our filter along this image pixel matrix with a stride of 1 starting from the
top left most corner. Doing this will allow us to generate a 4×4 feature map who’s entries
are simply the inner product values of the filter applied to the corresponding portion of
the image. The feature map generated for this is given as follow:

3 −1 −3 −1
−3 1 0 −3
−3 −3 0 1
3 −2 −2 −1

 (9.7)

With these feature map, we simply extract the entries with the highest output values
and infer that these locations on the image are most likely to contain the feature we are
looking for.

§9.2.2 Max Pooling

In general, images can be very large (many pixels) for which not all the information from every
pixel is actually required to pick out essential features in the image. In order to reduce the
computation required to process large images, we utilize a technique known as max pooling.
Essentially, max pooling works by taking the maximum value of smaller windows over the feature
maps. Let’s illustrate this with an example.

61 9.2. CONVOLUTIONAL NEURAL NETWORKS

Example:

Consider the feature map generated from our previous example (equation 9.7). Now, we
can perform max pooling by using some 2× 2 window and a stride of 1, which will allow
us to generate the following ‘compressed’ feature map:3 1 0

1 1 1
3 0 1

 (9.8)

What we essentially did here is similar to what we did for feature mapping, but instead of
taking the inner product of some filter on the applied site, we simply extract the highest
data value in the window. As such, the compressed feature map above is the output of
max pooling.

So we see that a CNN compresses a fully connected network in 2 ways:

1. Reduce the number of connections and shared weights on the edges (in the convolutional
layer).

2. Reduces the complexity of the data (via max pooling which reduces the size of the feature
map).

Chapter 10

Recurrent Neural Networks

Recall that in a convolutional neural networks (CNN), inputs and outputs are independent of
each other and no memory of the previous input is stored. However in recurrent neural networks
(RNN), it has ‘memory’ of the inputs and thus allows for learning sequential data. As such,
we term RNNs a sequence model. With this, it can be applied to tasks like speech recognition,
machine translation and time-series prediction. As a side note, RNNs are not the only sequence
model to solve the sequential data problem. Examples of other sequence models are the auto-
regressive model, feed-forward neural nets, hidden Markov model, etc. RNNs are also useful for
non-sequential input data and not limited to just the sequential paradigm.

§10.1 Vanilla RNN Unit/Cell

There are several things that make an RNN so effective as a sequence model:

• Distributed hidden states that allow RNNs to store a lot of information about the past
efficiently.

• RNNs have non-linear dynamics that allows them to update their hidden state in com-
plex ways.

• There is no need to infer the hidden state, they are purely deterministic.
• RNNs utilize weight sharing.

In general, an RNN consists of a recurrent core cell that takes some input x, feeds this input into
the RNN, which has some internal hidden state, and that internal hidden will be updated every
time the RNN reads a new input. It is common that we will also want our RNN to produce
an output at every iteration/time step. The recurrence relation of this hidden state is given the
functional form:

ht = fW (ht−1, xt) (10.1)

Conceptually, we can think of RNNs in 2 ways:

1. We can think of it having this hidden state that feeds back on itself recurrently (conventional
presentation but may be a little confusing).

62

63 10.1. VANILLA RNN UNIT/CELL

2. Alternative, we can consider an ‘unrolled’ version of this architecture over multiple time
steps. At the first time step we have some initial hidden state h0 and some input x1. These
will go into our fw function which will output the next hidden state h1. Then this will be
fed in along with x2. Then this process keeps running like a film roll revealing itself.

Figure 10.1: Unrolled RNN Representation

Furthermore, we can think of each step having an output yt and a loss Lt and the total
loss is just the sum of the losses at each time step.

Note: we use the same function fw and these same weights w at every time step of this
computation.

The simplest functional form that one can imagine is called a vanilla recurrent neural network
(a basic ‘flavour’). The hidden state in a vanilla RNN cell takes the form:

ht = tanh(Whhht−1 +Wxhxt) (10.2)

where Whh and Wxh are some weight matrices and we squash this weighted sum into a tanh to
create some non-linearity. We can also just concatenate the Whh and Wxh matrices into a larger
W matrix to give:

ht = tanh

(
W

[
xt
ht−1

])
, W = [WxhWhh] (10.3)

§10.1.1 Vanilla RNN Forward Pass

The vanilla RNN consists of a forward pass and backward pass just as per neural networks which
utilize backpropogation. We will first be presenting the steps required in the forward pass step.
As seen in figure 10.2 where the network flows from left to right, we have the unrolled sequence of
inputs x1, x2, ... being fed into each vanilla cell along with the previous hidden states h0, h1,
Furthermore, the jth vanilla cells outputs yt = F (ht) which is computed solely based on the
current hidden state ht for which a point loss Ct = Loss(yt, GTt) is computed that will later be
used in the backward pass.

CHAPTER 10. RECURRENT NEURAL NETWORKS 64

Figure 10.2: Vanilla RNN Forward Pass Visualization

Let us now look at a common paradigm in which one might want to employ a recurrent neural
network, sentiment classification.

§10.1.2 Sentiment Classification

Supposed we want to classify a restaurant review from Yelp! or a movie review on IMDB.
For simplicity, we will be looking at a classification into binary outputs representing positive or
negative sentiment. To do this, we can implement the following architectures:

Sentiment Classification Architecture 1:

1. We feed in each words of the sentence into individual vanilla cells (each word is an
input xt).

2. Then the hidden state outputs are fed (in sequence) to the adjacent RNN cell.
3. At the end of the sentence (RNN), only the last RNN cell’s hidden state output is

processed by a linear classifier to interpret the review/sentiment.
A visualization of this is given in the figure (10.3) below:

Figure 10.3: RNN Sentiment Classifier Architecture

65 10.1. VANILLA RNN UNIT/CELL

Alternatively, we could also adopt an architecture that incorporates the hidden states at every
time step (RNN cell). This architecture works as follows:

Sentiment Classification Architecture 2:

1. We feed in each words of the sentence into individual vanilla cells (each word is an
input xt).

2. Then the hidden state outputs are fed (in sequence) to the adjacent RNN cell and
also added to the previous hidden state (ht + ht−1 + ...+ h1).

3. At the end of the sentence (RNN), we take the sum of all hidden states to be
processed by a linear classifier to interpret the review/sentiment.

A visualization of this is given in the figure (10.4) below:

Figure 10.4: Alternate RNN Sentiment Classifier Architecture

§10.1.3 BackPropagation Through Time (BPTT)

Having used the forward pass to generate losses, we now require a backpropagation of this
information through our network to update the weights W . Broadly speaking backpropagation
refers to two things:

1. The mathematical method used to calculate derivatives and an application of the chain
rule.

2. The training algorithm for updating network weights to minimize error.

For our application of this to RNNs, first recall the standard backpropagation procedure as
discussed in section 7.2. For an RNN, we backpropagate the error in a similar way but now
instead of backpropagating it through the many network layers, we backpropagate it through
time steps (so we treat each tie step as another layer). Let us work through doing this.

After the forward pass, we are given the cost function C and the outputs y from which we can
compute ∂C

∂y . However to update the weights, we require to know how C changes with W (i.e.
∂C
∂W). As per standard backpropagation, this can be done recursively so we can get the errors
at every time step. However, we may run into a problem because we additionally have previous

CHAPTER 10. RECURRENT NEURAL NETWORKS 66

hidden states as inputs. So at any of the the t time steps, we have:

∂Ct
∂h1

=
∂Ct
∂yt

∂yt
∂h1

=
∂Ct
∂yt

∂yt
∂ht

∂ht
∂ht−1

...
∂h2
∂h1

(10.4)

This long chain of product terms could prove detrimental to our algorithm because if the func-
tional form of the hidden states is such that ∂ht

∂ht−1
> 1 (or < 1), ∂Ct

∂h1
could explode (or decay)

rapidly!

To fix this, we enforce an identity relationship between the hidden states. The relationship is
defined as follows:

ht = fW (ht−1, xt) = ht−1 + F (xt) (10.5)

The above relation ensures that ∂ht

∂ht−1
= 1, so that the error is allowed to ‘stably’ propagate all

the way back through all time step layers. We call this stable propagation constant error flow.
As a small overview of the combined forward pass and BPTT procedures, the general algorithm
looks as follows:

RNN BPTT Overview:

1. Present a training input pattern and propagate it through the network to get an
output.

2. Compare the predicted outputs to the expected outputs and calculate the error.
3. Calculate the derivatives of the error with respect to the network weights.
4. Adjust the weights to minimize the error.
5. Repeat.

§10.2 Long Short-Term Memory (LSTM)

LSTM makes use of the previously mentioned idea of constant error flow for RNNs to create
a constant error carousel (CEC) which ensures that gradients don’t explode/decay. The key
component of the CEC is a memory cell that acts like an accumulator over time. In this paradigm,
instead of computing new hidden states as a matrix product of weights with the old hidden states
and inputs, the CEC of an LSTM computes the difference between the hidden states. As a
result, the gradients are more “well-behaved”.

Figure 10.5: Rudimentary Constant Error Carousel

67 10.2. LONG SHORT-TERM MEMORY (LSTM)

As seen from figure 10.5 above, we have done a little modification to our vanilla RNN cell by
adding a memory cell and sandwiching that between 2 non-linear units. We represent the state
of the memory cell as ct and call it the cell state (the cell state with a lowercase c and not to
be confused with the cost function C). In this model, we define the cell state with a recurrence
relation as:

ct = ct−1 + tanh

(
W

[
xt
ht−1

])
(10.6)

The t-th hidden state is then taken to be:

ht = fW
(
ct(ht−1, xt; ct−1)

)
= tanh ct (10.7)

In the original LSTM CEC unit, there is also usually 2 additional gates namely the input and
output gates.

Note: It is important to note that these names come from their position within the CEC
but do not imply that they actually input or output data.

Both the input and output gates also take in xt and ht−1 inputs, for which separate weights
(Wi and Wo) are applied and is fed through a sigmoid function. The cell state would now be
computed as follows:

ct = ct−1 + it ∗ tanh

(
W

[
xt
ht−1

])
,

it(ht−1, xt) = sigmoid
(
Wi

[
xt
ht−1

]
+ bi

) (10.8)

where we recall that ∗ stands for element wise multiplication. The current hidden state ht is
then computed as follows:

ht = ot ∗ tanh ct ,

ot(ht−1, xt) = sigmoid
(
Wi

[
xt
ht−1

]
+ bi

) (10.9)

We can think of it and ot simply as xt and ht−1 dependent weights (∈ [0, 1]) that are added
to the non-linear tanh terms. Figure 10.6 below gives a visualization of this LSTM CEC and
hopefully a clearer picture of what is going on here.

Note: Element wise multiplication is sometimes denoted with a ⊗ instead of ∗ depending
on the author, but we will avoid ⊗ in these notes since it can be confused with tensor
products.

CHAPTER 10. RECURRENT NEURAL NETWORKS 68

Figure 10.6: Original Constant Error Carousel Architecture

one-hot encoding is when we have a vector of zeros and only one entry being set as 1.

Chapter 11

Expectation Maximization

The premise is as follows. Presume that we are presented with some unlabelled data that comes
from a multivariate distributions (several data clusters of some distribution). Our task is to
come up with a hypothesis for the parameters of each distribution. The EM algorithm is most
commonly adopted by the Gaussian mixture model which is similar k-means clustering. One
thing to keep in mind for EM is that it is easy to overfit your model because just like in k-means,
there is the issue where increasing your number of clusters will always reduce the loss. Hence, it
is important to find ways to approximate the number of clsuters.

§11.1 Generative Gaussian Mixture Model

First, we recall that for k-means, the general overview its algorithm is as follows:

Simplified k-Means Algorithm:

1. Given hard labels, we compute the centroids.
2. Given centroids, we compute the hard labels.
3. Repeat.

Expectation maximization works in a very similar way just that instead of hard labels, we are
instead computing soft labels (data points could belong to more than one cluster).

Note: For EM Gaussian mixture models, it is convention that we term the clusters as
Gaussians, so when we say Gaussian, we are referring to the data clusters.

The process flow starts by first using an algorithm like k-means to pick out Gaussian centers,
after which we can assign a set of labels yj for j ∈ {1, 2, ..., k} each with an associated probabil-
ity pj to the data (these probabilities are initialized naively with the prior distributions).Prior
distributions are found by acknowledging that different Gaussians have different number of data
points, hence the Gaussians with more data points have a larger probability to be sampled from.
So in the initialization step, pj is simply related to the number of points.

69

CHAPTER 11. EXPECTATION MAXIMIZATION 70

Figure 11.1: Gaussian Mixture Model Process Flow

§11.1.1 Mixture Model and Hidden Labels

The data points are taken to be from Gaussian distributions and hence, are written as x ∼
N (µ(y), σ2

y) which produces the observed data set Sn = {x(1), x(2), ..., x(n)}. The parameters

for our model are then given by θ = {pj , µ(j), σ2
j } for j ∈ [1, k]. We then create a Gaussian

mixture model by simply taking our data points as coming from the sum of the individual
Gaussian distributions. So our task is to predict these individual Gaussians. Utilizing our prior
probability distribution, our model pdf is given by:

p(x|θ) =

k∑
y=1

py · p(x|y, θ) (11.1)

where p(x|y, θ) =
1√

(2πσ2
y)d

exp
(
− 1

2σ2
y

∥∥∥x− µ(y)
∥∥∥2) (11.2)

As such, our objective function (log likelihood) is given by:

Ln(θ) =
∑

(x,y)∈Sn

log
(k∑
y=1

py · p(x|y, θ)
)

(11.3)

where we want to maximize this function. But the difficulty arises from filling in the missing
labels y(j) for the j = 1, 2, ..., k. We do this by taking the expectation from the current model
parameter µ, and then run a learning algorithm that gives a better/updated model parameter
µ′ (this is like the Gaussian version of k-means). As such, we construct the numerical algorithm
as follows:

EM Algorithm:

1. Initialize parameters θ = {pj , µ(j), σ2
j } for j = 1, 2, ..., k.

71 11.1. GENERATIVE GAUSSIAN MIXTURE MODEL

2. Repeat the following steps until convergence:
(a) E-Step: Given parameters θ, compute soft labels p(y|x).
(b) M-Step: Given soft labels p(y|x), compute parametersθ.

In detail, the parameters are initialized as follows:
• py = 1/k which is a uniform distribution.
• µ(y) as the centroids from the k-means algorithm.
• σ2

y = σ2, which is the same sample variance for all y.

The soft labels are computed via Baye’s theorem:

p(y|x) =
p(y, x)

p(x)
=

py · p(x|µ(y), σ2
y)∑k

z=1 pz · p(x|µ(z), σ2
z)

(11.4)

where all the p(x|µ(j), σ2
j) is the spherical Gaussian distribution.

As for the log likelihood maximization step, we compute:
• The effective number of points with label y, n̂y =

∑
x∈Sn

p(y|x) (does not have to
be an integer).

• The effective fraction of points with label y, p̂y = n̂y/n.
• The weighted mean of points with the label y, µ̂(y) = 1

n̂y

∑
x∈Sn

x · p(y|x).

• The weighted variance of points with label y, σ̂2
y = 1

dn̂y

∑
x∈Sn

p(y|x)
∥∥x− µ̂(y)

∥∥2
Like k-means, EM clustering may get stuck in local minima. However unlike k-means, the local
minima are more favorable because soft labels allow points to move between clusters slowly. An
important question to ask now is, how do we choose k (the number of Gaussians)? We can use
a validation set.

§11.1.2 Cross-Validation

There are several methods we can use for cross-validating that we have not overfit our model.
These are presented below:

1. m-fold cross validation is when we segment our data set into m sub-data sets. We then
use one of those subsets for testing and the remaining m− 1 subsets for training. We then
swap out one of the training subsets for the testing set (permutate the subsets) and repeat
this m times.

2. The marginal likelihood method introduces the notion of a Bayesian information cri-
terion (BIC) which is a new objective function. In this new objective function, we add
another term that is dependent on the number of free parameters.

BIC(θ) = Ln(θ)− k(d+ 2)− 1

2
log n (11.5)

where k(d+ 2)− 1 is the number of free parameters for Gaussian mixtures. As such, this
places a penalty for increasing the number of parameters used in our model.

CHAPTER 11. EXPECTATION MAXIMIZATION 72

§ Midterm Summary §

In machine learning, we are doing nothing more than learning functions. As a quick
recap, we have thus far seen 2 broad categories of machine learning models. These are
namely supervised and unsupervised learning. These differ in their presence of labels
for the given data set.

So far for supervised learning, we have
seen classification and regression.

1. Classification:
Classification aims to learn a classi-
fier functions which is a mapping as
follows:

f : Rd → {1, 2, ..., k} (11.6)

Some examples are the perceptron,
neural networks, support vector ma-
chines, logistic regression, etc.

2. Regression:
Regression aims to learn a

f : Rd → Rm (11.7)

Some examples of this are linear re-
gression, ridge regression.

As for unsupervised learning, we have
seen clustering and

1. Clustering:

f : Rd → {1, 2, ..., k} (11.8)

An example of this is k-means clus-
terning.

2. Dimension Reduction:

f : Rd → Rm (11.9)

Some examples are autoencoders
(AE), matrix factorization, principle
component analysis, etc.

We also looked at generative models. In a generative model, we generate data points
(x(j), y(j)) by first generating the y(j) from its distribution, and then generating the
corresponding feature vector from that associated distribution. This is written generally
as:

P(x(j), y(j)) = P(y(j)) · P(x(j)|y(j)) (11.10)

Now, what we are aiming to do is to fit a good distribution that will adequately describe
the actual data distribution, and we do this by maximizing the joint likelihood function
(product of all individual probabilities). From this, we can construct the loss function
as the log of this product and we maximize it.

Chapter 12

Hidden Markov Models

Now, we shall look at more sequence learning models for which we are trying to learn some
underlying distribution. Specifically, we are going to look at structured prediction problems where
we are trying to learn some function that maps one structure to another. Our first approach to
doing this will be the hidden Markov model which assumes no memory of prior states apart from
the immediate previous state. An important concept to understand hidden Markov models is the
naive Bayes assumption. As such, we will first be looking at the naive Bayes model.

§12.1 Naive Bayes

The premise here is that we are going to enforce an independence (‘naive’) assumption in our
model so as to avoid overfitting to a training data set. Let’s start with an example. Consider a
small data set with a bag of words with n = 3 data points (with labels). This data set is written
as follows:

x y
aab +1
ab +1
cdb −1

Figure 12.1: Simple Bag of Words Data Set

We see there are 2 labels/classes, +1 and −1 for each word in the bag of words for which the
assigment probabilities to each class is given as P(y = +1) = π+ and P(y = −1) = π−. Let’s
then look at the first word. The joint probability of the first word and it’s label is given as:

P(x(1), y(1)) = P(y(1)) · P(x(1)|y(1))
= P(y = +1) · P(x = aab|y = +1)

= P(y = +1) · P(a|y = +1) · P(a|y = +1, a) · P(b|y = +1, aa)

(12.1)

but clearly, if we use such a probability function, we will surely overfit to the training data since
we are going to maxmize over the product of all the probability functions of all the words in the

73

CHAPTER 12. HIDDEN MARKOV MODELS 74

training set! So what we do instead is ‘forget’ some previous terms. That is to say, we instead
use the following probability function:

P(x(1), y(1)) ≈ P(y = +1) · P(a|y = +1) · P(a|y = +1) · P(b|y = +1) (12.2)

so we effectively eliminated the problem of overfitting. This technique of ‘forgetting’ is known
as the naive Bayes classifier. As per all other machine learning algorithms, the next step would
then be to define a loss function. Note that here, we have a multinomial distribution for each
P(w|y) where w indicates the word. So just like a binomial distribution where p is the model
parameter (where p is the probability of one event and 1− p the other), we have the probability

of each event given a classifier outcome P(w|y = +/−) = θ
(+/−)
w being the model parameters of

our multinomial distribution. Our loss function is thus:

L = count(y = +1) log π+ + count(y = −1) log π−

+
∑
w

count(w, y = +1) log θ+w +
∑
w

count(w, y = −1) log θ−w
(12.3)

with the constraints
∑
w θ

+
w = 1,

∑
w θ
−
w = 1 and π+ +π− = 1. As such, we take the gradient to

find the model parameters in the usual means for which we get:

π+ =
count(y = +1)

count(y = +1) + count(y = −1)

π− =
count(y = −1)

count(y = +1) + count(y = −1)

θ+w =
count(w, y = +1)∑
w count(w, y = +1)

θ−w =
count(w, y = −1)∑
w count(w, y = −1)

(12.4)

From this, we can use the results of our maximized model parameters in order to determine the
classification of a given word. This is done as follows:

log
P(y = +1|w)

P(y = −1|w)
= log

P(y = +1, w)/P(w)

P(y = −1, w)/P(y = +1, w)

= log
P(y = +1, w)

P(y = −1, w)
= log

π+
∏
j θ

+
wj

π−
∏
j θ
−
wj

(12.5)

for which we have already found closed form solutions for all the parameters necessary to compute
the result above. We took the logarithm of this ratio so we can use the parity (positive or
negative) of the result to do the classification. In general, for classification problems of more
than 2 possible classes, we instead use the following equation to determine the classification of a
given feature:

argmaxx{P(y|x)} (12.6)

75 12.2. SUPERVISED HIDDEN MARKOV MODEL

§12.2 Supervised Hidden Markov Model

Consider a word descriptor classification problem. Given a sentence of words, we want to classify
each word (features) xj into classes yj where the classes are:

yj ∈ {V erb,Determiner,Adjective,Noun} = {V,D,A,N} (12.7)

Usually in a sentence, there are certain relations between subsequent words due to grammatical
structure (e.g. it is unlikely to have 2 verbs appear adjacent to each other in a sentence). How
do we use this to our advantage? In the training phase, we want to maxmize the joint probability
distribution:

P(x, y) = P(x1, ..., xn, y1, ..., yn)

= P(y1, ..., y5) · P(x1, ..., xn|y1, ..., yn)

= [P(y1) · P(y2|y1) · ... · P(yn|y1, ..., yn−1)] · P(x1, ..., xn|y1, ..., yn)

(12.8)

Implicit in the construction above, we are saying that we want to generate the classification labels
first, and then the features from that. But once again, if we use these conditional probabilities
as model parameters, we run into the problem of overfitting to the training data set. So what
we can do now is instead to just ‘remember’ the previous word:

P(x, y) ≈ [P(y1) · P(y2|y1)... · P(yn|yn−1)] · P(x1, ..., xn|y1, ..., yn) (12.9)

One more thing we can add to to improve our model is a ‘start’ and ‘stop’ classification label.
These are labelled as (‘start: y0) and (‘stop’: yn+1). As such, this finally gives us our model
parameters as follows:

P(x, y) = P(x1, ..., xn, y0, y1, ..., yn, yn+1)

≈

n+1∏
j=1

P(yj |yj−1)

 · P(x1, ..., xn|y1, ..., yn)
(12.10)

Now, what if wanted to generate words x given some label y? Well, we again get the exact
distribution using Bayes’ rule and assert some ‘forgetfulness’ that reduces overfitting:

P(x|y) = P(x1, ..., xn|y0, y1, ..., yn, yn+1)

= P(x1|y0, y1, ..., y5, y6) · ... · P(xn|y0, y1, ..., y5, y6)

≈

 n∏
j=1

P(xj |yj)

 (12.11)

where we have asserted the assumption that each feature (word) is only dependent on the label
it is assigned to, which makes sense. With this, the general form of the hidden Markov model
for n words and the n+ 2 corresponding labels (with the start and stop labels) is:

P(x, y) ≈

n+1∏
j=1

P(yj |yj−1)

 ·
 n∏
j=1

P(xj |yj)

 ≈
n+1∏
j=1

ayj−1,yj

 ·
 n∏
j=1

byj(xj)

 (12.12)

CHAPTER 12. HIDDEN MARKOV MODELS 76

where we have defined the quantities ayj−1,yj and byj(xj) which are known as the transition and
emission parameters respectively. In practice, these are given by:

ayj ,yj−1
=

No. of transitions from yj−1 to yj
No. of yj−1 instances

=
count(yj−1, yj)

count(yj−1)
(12.13)

byj(xj) =
No. of times xj is generated from yj

No. of yj instances
=

count(yj → xj)

count(yj)
(12.14)

These transition and emission parameters can be seen as edge weights in a graph. A visualization
of this is given in figure 12.2 below:

start

y
(1)
1 y

(1)
2

. . . y
(1)
n

y
(2)
1 y

(2)
2

. . . y
(2)
n

...
...

...

y
(T)
1 y

(T)
2

. . . y
(T)
n

stop

x1 x2 . . . xn

Figure 12.2: Words and Labels Visualization

In figure 12.2, y
(j)
i represents the j-th possible label that could be assigned to word (feature) xi.

As mentioned earlier, this would be a fully connected graph where each edge connecting 2 nodes
has an edge weight given by:

a
y
(k)
j−1,y

(i)
j
· b
y
(i)
j (xj)

(12.15)

where k indicates the k-th label from the previous word layer. (For simplicity, it is easy to just

call y
(k)
j−1 = v and y

(i)
j = u when looking a each word layer in isolation.) Looking at this, we

find that the search space to find the optimal y for each word gets exponentially larger with the
number of words (O(Tn) where n is the number of words and T is the number of possible labels).
To reduce the computational complexity of this problem, we perform a dynamic programming
algorithm called Viterbi.

Viterbi Algorithm:
1. We first initialize the start score with a base case:

π(0, start) = 1 (12.16)

2. At the j-th word (xj), we assign scores to each possible label u:

π(j, u) = max
v
{π(j − 1, v) · av,u · bu(xj)} (12.17)

77 12.3. UNSUPERVISED HIDDEN MARKOV MODEL

where v are the possible labels for the j − 1-th word.
3. Repeat step 2 for j = 2, ..., n+ 1. As such, the final case at the ‘stop’ layer is:

π(n+ 1, stop) = max
v
{π(n, v) · av,stop · 1} (12.18)

Note that these π’s are the scores for each label for each word.
4. Finally, we recover the optimal path by backtracking through the word layers and

looking for the argmax values for each pi scoring.

The complexity of this algorithm is O(nT 2), which is a huge improvement over the the originally
stipulated O(Tn). The space complexity is O(nT) since we require storage of information in
every node of the graph.

§12.2.1 Decoding

First, we start with looking at a visualization of the hidden Markov model generative process.
This is illustrated in figure 12.3.

start y1 y2 . . . yn stop

x1 x2 . . . xn

Figure 12.3: Hidden Markov Generative Process

In testing, we once again want to perform argmaxx{P(y|x)} as per in the naive Bayes (the testing
phase is also known as decoding). Explicitly, in decoding we are given the features x and model
parameters θ = {ayj ,yj−1

, byj(xj)} for which we want to find the labels y associated to these
features such that:

y∗ = argmaxy{P(y|x)} = argmaxy{P(y, x)} (12.19)

We can use the joint probability instead of the conditional probability because the 2 distributions
simply differ by a constant prefactor with respect to y.

§12.3 Unsupervised Hidden Markov Model

We now look at a scenario where there are no provided labels associated to the features in our
input data. Thus we require to use an unsupervised learning algorithm to learn the hidden
Markov model. Previously, we have been introduced to expectation maximization (EM) as a
means for probabilistic (soft label) clustering of unsupervised data. Loosely speaking, EM was
done by iterating the following 2 steps:

CHAPTER 12. HIDDEN MARKOV MODELS 78

1. E-step: Finding data membership.
2. M-step: Re-estimating model parameters.

We now want to apply this to our context of sequence learning. Let’s start first by looking at
the case with hard labels because this is a simpler starting point. Initially, we are provided with
the features x and some initialized set of model parameters θ, but not the labels. What we do
here is to first, use our initialized parameters to assign membership (y sequences) to the words
in our word sequences (features). This is the M-step. After this, we now have labels to our
features, from which we can then use the supervised hidden Markov model algorithm above to
optimize our model parameters. This is the E-step. We then run these steps iteratively until
convergence.

Using this intuition, we now look at the case where we want to adopt soft labels. We are now
going to assign the conditional probability of a y sequence given an x feature instead of definite
categorizations. As such, the numerators in our transition and emission parameters (12.2) are
no longer going to be integer counts, but expected counts (∈ R). Note that these expectation
values are local count information for each feature instance, whereas for the hard label case,
those counts encoded global count information. These local expected counts can be written
as:

Expected Count of (u to v) = EP(y|x) [count(u, v in (X = x, y))]

=
∑
y

P(y|x) · count (u, v in (X = x, y))

=
∑
y

P(y|x) ·
n∑
j=0

count (u, v in (X = x, y) at position j)

(12.20)

where count(u, v in (x, y)) indicates the number of u to v label word transitions in a given y
sequence given an x word sequence. This count simply goes over all the possible permutations
of label sequences and picks out the number of times we see a u to v transition in all these
permutations. Remember that the P(y|x) are model parameters and the count information is
based on either the initialization or the previous iteration of label assignment. Because we are
just counting these instances, we can simplify the terms indexed by j with:

count(u, v in (x, y) at position j) = [[yj = u, yj+1 = v]] (12.21)

recalling that [[...]] represents the indicator function (maps to 0 if false or 1 if true). With this,
we have that:

EP(y|x) [count(u, v in (x, y))] =

n∑
j=0

∑
y s.t.
yj=u,
yj+1=v

P(y|x)

=

n∑
j=0

∑
y0,...,yn+1

P(y0, ..., yj = u, yj+1 = v, ..., yn+1|x)

=

n∑
j=0

P(yj = u, yj+1 = v|x)

(12.22)

79 12.3. UNSUPERVISED HIDDEN MARKOV MODEL

where we have used the identity
∑
b P(a, b) = P(a). Using a similar method of derivation as in

12.22, we can also get that:

EP(y|x) [count(u in (x, y))] =

n∑
j=1

P(yj = u|x) (12.23)

Let’s look at the each of these probability terms in the sum over j. We want to further decompose
them for our understanding and for possible reductions in computational time. We do this as
follows:

P(yj = u|x) = P(yj = u|x1, ..., xn)

=
P(yj = u, x1, ..., xn)

P(x1, ..., xn)

=
P(x1, ..., xj−1, yj = u) · P(xj , ..., xn|yj = u)

P(x1, ..., xn)

=
αu(j) · βu(j)∑
v αv(k) · βv(k)

(12.24)

where we used Bayes’ rule and also introduced newly defined parameters:

αu(j) = P(x1, ..., xj−1, yj = u) (12.25)

βu(j) = P(xj , ..., xn|yj = u) (12.26)

This may seem a little strange since there seems to be no restriction on which k we pick for
the denominator. The reason for why this is allowed will become clear soon, but we will just
take it as true for now since the math works out. We can also do a similar derivation for the
pair-sequence (yj = u, yj+1 = v) distributions and construct the individual terms in the sum
with α and β:

P(yj = u, yj+1 = v|x) =
[P(x1, ..., xj−1, yj = u) · P(xj |yj = u) · au,v] · P(xj , ..., xn|yj = u)

P(x1, ..., xn)

=
αu(j) · bu(xj) · au,v · βu(j)∑

v αv(k) · βv(k)
(12.27)

We see that for the u, v transition, we now have to account for the probability that u appears in
the j-th position (P(x1, ..., xj−1, yj = u)), the emission probability of xj given u (P(xj |yj = u))
and lastly the transition probability for going from u to v (au,v). Lastly, we want to compute
the emission probability of some observation (word) o from the label u (bu(o)). To do this, we
compute the conditional probability that constitutes the numerator for bu(o) as follows:

EP(y|x) [count(u→ o)] =

n∑
j=1

P(yj = u, xj = o|x)

=
∑

j s.t. xj=o

P(x1, ..., yj = u, xj , ..., xn)

P(x1, ..., xn)

=
∑

j s.t. xj=o

(
αu(j) · βu(j)∑
v αv(k) · βv(k)

) (12.28)

CHAPTER 12. HIDDEN MARKOV MODELS 80

Great, so we now have all the necessary (expected) count information to generate our transition
and emission parameters! This would be done as follows:

ãu,v =
EP(y|x) [count(u, v in (x, y))]

EP(y|x) [count(u in (x, y))]
=

∑n
j=0

(
αu(j)·bu(xj)

·au,v·βu(j)∑
v αv(k)·βv(k)

)
∑n
j=1

(
αu(j)·βu(j)∑
v αv(k)·βv(k)

) (12.29)

b̃u(o) =
EP(y|x) [count(u→ o)]

EP(y|x) [count(u in (x, y))]
=

∑
{j s.t. xj=o}

(
αu(j)·βu(j)∑
v αv(k)·βv(k)

)
∑n
j=1

(
αu(j)·βu(j)∑
v αv(k)·βv(k)

) (12.30)

I have used the tilde notation above for these emission and transition parameters since they are
being updated during the EM algorithm and do not have deterministic closed form solutions.
But now we ask the question, how do we efficiently compute these α and β terms that constitute
our unsupervised learning model parameters in practice? First notice that:

P(x1, ..., xn) =
∑

y0,...,yn+1

P(x1, ..., xn, y0, ..., yn+1) (12.31)

There is a parallel between what we’re trying to do here and the Viterbi algorithm. In Viterbi,
we were looking at maxy0,...,yn+1

{P(x1, ..., xn, y0, ..., yn+1)} whereas now, we are concerned with∑
y0,...,yn+1

P(x1, ..., xn, y0, ..., yn+1). So with the graph picture (12.2) in mind, we see that αu(j)
is in fact just the total probability of all paths entering node u at layer j which begin from the
‘start’ position. Whereas βu(j) is the total probability of all paths exiting node u at layer j
which end at the ‘stop’ position. This is exactly why choosing an arbitrary k (word) layer did
not matter, since the sum over all products of entering and exiting probabilities from any node
layer would produce the same result.

Now knowing what these parameters represent, we can compute αu(j) by simply taking the α
values from the previous word layer, multiplying them by their transition parameters av,u and
emission parameters bv(xj−1) evaluated in the previous M-step iteration, then summing them up.
This is written as:

αu(j) =
∑
v

αv(j − 1) · bv(xj−1) · av,u (12.32)

In terms of probabilities, this parameter is:

αu(j) = P(x1, ..., xj−1, yj = u)

=
∑
v

P(x1, ..., xj−2, yj−1 = v) · P(xj−1|yj−1 = v) · P(yj = u|yj−1 = v) (12.33)

For clarity, the base case (‘start’ to first word layer) is simply:

αu(1) = astart,u (12.34)

The remaining α parameters are then computed for j = 2, 3, ..., n. As for the βu(j), we can
compute these by taking the β values from the next layer, multiply them by their transition

81 12.3. UNSUPERVISED HIDDEN MARKOV MODEL

parameters from state u and then sum them up. This is written as:

βu(j) =
∑
v

βv(j + 1) · bu(xj) · au,v (12.35)

These β parameters are computed for j = n − 1, n − 2, ..., 1 with the j = n base case for this
being:

βu(n) = au,stop · bu(xn) (12.36)

The time complexity of computing all these α and β parameters is exactly the same as computing
the scores for the Viterbi algorithm.

§12.3.1 Max-Marginal Decoding

We now look at the method of decoding the unsupervised hidden Markov model. This will
be done very similar to how the decoding for a generalized supervised hidden Markov model
was done, but instead, we decode over a new parameter space (α and β). After running the
unsupervised algorithm for labelling, we have effectively found joint probability distributions of
all words and their associated labels:

P(y0, y1, ..., yn+1|x1, ..., xn) (12.37)

As such, we get the optimal labels from this by taking the argmax over the labels yi such that
we maximize this joint distribution. We can do this for word indexed by i and run this over a
for loop as follows:

for i = 1, ..., n :

y∗i = arg max
u
{P(yi = u|x1, ..., xn)}

= arg max
u

{
P(yi = u, x1, ..., xn)

P(x1, ..., xn)

}
= arg max

u
{P(x1, ..., xj−1, yi = u, xj , ..., xn)}

= arg max
u
{αu(j)βu(j)}

(12.38)

This method of decoding is referred to max-marginal decoding

Chapter 13

Bayesian Networks

Bayesian networks are generative probabilistic models that were developed for representing and
using probabilistic information. All generative models involve variables. How we select values for
these variables is governed by a probability distribution. As generative models, Bayesian networks
subsume mixture models, hidden Markov models, and many others. In fact, Bayesian networks
provide a simple language for specifying generative probability models. There are two parts to
any Bayesian network model: 1) a directed acyclic graph over the variables and 2) the associated
probability distribution. The graph represents qualitative information about the random variables
(conditional independence properties), while the associated probability distribution, consistent
with such properties, provides a quantitative description of how the variables relate to each other.
The graph structure serves to explicate the properties about the underlying distribution that would
otherwise be hard to extract from a given distribution. It also very useful for understanding
how we can use the probability models efficiently to evaluate various marginal and conditional
properties.

§13.1 Simple Bayesian Networks

Consider the following simple directed acyclic graph (DAG:

x1

x2

x3

x4

x5

Figure 13.1: 5 Node Directed Acyclic Graph

This as we will see, can represent a generative model. Assuming all xj can take on binary
values, and we want to look at the joint probability P(x1, ..., x5) of the entire graph. On further
inspection, we see from the form of the graph that we can factorize its joint probability as

82

83 13.1. SIMPLE BAYESIAN NETWORKS

follows:

P(x1, ..., x5) = P(x1) · P(x2|x2) · P(x3|x1) · P(x4|x2, x3) · P(x5|x3, x4) (13.1)

This immediately gives us a more explicit picture of the structure of the network if let’s say
we didn’t have figure 13.1 available to us. Since xj can only take on binary values, we can
summarize the probability of each xj being 0 or 1 in a 2m× 2 matrix, where m is the number of
nodes the current node depends on (also known as parent nodes). For example, we can represent
P(x4|x2, x3) as:

x2, x3 0 1
0 0 0 1
0 1 1 0
1 0 0.7 0.3
1 1 0.1 0.9

Table 13.1: P(x4|x2, x3) for possible x4 values

Where the probabilities in table 13.1 above are purely arbitrary and for illustration. Despite
them being arbitrarily set, notice that every row in the table/matrix must sum to 1 (by the
axiom of probability). From here, let us now consider another simpler generative example to
better familiarize ourselves with DAGs.

x1

x2

x3

Figure 13.2: 3 Node Directed Acyclic Graph

From figure 13.2 above, we have the joint probability of x1, x2 and x3 to be factorized as:

P(x1, x2, x3) = P(x1) · P(x2) · P(x3|x1, x2) (13.2)

where these ‘factor-ed’ terms actually turn our to be our model parameters to be learned. Above,
we implicitly assumed that if a node has no parent nodes (no dependencies on previous nodes),
then it is statistically independent from all other nodes (assuming no additional information on
the graph is given). We can prove this by considering the following:

P(x1, x2) =
∑
x3

P(x1, x2, x3)

=
∑
x3

P(x1) · P(x2) · P(x3|x1, x2)

= P(x1) · P(x2) ·
∑
x3

P(x3|x1, x2)

= P(x1) · P(x2) · 1 = P(x1) · P(x2)

(13.3)

CHAPTER 13. BAYESIAN NETWORKS 84

Which proves that x1 and x2 are indeed independent random variables which we can see from
the graph.

Note: Notice however that if we are given x3 (i.e the value of x3 is known), then x1 and
x2 are no longer independent!

This method of grouping terms and ‘summing them away’ is known as variable elimination. In a
general DAG, variable elimination is an NP-hard problem, but we can come up with approximate
methods to doing this as well. Just to make sure we understand what is happening here, let us
look at one more example.

x1

x2

x3 x4

Figure 13.3: 4 Node Directed Acyclic Graph

where xj ∈ {0, 1} and each of these nodes have the following associated probability tables:

0 1
0.01 0.99

Table 13.2: P(x1)

x1 x3 0 1
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 13.3: P(x2|x1, x3)

0 1
0.01 0.99

Table 13.4: P(x3)

x3 0 1
0 0.3 0.7
1 0.8 0.2

Table 13.5: P(x4|x3)

Now, let’s say we want to compute P(x1 = 0|x2 = 0). Let us again utilize the method of variable
elimination to do this. First we use Bayes’ theorem to get that the conditional probability we
are concerned with can be also be written as:

P(x1 = 0|x2 = 0) =
P(x1 = 0, x2 = 0)∑
x1

P(x1 = 0, x2 = 0)
(13.4)

Looking at the numerator of the equation above (RHS), we can factorize this as follows:

P(x1 = 0, x2 = 0) =
∑
x3

∑
x4

P(x3) · P(x1) · P(x4|x3) · P(x2|x1, x3)

= P(x1) ·
∑
x3

P(x3) · P(x2|x1, x3) ·
∑
x4

P(x4|x3)

= P(x1) ·
∑
x3

P(x3) · P(x2|x1, x3) · 1

(13.5)

85 13.2. ARBITRARY BAYESIAN NETWORKS

As such, we simply substitute in the values from the tables to get our result as follows:

P(x1 = 0, x2 = 0) = P(x1 = 0) ·
∑
x3

P(x2 = 0|x3)

= 0.01× (0.01× 1 + 0.99× 1)

= 0.01

(13.6)

P(x1 = 1, x2 = 0) = P(x1 = 1) ·
∑
x3

P(x2 = 0|x3)

= 0.99× (0.01× 1 + 0.99× 0)

= 0.01× 0.99

(13.7)

⇒ P(x1 = 0|x2 = 0) =
P(x1 = 0, x2 = 0)

P(x2 = 0)

=
0.01

0.01 + 0.01× 0.99

=
1

1.99
> 0.5

(13.8)

From this, we get that in fact:

P(x1 = 0|x2 = 0) 6= P(x1 = 0|x2 = 0, x3 = 0) (13.9)

This implies that x1 and x3 are indeed no longer independent once we know the value of x2.
This is quite an interesting observation about information pertaining to conditional and marginal
probabilities. This notion is actually known as explaining away and will be re-emphasized again
soon.

§13.2 Arbitrary Bayesian Networks

So far we have looked at some instances of simple explicit Bayesian networks, but it is always
good to construct a generalized model for arbitrarily sized Bayesian networks. As such, we shall
extend the intuitions developed from what we have looked at in these simplistic scenarios. We
can then extend the exact same inference techniques of variable elimination with the following
steps:

Exact Inference for General Bayesian Networks:

For inference problems, we are always looking for the conditional probability of some
variable taking on a value, given some other variables taking on other values. This can
be written in general as:

P(xk = x∗k|xj = x∗j for some set J of j values where j 6= k) (13.10)

The algorithm for exact inference can then be performed as followd:
1. First rewrite the conditional probability as in terms of a joint probability using

CHAPTER 13. BAYESIAN NETWORKS 86

Bayes’ theorem:

P(xk = x∗k|xj = x∗j for j ∈ J) =
P(xk = x∗k, xj = x∗j for j ∈ J)∑
xj ,j∈J P(xk = x∗k, xj for j ∈ J)

(13.11)

2. We then consider just the joint probability (numerator) of the entire network and
then ‘sum away’ the unnecessary terms.

P(xk = x∗k, xj for j ∈ J) =
∑
xj ,j /∈J

P(xk = x∗k, xj ∀j 6= k) (13.12)

3. We then factorize/decompose the joint probability of the entire Bayesian network
using the given model parameters (probabilities in the probability tables) and rear-
range the sums such that they only keep relevant terms to their right (This step is
NP-hard).

§13.2.1 Model Degrees of Freedom

As earlier mentioned, we saw that the factorized terms in our joint probability constitute the
model parameters of our Bayesian network. From our graph visualization of these networks, we
can actually see that the total number of model parameters would then be the number of cells in
all these probability tables. We now want to find a general formula to count this for any given
Bayesian network. This will then allow us to find the number of degrees of freedom of our model.
Let’s start by defining certain variables. Let ri denote the number of possible values xi can take
on. Then the number of rows and columns in the probability table will be:

columns: ri (13.13)

rows:
∏
j∈pa

rj (13.14)

where j ∈ pa means that we only consider the xj ’s which are parent nodes of xi in the product.
As such, we have that the total number of parameters is given by:∑

i

(
ri ·

∏
j∈pa

rj
)

(13.15)

Great, but remember that in probability theory, probabilities are constrained to always sum to
unity. As such, we have that each row in the probability tables for every node must sum to unity,
leaving a lower number of possible free parameters. As such, the total number of free parameters
in any arbitrary Bayesian network model is given by:∑

i

[
(ri − 1) ·

∏
j∈pa

rj

]
(13.16)

and we have that the number of free parameters are exactly equal to the number of degrees of
freedom of our model. This result will be useful in further analysis of Bayesian networks.

87 13.2. ARBITRARY BAYESIAN NETWORKS

§13.2.2 Independence of Nodes and Bayes’ Ball

Earlier, we saw that for the simple Bayesian network 13.3, we could show that 2 originally
statistically independent nodes no longer remained statistically independent when a conditional
value on some other node was imposed. But now, given some arbitrarily complex Bayesian
network, how do we first know if some set of nodes are statistically independent? Furthermore,
how do tell now if this set of nodes are still statistically independent when conditioned on given
values of some other nodes? First consider again a simple network as visualized in graph 13.4
below.

X Z Y

Figure 13.4: Another Simple Bayesian Network

If we want to check if nodes X and Y are statistically independent, we check if:

P(X,Y) = P(X) · P(Y) (13.17)

where the statement above being true implies statistical independence. To do this, we once again
consider the joint probability:

P(X,Y, Z) = P(Z) · P(X|Z) · P(Y |Z)

⇒ P(X,Y, Z)

P(Z)
= P(X|Z) · P(Y |Z)

⇒ P(X,Y |Z) = P(X|Z) · P(Y |Z)

(13.18)

So what we have shown here is that nodes X and Y are statistically independent only if the
value of node Z is given! The converse (nodes X and Y are dependent if Z is not given) is proven
as follows:

0 1
0 0.56 0.44
1 0.38 0.62

Figure 13.5: P(X|Z)

0 1
0.7 0.3

Figure 13.6: P(Z)

0 1
0 0.67 0.23
1 0.15 0.85

Figure 13.7: P(Y |Z)

Proof. First assume that:

P(X,Y) = P(X) · P(Y) (13.19)

Now let’s consider the case where X,Y and Z can take on 2 values ({0, 1}) each. We
then give the probability tables for each node as seen in tables 13.6, 13.5 and 13.7. From
these tables, we then compute the RHS and LHS of the equation above to check if it is
indeed true.
• Left Hand Side:

CHAPTER 13. BAYESIAN NETWORKS 88

To compute these quantities, note that we have:

P(X,Y) =
∑
Z

P(Z) · P(X|Z) · P(Y |Z) (13.20)

As such, we proceed to compute all possible P(X,Y) as follows:

P(X = 0, Y = 0) = (0.7)(0.56)(0.67) + (0.3)(0.38)(0.15) = 0.27974

P(X = 0, Y = 1) = (0.7)(0.56)(0.23) + (0.3)(0.38)(0.85) = 0.18706

P(X = 1, Y = 0) = (0.7)(0.44)(0.67) + (0.3)(0.62)(0.15) = 0.23426

P(X = 1, Y = 1) = (0.7)(0.44)(0.23) + (0.3)(0.62)(0.85) = 0.22894

(13.21)

• Right Hand Side:
To compute these quantities, note that we have:

P(X) · P(Y) =

(∑
Z

P(X,Z)

)
·

(∑
Z

P(Y, Z)

)

=

(∑
Z

P(Z) · P(X|Z)

)
·

(∑
Z

P(Z) · P(Y |Z)

) (13.22)

P(X = 0) · P(Y = 0)

=[(0.56)(0.7) + (0.38)(0.3)][(0.67)(0.7) + (0.15)(0.3)] = 0.260084

P(X = 0) · P(Y = 1)

=[(0.56)(0.7) + (0.38)(0.3)][(0.23)(0.7) + (0.85)(0.3)] = 0.210496

P(X = 1) · P(Y = 0)

=[(0.44)(0.7) + (0.62)(0.3)][(0.67)(0.7) + (0.15)(0.3)] = 0.253916

P(X = 1) · P(Y = 1)

=[(0.44)(0.7) + (0.62)(0.3)][(0.23)(0.7) + (0.85)(0.3)] = 0.205504

(13.23)

Comparing the results of the RHS and LHS probabilities, we see that they indeed do not
equate, and hence our initial assumption is contradicted.

We can also do this 3-node analysis for the 2 other configurations (both arrows pointing into
Z, both arrows flowing in 1 direction), and realize that depending on the configuration of the
directed edges, the Z nodes either ‘allow’ or ‘disallow’ statistical independence between X and
Y (i.e. configuration dictates statistical relationship of X and Y).

With this in mind, we introduce the notion of ‘information flow gates’. The idea is that we want
to think of every node with its direction edges between 2 ‘start’ and ‘end’ nodes in a Bayesian
network as gates, and see if those gates allow a ‘flow’ of probabilistic information from the ‘start’
to the ‘end’ nodes. If there exist a continuous flow path, then the start and end notes are
statistically dependent. They are independent otherwise.

This is likened to a ball rolling through a configuration of pipes from a start to end position,
which is why this problem of finding possible edge paths to check statistical independence of

89 13.3. MARKOV BLANKETS AND GIBB’S SAMPLING

nodes is referred to as Bayes’ ball. A set of all the different possible gate configurations, their
names and their response is given below. Shaded nodes indicate that the values of those nodes
are given.

Open Gates

Figure 13.8: Chain Gate

Figure 13.9: Common Cause Gate

Figure 13.10: Explaining Away Gate

Closed Gates

Figure 13.11: Chain Gate (Closed)

Figure 13.12: Common Cause Gate (Closed)

Figure 13.13: Explaining Away Gate (Closed)

It is clear from this formalism that the hidden Markov model is actually just a special case of a
Bayesian network.

§13.3 Markov Blankets and Gibb’s Sampling

For the Bayesian network problem, so far we have seen to use exact inference methods and
variable elimination to get the respectively probabilities. However, when our network becomes
arbitrarily large and complex, it becomes computational unfeasible to use these exact methods.
As such, we require to utilize approximate methods to get results for our problem. We can
simplify the problem by noticing that conditioning on the set of all variables except the state in
question is equivalent to conditioning on a few variables surrounding only that state. This set
of surrounding nodes/states is called the Markov blanket. To be clear, the Markov blanket of a
node consists of all the 1) parents, 2) children, and 3) children’s parents of that node.

Now, we also want to look at an algorithm that can effectively and efficiently generate the model
parameters from the given training data. As such, we will be looking at the Gibb’s sampling
algorithm which accomplishes this nicely.

Gibb’s Sampling Algorithm:
For a Bayesian Network of n nodes, each possibly taking on values xj and we are given
the value of one of these nodes x∗. We can generate a table of approximate/predicted
values yj , for each xj given state values of the Markov blanket of xj . The algorithm for
this is as follows:

1. Randomly initialize Y (0) = 〈y(0)1 , y
(0)
2 , ..., y

(0)
n 〉.

CHAPTER 13. BAYESIAN NETWORKS 90

2. for t = 1, ..., T :
(a) for k = 1, ..., n:

y
(t)
k ∼ P(yk|y(t)1 , ..., y

(t)
k−1, y

(t)
k+1, ..., y

(t)
n , x∗) (13.24)

(b) Collect the t-th samples 〈y(0)1 , y
(0)
2 , ..., y

(0)
n 〉.

3. Return the samples collected.

§13.4 Supervised Learning in Bayesian Networks

In the supervised learning context, we are given the training set D and the structure (topology)
of the Bayesian network. From these, we want to find the model parameters which are the
probabilities in the probability tables associated to each node. So for this problem, we again
want to maximize the likelihood over the model parameters of observing the given data set. For
this, we require the joint probabilities of each feature instance:

P(X1 = x
(j)
1 , X2 = x

(j)
2 , ..., Xn = x(j)n) (13.25)

where the superscript (j) indicates that this is the value from the j-th observed feature. Since we
know the network structure, we can further decompose each of these observed joint probabilities
into smaller terms which are conditional probabilities. Each of these can then be found using
count information from the data set. The probabilities for every possible value of a given node
given the possible values of its parent nodes can be put into a table/matrix. To get a clearer
picture of this, let’s look at an example. Consider a simple 3 node Bayesian network.

x1

x2

x3

Figure 13.14: 3 Node Example

If xj can take on rj different possible values (j ∈ {1, 2, 3}), then the matrix of probabilities for
node x3 is given by:

91 13.5. STRUCTURE LEARNING IN BAYESIAN NETWORKS

x1 x2 1 2 . . . r3
1 1 θ3(1|1, 1) θ3(2|1, 1) . . . θ3(r3|1, 1)
...

...
...

...
...

1 r2 θ3(1|1, r2) θ3(2|1, r2) . . . θ3(r3|1, r2)
...

...
...

...
. . .

...
r1 1 θ3(1|r1, 1) θ3(2|r1, 1) . . . θ3(r3|r1, 1)
...

...
...

...
...

r1 r2 θ3(1|r1, r2) θ3(2|r1, r2) . . . θ3(r3|r1, r2)

Figure 13.15: Probability Table for Node x3

Where in table 13.15 above, each of the conditional probabilities are model parameters. So now
that we have this picture of what our model parameters are representing, we can generalize
this idea for an arbitrary Bayesian network given m observed feature instances and a Bayesian
network of n states/nodes. The total likelihood function of observed features is defined as the
product of joint probability distributions for each feature instance given by:

m∏
t=1

P(X1 = x
(t)
1 , X2 = x

(t)
2 , ..., Xn = x(t)n) (13.26)

As before, we want to take the log of the likelihood function that maximize that. But since we
know the Bayesian network structure, this can be written as:

log

[
m∏
t=1

P(X1 = x
(t)
1 , X2 = x

(t)
2 , ..., Xn = x(t)n)

]
= log

[
m∏
t=1

(
n∏
i=1

P(Xi = x
(t)
i |Xpa(i) = x

(t)
pa(i))

)]

=

m∑
t=1

n∑
i=1

logP(Xi = x
(t)
i |Xpa(i) = x

(t)
pa(i))

=

n∑
i=1

[
m∑
t=1

log θ(x
(t)
i |x

(t)
pa(i))

]
(13.27)

where the subscript pa(i) indicates all parent nodes of node i. We then train the model by finding
the optimal parameters via minimization (gradient descent) of the negative log-likelihood (loss

function) over the
∑
i

[
(ri − 1)·

∏
j∈pa rj

]
parameters. For clarity, let me restate the loss function

associated to this learning supervised problem.

L(θ;Sm) = −
n∑
i=1

[
m∑
t=1

log θ(x
(t)
i |x

(t)
pa(i))

]
(13.28)

§13.5 Structure Learning in Bayesian Networks

Now we move to a different learning paradigm where we are instead only given a training set
D, and we are supposed to find both the structure of the Bayesian network and the model

CHAPTER 13. BAYESIAN NETWORKS 92

parameters. Let’s first consider a situation of just 2 nodes, each of which can take on 2 possible
values ({0, 1}) and say we are given the following data set.

X Y
0 0
0 1
1 0
1 1
1 0
0 1
0 0

Figure 13.16: 2 Node Network Data Set

There 2 nodes can then have 3 possible configurations as acyclic graphs, for which the associated
probability tables (using count information) are given as follows:

0 1
4/7 3/7

Figure 13.17: State X in G1

0 1
0 2/4 2/4
1 2/3 1/3

Figure 13.18: State X in G2

0 1
4/7 3/7

Figure 13.19: State X in G0

X Y

Figure 13.20: G1

X Y

Figure 13.21: G2

X Y

Figure 13.22: G0

0 1
0 2/4 2/4
1 2/3 1/3

Figure 13.23: State Y in G1

0 1
4/7 3/7

Figure 13.24: State Y in G2

0 1
4/7 3/7

Figure 13.25: State Y in G0

From here, we propose the use of log-likelihood maximization in order to find an optimal structure
and model parameters. However, the issue with just using log-likelihood maxmization is that
it does not give any preferencing between the configurations G1 and G2. Furthermore, it will
always assign a lower score to independent nodes (by the law of total probability), causing
the complexity of the output graph to be high. The problem we are facing here is essentially
model selection, and so to deal with the issue of an over complex model, we utilize the Bayesian
information criterion (BIC). As such, we modify loss function to:

L(θ;Sm) =

n∑
i=1

 m∑
t=1

log θ(x
(t)
i |x

(t)
pa(i))−

log(m)

2
(ri − 1)

∏
j∈pa

rj

 (13.29)

Chapter 14

Reinforcement Learning

We now want to introduce a whole new paradigm of learning that does not really fall under the
conventional supervised and unsupervised learning categories. Before we get to describing this
new form of learning, we once again stress that in machine learning, we are doing nothing but
learning functions. The function that we now want to learn in this chapter is written as:

π : S → A

where S is a set of states, and A is a set of actions. This function is referred to as the policy,
and it tells a machine what action a to take given that the machine exists in some state s. As
such, we can train this policy function by asking the machine to take an action at each state
and then giving a response (feedback) to it. This constitutes what is known as reinforcement
learning. We look first at an introductory example where learning such a function would be
useful.

§14.1 Robot Path Learning

Consider the following problem. Let’s say there is a robot trying to find its way through a room
(possibly with obstacles) towards an exit. How do we construct a training protocol to teach the
robot how to move through this room? Well a good first step would be to discretize the room
into cells (adopting some grid structure). Earlier, we mentioned that we would like a regime
in which we provide some form of feedback to the robot during its training (just as a new dog
owner would do to train his puppy). With this in mind, a viable means of training would be to
design a ‘reward system’ by assigning each cell in the grid with a score. Now comes the tricky
part, how do we design a function related to these scores for the robot to optimize such that it
can find the best possible path to the exit?

Let’s start with some abstractions. We want the robot to try and accumulate the highest possible
score by taking the ‘right’ steps, but at the same time, we also don’t want the robot to simply
go in circles around the room so that it can keep accumulating a higher score indefinitely. As
such, there are 2 considerations in designing the robot’s objective function:

1. The objective function should reward the robot if it takes actions with a higher scores.

93

CHAPTER 14. REINFORCEMENT LEARNING 94

2. The objective function should penalize the robot for taking too many steps.

Let’s call this function to be optimized the utility U (analogous to utility maximization of con-
sumers in economic theory). With the 2 considerations above, we can then define this utility
function over some given path of n steps as:

U(s1, s2, ..., sn) =

n∑
j=1

R(sj) · αj−1 (14.1)

where sj denotes the states over some path of n steps and α ∈ (0, 1) is some discount factor that
lowers the score of future steps which innately prevents over complexity of the path. So we see
that this elegant function addresses both considerations! However, let’s just make sure that this
utility function is upper bounded so it will always attain a finite value no matter the number of
path steps (n→∞):

∞∑
j=1

R(sj) · αj−1 ≤
∞∑
j=1

max
j
{R(sj)} · αj−1

= max
j
{R(sj)} ·

∞∑
j=1

αj−1

= max
j
{R(sj)} ·

(
1

1− α

)
(14.2)

⇒ U(s1, s2, ..., sn) ≤ max
j
{R(sj)} ·

(
1

1− α

)
(14.3)

So our utility function is indeed upper-bounded. Let us also be aware that robots are hardware
devices, as such, there will be some uncertainties in their actual paths traversed vs what the
software has intended for them. These must be taken into account, and we can model these as
transition probabilities of moving from its current state s to the next state s′ (or other surrounding
viable states), given the intended action a of moving to some new state (P(s′|s, a)). Let’s make
a list of the parameters we have so far:

1. A set of states, {si}.
2. A set of actions, {ai}.
3. The reward function R(s, a, s′).
4. Transition probabilities T (s, a, s′) = P(s′|s, a)

These parameters actually constitute what is known as a Markov decision process (MDP), and
are the assumed ‘givens’ in general reinforcement learning problems. With this, we now want
to get a procedure to learn the optimal policy function (π∗) such that it maximize the robot’s
utility U . Let’s recap and define a couple more quantities that will aid us in how to go about
doing this.

1. π(s): the action taken at state s.
2. π∗(s): the optimal action to take at state s.
3. V π(s): the expected utility for a given state s by following a policy π.
4. Qπ(s, a): the expected utility for the state s after taking an action a, and subsequently

following a policy π thereafter.

95 14.1. ROBOT PATH LEARNING

We can then ask, what is the relation between the Qπ(s, a), V π(s) and π(s)? First, consider the
optimal path π∗(s). Then we actually see that:

π∗(s) = arg max
a
{Qπ

∗
(s, a)} (14.4)

V π
∗
(s) = max

a
{Qπ

∗
(s, a)} = Qπ

∗
(s, π∗(s)) (14.5)

Qπ
∗
(s, a) =

∑
s′

T (s, a, s′) ·
[
αV π

∗
(s′) +R(s, a, s′)

]
(14.6)

⇒ V π
∗
(s) = max

a

{∑
s′

T (s, a, s′) ·
[
αV π

∗
(s′) +R(s, a, s′)

]}
(14.7)

Make sure that you understand why the equalities above (14.4, 14.5, 14.6) hold.

§14.1.1 Value Iteration Algorithms

From the boxed equation above, we can in fact already construct our protocol! We call this the
value iteration protocol which is presented below.

Value Iteration Protocol:

1. Initialize V ∗0 (s) = 0 for all s.
2. Compute V ∗i+1(s′) based on V ∗i (s) for all s:

(a)

V ∗i+1(s)← max
a

{∑
s′

T (s, a, s′) · [αV ∗(s′)i +R(s, a, s′)]

}
(14.8)

(b) At this step, we also compute

arg max
a

{∑
s′

T (s, a, s′) · [αV ∗(s′)i +R(s, a, s′)]

}
(14.9)

and store these indices (grid positions) so that we generate the optimal path
through this algorithm.

3. Repeat step 2 until convergence.

In the protocol above, we have used ‘lighter’ notation by replacing π∗ as ∗ in the superscripts of
Vj . Let’s now ask the question, is there a way we can directly compute the values of Q, therefore
bypassing the need to compute V ? It turns out that it is indeed possible and in fact, largely
similar to the way we found an equation purely involving V . This is done as follows:

CHAPTER 14. REINFORCEMENT LEARNING 96

π∗(s) = arg max
a
{Qπ

∗
(s, a)} (14.10)

V π
∗
(s) = max

a
{Qπ

∗
(s, a)} = Qπ

∗
(s, π∗(s)) (14.11)

Qπ
∗
(s, a) =

∑
s′

T (s, a, s′) ·
[
αV π

∗
(s′) +R(s, a, s′)

]
(14.12)

⇒ Qπ
∗
(s, a) =

∑
s′

T (s, a, s′) ·
[
R(s, a, s′) + αmax

a′
{Qπ

∗
(s′, a′)}

]
(14.13)

With this, we can define a new value iteration procedure for Q which we call the Q-value iteration
algorithm.

Q-Value Iteration Protocol:

1. Initialize Q∗0(s) = 0 for all (s, a).
2. Compute Q∗i+1(s′, a′) based on Q∗i (s, a) for all s:

(a)

Qπ
∗

i+1(s, a)←

{∑
s′

T (s, a, s′) ·
[
R(s, a, s′) + αmax

a′
{Qπ

∗

i (s′, a′)}
]}

(14.14)

(b) At this step, we also compute

arg max
a

{∑
s′

T (s, a, s′) ·
[
αmax

a′
{Qπ

∗

i (s′, a′)}+R(s, a, s′)
]}

(14.15)

and store these indices (grid positions) so that we generate the optimal path
through this algorithm.

3. Repeat step 2 until convergence.

Finally, can we also construct a ‘policy iteration protocol’? Let’s first consider the equa-
tion:

Qπ(s, a) =
∑
s′

T (s, a, s′) · [αV π(s′) +R(s, a, s′)] (14.16)

We want to make an equation that only involves V , as such, we can replace all a’s with π(s) to
get:

Qπ(s, π(s)) = V π(s) =
∑
s′

T (s, π(s), s′) · [αV π(s′) +R(s, π(s), s′)] (14.17)

From here, we can establish a system of linear equations for the N different s states. We can
then use some linear solver to find the solutions for the optimal policy. However, this algorithm
is much more computationally expensive than the previous 2 value iteration algorithms (since
Gaussian elimination has a high time complexity).

97 14.2. GENERAL REINFORCEMENT LEARNING SCHEME

§14.2 General Reinforcement Learning Scheme

In a generalized reinforcement learning problem, we do not know that reward function R, or the
transition probabilities T . As such, we are only given the following to start with:

1. A set of states.

2. A set of actions.

For our machine to learn here, we can instead take a model-free approach. First consider the
following game.

Coin Toss Game:
There is a game master who flips a coin. If the result is heads, we get $20, but if the
result of the flip is tails, we have to pay the game master $10. Would you play this game?
What we aim to do here is to find P(H) before we make a decision to play or not. How we
can do this is by first observing other players and their outcomes. Let’s say we observe
another player who gets the following results:

{H,H, T,H, T, T, T, T, T, T} (14.18)

We can update our belief about the game at every new observed instance of the game
result with the following equation:

Ek[money gained] =
v · (k − 1) + (t)

k
(14.19)

where k is the index of the current game round, v is the expected monetary gain in the
k − 1th round, and t is the money gain outcome in round k.

Extending the intuition gained from the example game to our robot learning context, what we
can do is come up with the expected score values at each time step as the robot collects more
data samples over time.

Qnew(s, a) =
Qold(s, a) · (k − 1) + [R(s, a, s′) + α ·maxa′{Q(s′, a′)}]

k
(14.20)

From this, we can construct an algorithm to perform this dynamic Q-learning problem.

Q-Learning:
1. Collect a sample (s, a, s′)
2. Update Q(s, a) as follows:

Q(s, a)← Q(s, a) +
1

k

[
R(s, a, s′) + α ·max

a′
{Q(s′, a′)} −Q(s, a)

]
(14.21)

3. Repeat step 2 until convergence.

Notice that the update equation looks very much like the gradient descent update sequence
where 1

k is simply the learning rate, previously denoted as η. There is actually a deep connection
between the learning rate here and that for the gradient descent, but this will not be covered in

CHAPTER 14. REINFORCEMENT LEARNING 98

this course. A concern with this algorithm is that, if we don’t explore a large region of the world,
our robot’s optimal policy could get restricted to a local environment. Conversely, exploring a
large region of the world could be very time consuming. As such, there is a trade-off in optimizing
between these 2 considerations. The solution to this has to be found via empirical means.

Appendices

99

Appendix A

Lagrangian Dual Problem

Here, we run through the definition of Lagrangians and the mathematical reasoning as to why
we utilize the dual problem to solve a given constrained optimization problem. First, we define
what a Lagrangian is.

Definition A.0.1. Lagrangian: Given the optimization problem (∗) defined by some func-
tion f(x) to be optimized and subject to some constraints :

min {f(x)} (A.1)

Subject to: hi(x) = 0, 1 ≤ i ≤ l
gj(x) ≤ 0, 1 ≤ j ≤ m

(A.2)

We define the Lagrangian associated to (∗) as:

L : D× Rl × Rm → R

(x, λ, α) 7→ f(x) +

l∑
i=1

λihi(x) +

m∑
j=1

αjgj(x)
(A.3)

where D is the domain on which f(x) is defined on (i.e. x ∈ D ⊂ Rn).

Notice the form of the constraints we have written up. This is the convention and is essential
that we adhere to this convention when constructing our Lagrangian to obtain an optimal result.
From here, we can construct a Lagrangian dual function which provides a new optimization
problem as follows:

Definition A.0.2. Lagrangian Dual Function: Given the optimization (∗) and its associated
Lagrangian L(x, λ, α), we define the corresponding Lagrangian dual function as:

g : Rl × Rm → R (A.4)

(λ, α) 7→ min
x∈D

{
L(x, λ, α)

}
(A.5)

100

101

We can think of L(x, λ, α) as a family of functions that depend on λ and α but indexed by x,
Lx(λ, α). With this perspective, we see that Lx(λ, α) is an affine function in λ and α:

Lx(λ, α) = f +

l∑
i=1

λihi +

m∑
j=1

αjgj (A.6)

So we are essentially treating f, hi and gj as constants (w.r.t to λ and α).

	Overview
	Introduction to Machine Learning
	Performance

	Types of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Deep Learning

	Regression
	Overview of Regression
	Methodology
	Features
	Training vs Testing Data
	Model Selection

	Model Optimization
	Loss and Risk
	Gradient
	Exact Solution and Gradient Descent
	Sub-Gradient
	Stochastic Gradient Descent (SGD)

	Multivariate Linear Regression
	Method of Least Squares

	Regularization
	Ridge Regression

	Hyperparameters
	Validation Set

	Classification
	Overview of Classification
	Linear Classification
	Decision Regions
	Decision Boundaries
	Linearly Separable
	Constant Feature Trick

	The Perceptron Algorithm
	Zero-One Loss

	Hinge Loss
	Logistic Regression
	Probabilistic Model
	Sigmoid Function
	Sigmoid Neurons
	Label Probabilities
	Label Predictions
	Likelihood
	Logistic Gradient

	Clustering
	What is Clustering?
	Basic Clustering Methodology
	Agglomerative Single-Link
	Agglomerative Complete-Link (Clique)

	Methods of Characterizing Clusters
	Classes
	Distance/Similarity Measure
	Deterministic vs Stochastic
	Hierarchical
	Checking Clustering Validity

	K-Means
	Initialization Issues
	Choosing K

	Recommendation
	Collaborative Filtering
	K Nearest Neighbours
	User Similarity
	Weighted Prediction

	Subspace Learning and Matrix Factorization
	Subspace Learning
	Matrix Factorization
	Prediction
	Optimizing Training Loss
	Validation Set

	Support Vector Machines
	Prerequisite Mathematics
	Lagrangian Multipliers
	Equality Constraints
	The Dual Paradigm
	The Analytical Approach
	Inequality Constraints

	Computing Margins
	SVM with Errors

	Deep Learning
	FeedForward Networks
	Multi-Layered Neural Network

	Backpropagation

	Generative Models
	Some Essential Math
	Maximum Likelihood Estimates (MLE)
	Variational Autoencoders (VAE)
	Generative Adversarial Networks (GAN)

	Kernel Methods and Convolutional Neural Networks
	Kernel Methods
	Feature Mapping

	Convolutional Neural Networks
	Convolutional Filters and Layers
	Max Pooling

	Recurrent Neural Networks
	Vanilla RNN Unit/Cell
	Vanilla RNN Forward Pass
	Sentiment Classification
	BackPropagation Through Time (BPTT)

	Long Short-Term Memory (LSTM)

	Expectation Maximization
	Generative Gaussian Mixture Model
	Mixture Model and Hidden Labels
	Cross-Validation

	Hidden Markov Models
	Naive Bayes
	Supervised Hidden Markov Model
	Decoding

	Unsupervised Hidden Markov Model
	Max-Marginal Decoding

	Bayesian Networks
	Simple Bayesian Networks
	Arbitrary Bayesian Networks
	Model Degrees of Freedom
	Independence of Nodes and Bayes' Ball

	Markov Blankets and Gibb's Sampling
	Supervised Learning in Bayesian Networks
	Structure Learning in Bayesian Networks

	Reinforcement Learning
	Robot Path Learning
	Value Iteration Algorithms

	General Reinforcement Learning Scheme

	Appendices
	Lagrangian Dual Problem

