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Chapter 1

Introduction

In this class, we aim to take Hamiltonians and derive scattering solutions. To develop intuitions
and technical skills about scattering in the ultracold (mostly) regimes. We will be starting out
with the basics of scattering theory, which will prepare us for applying these concepts to more
complex and interesting systems. Scattering is when a system with initially with no interaction,
enters a regime of significant interaction and exits this regime to no interaction once again. As
in all of physics, it is essential that we know the system we’re dealing with. In our case, these
are cold gases. This thus entails 1) short-range interactions 2) low energies. We will start off by
looking a little into what these really mean.

§1.1 Short-Range Interactions

Consider a system of 2 interacting particles, separated by a distance r. The potential between
them can be written as V (r). We then define short-range interactions by:

lim
r→∞

r2V (r) = 0 (1.1)

Short-range interactions would then imply that our system would have a finite number of bound
states. There is in fact a very quick back of the envelope way to estimate the number of bound
states for a given potential. We do this with the relation:

N ≈ 1

π

∫ rk

ri

dr

√
2µ

~2
(E − V (r)) (1.2)

where ri is the distance to the first turning point of the potential-well, and rk the distance to
the second turning point.

Example:

1



CHAPTER 1. INTRODUCTION 2

Consider a system with the potential:

V (r) =

{
+∞, r < ri

−Cαrα , r ≥ ri
(1.3)

The first thing we do is to set E = 0, which grants us that:

rk =

(
Cα
|E|

)1/α

=∞ (1.4)

This renders our approximation integral as:

N ≈ 1

π

∫ ∞
ri

dr

√
2µ

~2

(
Cα
rα

)
=

√
8µCα
π~

(
r

1−α/2
i

α− 2

)
(1.5)

for α > 2, which tells us that N is finite when α > 2! This means that we can define a
range of interaction, that is approximately when we have some form of the “kinetic” and
“potential” energies equate:

~2

2µr2
α

=
Cα
rα

(1.6)

⇒ rα =
1

2

(
2µCα
~2

)α−2

(1.7)

We say that rα grants us some measure of length scales at which particles no longer
interact significantly.

The next concept we would like to establish is the idea of low-energy.

§1.2 Low-Energy Scales

What exactly do we mean when we say “low-energy”? For all intends and purposes, we take a
low-energy regime as being:

E � ~2

2µr2
α

⇒ λde broglie � rα (1.8)

In this regime, scattering observables depend only on a few partial waves (which is something
that we will come back to later on in the class). This also implies some sort of universality to
these systems (also touched on more later).

It is useful to note that in order to establish an energy, length and time scale, we only need to
know the length and mass scales. The rest can be derived from these 2 quantities. For a gas,
the length scale would be the average interatomic distances:

ln = n−1/3 (1.9)
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where n is the atomic density. From this, we get:

En =
~2

2ml2n
=

~2

2m
n2/3 (1.10)

As for timescales, we will take these as:

tn =
~
En
∼ n−2/3 (1.11)

and we will see later that the regime of quantum degeneracy occurs when (phase transition from
a thermal gas to a condensate):

kBT

En
� 1 (1.12)

where En is the characteristic energy of the system. What we want to do now is look at typical
values for several gases.

• Rubidium-85 gas as an example. This gas has an average density of n = 1014cm−3. Then
at T = 1nK, we will find that:

kBT

En
≈ 0.017 (1.13)

• Air has about a density of n ∼ 1021cm−3, and at T = 273K, we find that:

kBT

En
≈ 106 (1.14)

• Neutron star has n ∼ 1035cm−3 and at T ∼ 106K, we find that:

kBT

En
≈ 0.04 (1.15)

So what really affects quantum degeneracy is a long wavelength.



Chapter 2

Single Channel Scattering

Here, we are about to explore a regime of scattering known as single channel scattering. This
regime generally entails that you are scattering particles off an infinitely massive scattering center.
Either that or you’re considering a scattering system in the center of mass frame such that
there is no center of mass movement. However, what single channel scattering really means is
that the particles we are scattering do not have any internal structure. We will see later that
including internal structures allows particles to be in different energy states (internal energy
configurations), these energy states are known as “channels”, hence multiple energy states imply
multi-channel scattering. But for now, let’s focus our efforts to understanding single channel
scattering.

§2.1 Collisions

Before we get into scattering systems, we first want to get a grasp of what collisions are. A widely
used measure of collisions is the scattering cross-section. Going back to classical mechanics,
consider a particle incoming with velocity v onto a scattering center (another infinitely massive
stationary particle). Key parameters that describe this system are the impact parameter a and
the deflection angle after collision θ. This can be visualized in figure 2.1 below.

Figure 2.1: Classical Scattering ()

4



5 2.1. COLLISIONS

We see that the impact parameter a will tell us how far we can deviate from the scattering axis
before there is no longer deflection pass the scattering center. With this, idea, we want the
scattering cross-section to be an indication of the area within which we will observe scattering
effects:

σ ∼ a2 (2.1)

To give a clearer picture of the collision process, some other relevant parameters are listed
below.

1. Collision Rate: κ = ~k
m σ

2. Interaction strength: En/
(

~2

2µa2

)
. We are in the regime of strong interactions when

na3 � 1, and the converse would be weak interactions
3. Collision Time: tc = 1

nκ ⇒ tn
tc
∼ 1

a2

4. s-wave Scattering Length: a. This is analogous to the impact parameter in classical
mechanics.

In most introductory courses on quantum mechanics, we heavily study bound states in boundary
conditions that constitute some sort of potential well. The question now is, what kind of boundary
conditions would be necessary for a scattering problem? We can always say that our initial state
is a plane wave, or at least some superposition of plane waves eikz, whereas our final state after
scattering would have to be characterized by angles θ and φ, but in principle can scatter in
any direction (spherical wave) off the scattering center with amplitudes as a function of angular
position. For the pedagogical purposes, let’s assert a few assumptions (which can be generalized
later on).

1. Short Range Potential : V (~r) = 0, r � r0

2. Isotropic Potential : V (~r) = V (r)

where r0 is ghe range of the potential (can be taken to be the Van der Waals radius). With
these in mind, we can safely write the total solution of an incoming plane wave scattering off a
scattering center to be:

ψ(~r) = eikz + f(θ, φ)
eikr

r
(2.2)

where f(θ, φ) is called the scattering amplitude. We came up with the scattering term by means
of writing the most general solution (to get a more comprehensive explanation of this ansatz,
refer to appendix A) which works at long ranges (large r). This ansatz is illustrated in figure 2.2
below.

z

eikz

Detector

Scattering Center

eikr/r

θ, φ

Figure 2.2: Scattering Stationary Solution
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The goal now is to decompose the scattering term into a partial wave expansion as this allows
us to extract some relevant physics.

§2.1.1 Partial Wave Expansion

Let us first rewrite the Schrödinger equation in a more explicit way:[
− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+
L̂2(θ, φ)

2µr2
+ V (r)− E

]
ψ(~r) = 0 (2.3)

We know:

L̂2(θ, φ)Yl,m(θ, φ) = l(l + 1)~2Yl,m(θ, φ) (2.4)

where Yl,m are the spherical harmonics.

Note: The spherical harmonics are eigenstates of the angular momentum operator and
would be a natural basis.

With this, we have the most general solution for isotropic potentials to be:

ψ(~r) =
∑
l,m

Al,m
uE,l(r)

r
Yl,m(θ, φ) (2.5)

This is known as the partial wave expansion. This expansion can tell us about the scattering
at all ranges of r, but this solution doesn’t tell us anything yet about our scattering until we
connect the first scattering solution to this solution.

Note: Note that Bosons have l = even (ψ(~r) = ψ(−~r)) while Fermions have l = odd
(ψ(~r) = −ψ(−~r)).

First, putting this into the Schrödinger equation:[
− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+
L̂2(θ, φ)

2µr2
+ V (r)− E

]∑
l,m

Al,m
uE,l(r)

r
Yl,m(θ, φ)

 = 0

⇒
∑
l,m

Al,m

[
− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+
L̂2(θ, φ)

2µr2
+ V (r)− E

]
uE,l(r)

r
Yl,m(θ, φ) = 0

⇒
∑
l,m

Al,mYl,m(θ, φ)

[
− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)~2

2µr2
+ V (r)− E

]
uE,l(r)

r
= 0

⇒
[
− ~2

2µ

d2

dr2
+
l(l + 1)~2

2µr2
+ V (r)− E

]
uE,l(r) = 0

(2.6)
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which is known as the Schrödinger radial equation. We also define the effective potential as:

Veff(r) = V (r) +
l(l + 1)~2

2µr2
(2.7)

which will elucidate some notions on scattering. Now let’s take a WKB (semi-classical) approxi-
mation. To do this, we add a term called the Langer correction to the effective potential, which
now becomes:

Ṽeff(r) = V (r) +
l(l + 1)~2

2µr2
+

~2/4

2µr2
(2.8)

The Langer correction term is added for 3D spherically symmetric problems and is heuristically
a factor that arises due to the range of the radial Schrödinger equation being restricted from 0
to ∞. With this correction, we can consider the classical means of scattering off the angular
momentum barrier:

l(l + 1)~2

2µr2
+

~2/4

2µr2
= E

⇒ rc =
(l + 1/2)2

k

(2.9)

where k2 = 2µE/~2 and rc gives us the classical scattering turning point for low energy analysis.
A question we can now ask is what is the probability that 2 particles collide? To get this
probability, we utilize the general result from the WKB approximation:

ψ(r) =
N√
p(r)

exp

{
± i
~

∫ r

r0

p(r′)dr′
}

(2.10)

Having that the spatially varying momentum is:

p(r) =
√

2µ [E − Veff(r)]

=

√
2µ

[
Veff(r) +

~2/4

2µr2

] (2.11)

where we take the energy of the particle to be effectively zero (low energy analysis), causing the
probability to evaluate to:

P(2 particle collision) ∼ exp

{
−2

∫ rc

r0

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr

}
(2.12)

To solve this, we are going to split the integral up to integrating across some r∗ such that
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r0 < r∗ < rc and V (r∗) = 0:

P(2 particle collision) ∼ exp

{
−2

∫ r∗

r0

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr − 2

∫ rc

r∗

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr

}

∼ exp

{
−2

∫ r∗

r0

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr

}
exp

{
2

∫ rc

r∗

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr

}

∼ A exp

{
−2

∫ rc

r∗

√
2µ

~2

[
Veff(r) +

~2/4

2µr2

]
dr

}
∼ k2l+1

(2.13)

This tells us that the probability of scattering falls off with higher order partial waves, making
partial waves a practical tool for scattering analysis.

§2.2 Asymptotic Solutions

Let us now consider solutions whereby r � r0 and V (r) ≈ 0. That renders our radial equation
as: [

− ~2

2µ

d2

dr2
+
l(l + 1)~2

2µr2
− ~2k2

2m

]
uE,l(r) = 0 (2.14)

This produces 2 possible solutions which are spherical Bessel and Neumann functions:

fEl(r) =

√
2µ

π~2k
(kr)jl(kr), regular at r = 0 (2.15)

gEl(r) =

√
2µ

π~2k
(kr)nl(kr), irregular at r = 0 (2.16)

Bessel and Neumann functions are really just oscillatory functions with a decay envelop (figure
2.3 below).

Figure 2.3: Spherical Bessel and Neumann functions.
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These solutions are not normalizable since they are scattering solutions, and so the pre-factors
(
√

2µ/π~2k) in front of these solutions are there for energy normalization. These solutions are
orthonormal with respect to different energies:∫

fEl(r)fE′l(r)dr = δ(E − E′)∫
gEl(r)gE′l(r)dr = δ(E − E′)

(2.17)

In the region where r � r0, there will be a regime whereby kr � 1 (low-energy and r � r0 but
not large enough to make kr large) and another where kr � 1 (low-energy and r large enough
to make kr large). This is illustrated in figure 2.4 below.

r

uEl(r)

r0

kr � 1 kr � 1

Figure 2.4: Regions of interest for uEl(r).

In both these regimes, we can find very good approximate analytical solutions to fEl and gEl.
First note that our radial solution can then be written as:

uEl = AlfEl(r) +BlgEl(r)

= Cl [fEl(r) cos δl + gEl(r) sin δl]
(2.18)

where al =
√
A2
l +B2

l and tanδl = −Bl/Al. It turns out that the 2 forms above are completely
equivalent.

Note: The zero energy solution of the radial equation is given by:

u0l(r) = αrl+1 +
β

rl
(2.19)

Now we list the solutions in the corresponding regimes below.

1. kr � 1 regime:

(kr)jl(kr) ≈
(kr)l+1

(2l + 1)!!
(2.20)

(kr)nl(kr) ≈
(2l − 1)!!

(kr)l
(2.21)

Substituting our analytical approximations, we get:

uEl(r) ≈ Cl

√
2µ

π~2k

[
(kr)l+1

(2l + 1)!!
cos δl +

(2l − 1)!!

(kr)l
sin δl

]
(2.22)
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Then if we impose uEl(kr � 1) = u0l, we arrive at:

α = Cl
(k)l+1

(2l + 1)!!
cos δl, β = −Cl

(2l − 1)!!

(k)l
sin δl (2.23)

⇒ tan δl = −β
α

(
k2l+1

(2l + 1)!!(2l − 1)!!

)
(2.24)

where we have k2l+1/(2l+ 1)!!(2l− 1)!! is universal whereas β/α depends on the regime we
are in. This is known as the Wigner’s threshold law.

2. kr � 1 regime:

(kr)jl(kr) ≈ sin

(
kr − πl

2

)
(2.25)

(kr)nl(kr) ≈ cos

(
kr − πl

2

)
(2.26)

Substituting our analytical approximations, we get:

uEl = Cl

√
2µ

π~2k
sin

(
kr − πl

2
+ δl

)
(2.27)

Which are oscillatory solutions, much like a plane wave scattering off a hard wall in 1D.

We call δl the scattering phase shift, because this just tells us that at large distances, scattering
off the scattering center simply results in a phase shift between the incoming and outgoing
wavefunction. Looking again at the kr � 1 regime, we had:

uEl ∼
1

(2l + 1)!!
− tan δl/k

2l+1

r2l+1
(2.28)

⇒ (al)
2l+1 = − lim

k→0

tan δl
k2l+1

(2.29)

where in the boxed equation above, we call al the l-wave scattering length (l is a variable and
could represent any order of scattering, s, p, d, f, ...), with the definition simply stemming from
the fact that we notice a length dimensional quantity and take the low-energy limit of it.

§2.2.1 The Born Approximation

We will no not be going through the derivation of the Born approximation result in this class
but simply present it as follows:

tan δl ≈ −
2µk

~2

∫ ∞
0

[jl(kr)]
2
V (r)r2dr (2.30)

This is valid when al ∼ r0 (small scattering length). This grants us that:

1. V (r) > 0 ⇒ δl < 0 ⇒ al > 0
2. V (r) < 0 ⇒ δl > 0 ⇒ al < 0
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which grants us a language to talk about different forms of scattering by referencing the scattering
length. Let’s now look at the general form of single channel scattering solutions. The first bit
of intuition is that when we have a very deep potential well, the wavefunction would oscillate
greatly (∼ due to high kinetic energies). Let’s look again at our radial solutions at long ranges
in the 2 possible regimes of kr:

(kr � 1) : uEl(r) ∼

[
1

(2l + 1)!!
+
a2l+1
l

r2l+1

]
rl+1 (2.31)

(kr � 1) : uEl ∼ sin

(
kr − πl

2
+ δl

)
(2.32)

So we can look at the l = 0 case, and have a solution that which takes a form that looks something
that presented in figure 2.5 below.

r

V (r)

// //

(kr � 1) (kr � 1)

∼ r + a ∼ sin(kr − δl)

uEl(r)

Figure 2.5: l = 0 form of solution

where in the case of negative scattering length (a < 0, corresponding to attractive potentials), we
just have the slope in the region where kr � 1 being negative (downward sloping). In practice,
to get solutions to the wavefunction in the region where r is around the range of r0, we use
numerical methods (e.g. Runge-Kutta 4th order solver) given initial conditions {uEl, u′El}. In
general, we have the expression:

u′El(r)

uEl(r)
=
f ′El(r) cos δl − g′El sin δl
fEl(r) cos δl − gEl sin δl

∣∣∣∣
r=r∗

(2.33)

⇒ tan δl =
W [fEl, uEl]

W [gEl, uEl]

∣∣∣∣
r=r∗

(2.34)

where W [ , ] is the Wronskian defined as W [a, b] = ab′ − a′b and r∗ is known as the matching
distance, that is the distance beyond which the asymptotic solutions become good approxima-
tions.

Note: With this, we can prove the Wigner threshold law which tells us that as k → 0,
then tan δl ∼ k2l+1.
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Example 1:

r

V (r)

r0O

Figure 2.6: 1D Hard-Wall Potential

Consider a hard wall potential at r0:

V (r) =

{
∞, r ≤ r0

0, r > r0

(2.35)

The solutions for r ≤ r0 are trivial since they must be vanishing (uEl = 0). As for r > r0,
we must look for the Bessel function solutions:

fEl(r) =

√
2µ

π~2k
(kr)jl(kr) (2.36)

gEl(r) =

√
2µ

π~2k
(kr)nl(kr) (2.37)

The tangent of the phase shift at r = r0 is then:

tan δl =
W [fEl, uEl]

W [gEl, uEl]

=
fEl(r0)u′El(r0)

gEl(r0)u′El(r0)

=
jl(kr0)

nl(kr0)

(2.38)

which grants us that in the regime where kr0 � 1, we have:

tan δl = − (kr0)2l+1

(2l + 1)!!(2l − 1)!!

⇒ (al)
2l+1 =

r2l+1
0

(2l + 1)!!(2l − 1)!!

(2.39)

Example 2:
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r

V (r)

r0O

−V0

Figure 2.7: 1D Square-Well Scattering Potential

Consider the potential now with a hard wall and attractive square-well:

V (r) =


∞, r < 0

−V0, r ≤ r0

0, r > r0

(2.40)

For this question, we will be looking at the analysis for l = 0. We will split analysis for
this into 2 parts, one where E > 0 and the other for E < 0. Consider first the case where
the energy is E > 0.

1. E > 0:
For this problem, we will have 2 wave numbers:

r > r0 : k2 =
2µE

~2
(2.41)

r ≤ r0 : κ2 =
2µ(E + V0)

~2
(2.42)

So we have that:

r ≤ r0 : uE0(r) =

√
2µ

π~2κ
(κr)j0(κr) (2.43)

r > r0 : fE0(r) =

√
2µ

π~2k
(kr)j0(kr)

gEl(r) =

√
2µ

π~2k
(kr)n0(kr)

(2.44)

because in the r < r0 region, we must have that the wavefunction be regular at
r = 0. So taking the Wronskian formula once again to find the phase shift, we get
the expression for k → 0 to be:

tan δ0 = −kr0 +
k

κ0
tan(κ0r0) (2.45)

⇒ a = r0 −
tan(κ0r0)

κ0
(2.46)

where κ2
0 = 2µV0/~2. This expression tells us that a diverges whenever κ0r0 =

nπ+π/2, which corresponds to creation of bound states in the potential well. Note
that increasing values of κ0 implies that we are making the potential well deeper.
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2. E < 0:
Now we consider E < 0 solutions (when l = 0). We use the same procedure but
now:

r ≤ r0 : uE0(r) = A sin(κr) (2.47)

r > r0 : hE0(r) = Be−kr (2.48)

where now, k2 = 2µ|E|/~2 and we just named another function hE0 since it is not
the Bessel function solution. Then plugging into the Wronskian formula for the
phase shift, we get: √

κ2
0 − k2 cot

[
r0

√
κ2

0 − k2

]
= −k (2.49)

This is a transcendental equation and number of intersections between the functions
on the RHS and LHS of the expression above gives us the number bound states.
Notice that in the limit where κ0 � k, we get:

− k ≈ κ0 cot [κ0r0]

⇒ tan(κ0r0) ≈ −κ0

k

⇒ a ≈ r0 −
1

κ0

(
−κ0

k

)
⇒ k ≈ 1

a− r0

(2.50)

From this, we plug this into the equation for the energy involving k which gives us:

E = −~2k2

2µ

≈ − ~2

2µ(a− r0)2

(2.51)

Then if we further assert that the s-wave scattering length a is much larger than
the range of the potential r0, we get:

E = − ~2

2µa2
(2.52)

This is in fact a “universal” result.

That is to say, whenever we have a single channel scattering system which
incoming particle having an energy close to zero in relation to the depth
of the potential well, then the energy would go like ∼ 1/a2 as long as the
scattering length is much greater than the range of the potential.

States with l = 0 for which majority of the wavefunction exists outside the classically
forbidden region (due to the lack of an angular momentum barrier) despite having
insufficient energy classically are known as halo states.
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§2.3 Effective Range Expansion

We are now going to talk about the concept of effective range. From the definition of the
scattering length, and then adding correction terms when we don’t take the limit of k →∞, we
get:

−k cot δ =
1

a
− 1

2
reffk

2 + . . . (2.53)

where reff is known as the effective range. This let’s us determine how much our observable will
change when we vary the energy (what the energy dependence of the system is since it is attached
to k2). We can actually compute this analytically for the square-well scattering problem. This
works out to be:

reff = r0

[
1− r2

0

3a2
− 1

κ2
0ar0

]
(2.54)

The effective range will also allow us a way to characterize resonances (e.g. Feshbach resonances)
later.

§2.3.1 Inelastic Scattering and Absorbing Potentials

Let’s now go back to our square-well scattering potential and add a small imaginary potential
as illustrated in figure 2.8 below.

r

V (r)

−iVI
r0

O

−V0

Figure 2.8: 1D Square-Well Scattering Potential with Imaginary Part

Physically, what this imaginary part corresponds to is an absorbing (optical) potentials, which
let’s us model a 2-channel scattering system. For more information on this, refer to “Physics Of
Atoms And Molecules” - Bransden & Joachain (pg 657). This is a theoretical amendment to the
potential which allows it to absorb some amount of probability from the incoming wavefunction
(probability is loss to the second channel). We thus write:

V (r) = VR(r) + iVI(r) (2.55)

where VI < 0 in order to prevent the probability from exceeding unity. The Schrödinger’s
equation then becomes:[

− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2
− ~2k2

2µ
+ VR(r) + iVI(r)

]
uEl(r) = 0 (2.56)
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This allows us to separate our solution into real and imaginary parts as well:

uEl(r) = uREl(r) + iuIEl(r) (2.57)

⇒


[
− ~2

2µ
d2

dr2 + l(l+1)
2µr2 −

~2k2

2µ + VR(r)
]
uREl(r) = VI(r)u

I
El(r)[

− ~2

2µ
d2

dr2 + l(l+1)
2µr2 −

~2k2

2µ + VR(r)
]
uIEl(r) = −VI(r)uREl(r)

(2.58)

which is a couple system of equations. Writing the coupled system in matrix notation, we
get: ([

− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2
− ~2k2

2µ

]
I +

[
Vr VI
−VI VR

])[
uREl
uIEl

]
= ~0 (2.59)

Since we had the solution of uEl(r) being:

uEl = Cl

√
2µ

π~2k
sin

(
kr − πl

2
+ δl

)
(2.60)

this then implies that we must allow complex phase shifts! This then implies that the scattering
length is also going to have real and imaginary parts:

a = Re{a}+ i Im{a} (2.61)

where the imaginary part of this gives us a measure of the rate κinelastic [cm3/s] at which the
probability will decay to zero:

κinelastic = − ~
2µ

Im{a} > 0 (2.62)

Note: In the case where we have an exact relationship for the scattering length and
phase shifts (like in the square-well scattering problem a = f(δ = κ0r0)), then we can
equivalently construct the same coupled equations by adding a small imaginary part to
the phase:

κ0r0 → κ0r0 − iη

⇒ a →
[
r0 −

1

κ0

sinκ0r0 cosκ0r0

cos2 κ0r0 + sinh2 η

]
− i
[

1

2κ0

sinh(2η)

cos2 κ0r0 + sinh2 η

]
(2.63)

This results in a suppression of the poles of the scattering length against the phase shifts
(does not diverge anymore).

§2.4 Time-Delay in Scattering

A good reference for time-delays is Friedrich (sections 1.4.2 and 1.4.3). The concept of time-delay
alludes to that of resonances, where there is some localization of probability within the potential
well for some significant time-scale before most of the probability is outside the well.
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Definition 2.4.1. Time-Delay The “extra time” spent by a wave packet near the scattering
center due to interactions (difference between scattering time with and without interaction).

Some initial papers on this are Wigner, PR 98, 145 (1955) and Smith, PR 118, 349 (1960). We
will skip over the derivation here but the useful result for time-delay is:

Ql = 2~
d

dE
δl(E) (2.64)

This is essentially what you would expect from perfectly elastic scattering of point particles.

Example 1:

In the case of no interaction, we have δl = 0, which gives us that:

Ql = 0 (2.65)

Example 2:
In the case of a hard sphere, we have that the phase-shift is δ0 = −kr0 with k =

√
2µE/~2,

which gives us that:

Ql = −2r0µ

~k
=

2µ

v
(2.66)

which is actually exactly the time it takes to go back and forth in r ∈ [0, r0] with velocity
v = ~k/µ.

§2.4.1 Time-Delay Near Resonances

There are several types of resonances, some of which are listed below.

1. Shape Resonances: Resonances due to the potential well having a bump, which increases
the probability of the particle to stay within the well even when E > 0.

2. Feshbach Resonances: Occurs in multi-channel problems, which creates several potential
curves based on the internal states. These resonances are when a molecular state is realized
in an internal state with a higher potential state than in the incoming channel.

3. Potential Resonances: When E < 0, if a molecular state occurs via tunneling, then this
will lead to the particle staying within the well with some significant probability.

It turns out that phase shifts near resonances increase by π via the Breit-Wigner line shape
relation:

δl(E) = δbg + tan−1

(
−Γ/2

E − Eres

)
(2.67)

https://journals.aps.org/pr/abstract/10.1103/PhysRev.98.145
https://journals.aps.org/pr/abstract/10.1103/PhysRev.118.349
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where Γ is the reciprocal of the resonance (molecular) lifetime and δbg is the background scattering
phase shift (discussed further below).

Note: The above expression holds for well-separated resonances. Resonances with inter-
ference between scattering amplitudes result in other line shapes such as Fano line-shapes.

This causes the time-delay near resonances to be:

Ql =
~Γ

(E − Eres)2 + (Γ/2)2
(2.68)

which has the shape of a Lorentzian. It is worth noting that:

Qmax
l =

4~
Γ

(2.69)

which tells us that the sharper the resonance is, the larger the time-delay.

§2.5 Scattering Cross-Sections

Earlier we have seen that to derive scattering, we first look at the wavefunction in the very large
limit (kr � 1), where we arrived at the partial wave expansion expression:

ψE ≈ r−1
∑
l,m

Al,mY
m
l (θ, φ)

(
2µ

π~2k

)1/2

sin

(
kr − lπ

2
+ δl

)
(2.70)

The goal of writing this was to compare this result to specific scattering problems (also in the
kr � 1 regime) which would take the general form:

ψE = ei
~k·~r + f(k̂′, k̂)

eikr

r
(2.71)

which similar form we have seen before but less generalized. Above, the prime on k̂′ indicates
the post scattering momentum direction and we have k̂ = r̂. The scattering amplitude function

would now have matrix elements
〈
k̂′
∣∣∣ f(k̂′, k̂)

∣∣∣k̂〉. It turns out that we can write:

ei
~k·~r = 4π

∑
l,m

ilY ∗lm(k̂)Ylm(r̂)jl(kr) (2.72)

which, in the kr � 1 regime:

ei
~k·~r ≈ 4π

∑
l,m

ilY ∗lm(k̂)Ylm(r̂)
sin
(
kr − lπ

2

)
kr

(2.73)
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Substituting this into the general scattering solution and equating it to the partial wave expan-
sion, we get:

4π
∑
l,m

ilY ∗lm(k̂)Ylm(r̂)
sin
(
kr − lπ

2

)
kr

+ f(k̂′, k̂)
eikr

r
=

1

r

∑
l,m

Al,mY
m
l (θ, φ)

(
2µ

π~2k

)1/2

sin

(
kr − lπ

2
+ δl

)
(2.74)

Now we define:

Y ml (r̂) ≡
〈
k̂′
∣∣∣l,m〉 , Y ∗lm(k̂) ≡

〈
l,m

∣∣∣k̂〉 (2.75)

⇒ f(k̂′, k̂)
eikr

r
=

1

r

∑
l,m

〈
k̂′
∣∣∣l,m〉[Al,m( 2µ

π~2k

)1/2

sin

(
kr − lπ

2
+ δl

)
− 4πil

〈
l,m

∣∣∣k̂〉 sin
(
kr − lπ

2

)
kr

]
(2.76)

In the above expression, the left-hand side only has outgoing waves whereas on the right-hand
side, there are both incoming and outgoing waves, which we can force to vanish. This grants us
that:

Alm = 4πileiδl
〈
l,m

∣∣∣k̂〉( 2µ

π~2k

)−1/2

(2.77)

which now allows us to find the scattering amplitude:〈
k̂′
∣∣∣ f(k̂′, k̂)

∣∣∣k̂〉 =
∑
lm

〈
k̂′
∣∣∣l,m〉 4π

2ik
il(e2iδl − 1)

〈
l,m

∣∣∣k̂〉
=

1

2ik

∑
l

(2l + 1)Pl(cos θ)(e2iδl − 1) = fk(θ)

=
∑
l

2l + 1

k cot δl − ik
Pl(cos θ) = fk(θ) =

∑
l

fl(θ)

(2.78)

So this allows us to compute the distribution of scattered particles based on phase shifts! With
this, we define the outgoing flux of scattered waves through a solid angle dΩ as:

~k
µ
|f(Ω)|2dΩ (2.79)

with units of [∼ L3/T ] where ~k/µ acts as a velocity term. The incoming flux through a solid
angle dΩ would then simply be ~k/µ [∼ L/T ]. The differential cross section dσ is then:

dσ =
outgoing flux

incoming flux
= |f(Ω)|2dΩ (2.80)

The total cross-section is then:

σ =

∫ 2π

0

dφ

∫ π

0

sin θ|f(Ω)|2dθ

=
π

k2

∑
l

(2l + 1)
∣∣e2iδl − 1

∣∣2
=

4π

k2

∑
l

(2l + 1) sin2 δl ≡
∑
l

σl

(2.81)
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This allows us another means to see why only s-wave scattering is dominant in the low energy
(k � 1) limit. We saw earlier that δl ∼ k2l+1 in the low energy regime, so we get;

σ =
∑
l

σl ∼ 1 + c1k
4 + c2k

8 + . . . (2.82)

and since k � 1, all the higher order terms drop out and only the l = 0 term is relevant. Now
consider the probability flux:

~J =
~

2µi
[ψ∇ψ∗ − ψ∗∇ψ] (2.83)

the incoming flux for ψincoming = eikz would be given by:

~Jincoming = −~k
2µ
ẑ (2.84)

whereas for the outgoing wave ψoutgoing = f(θ, φ)eikr/r, the flux would be:

~Joutgoing = |f(θ, φ)|2 ~k
2µr2

r̂ (2.85)

So we get:

dσ

dΩ
=
r2
∣∣∣ ~Joutgoing · ~r

∣∣∣∥∥∥ ~Jincoming

∥∥∥ (2.86)

§2.6 Fano Line-Shapes with Resonant Scattering

For more references on this, refer to (Bransdon & Joachim, pg 593-599). In 1961, Fano was
studying the interference between background and resonant scattering. He found that this in-
terference could produce asymmetric (time-delay against energy) line-shapes. As a hand-wavey
description, background scattering is the scattering that happens if there were no resonances
occurring. Resonant scattering on the other hand is what we discussed earlier in section 2.4.1.
With resonances, a phase will be accumulated due to it being “stuck” in the potential well for
some significant time-scale. Due to this, this creates interference effects between the resonant and
background scattering waves. To derive this rigorously, we recall the phase shift formula:

tan δl =
W [fEl, uEl]

W [gel, uEl]
(2.87)

The goal is now to separate the phase shift computed above into 2 parts:

δl = δbg + δres (2.88)
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To do this, we simplify the Wronskian definition above to:

tan δl =
fElu

′
El − f ′EluEl

gelu′El − g′eluEl

≡ fElγ
′
El − f ′El

gelγ′El − g′el
, where γEl =

u′El
uEl

(2.89)

Then looking at e2iδl because it appears in the scattering cross-section, we get:

e2iδl =
−f ′El + ig′El + (fEl − igEl)γEl
f ′El + ig′El + (fEl − igEl)γEl

=

[
fEl − igEl
fEl + igEl

]
×
[

(−f ′El + ig′El)/(fEl − igEl) + γEl
(f ′El + ig′El)/(fEl + igEl) + γEl

]
≡ e2iδbg × e2iδres

(2.90)

It turns out that the background scattering phase-shift is slowly varying with energy, whereas
the resonant scattering phase-shift as we saw earlier will be the arctan of a Breit-Wigner line-
shape:

δres = arctan
Γ/2

Eres − E
(2.91)

where Γres is the lifetime of the molecular state. Background scattering can be thought of as the
phase shift that is present in the absence of resonant scattering (usually in another channel) i.e.
the long-range effect scattering. Now if we plug in the decomposed phase shift above into each
partial wave cross-section, we get:

σl =
4π

k2
(2l + 1)

∣∣1− e2iδl
∣∣2

=
4π

k2
(2l + 1)

[
1

1 + q2

] [
(q + ε)2

1 + ε2

] (2.92)

where:

q = − cot δbg and ε =
E − Eres

Γ/2
(2.93)

So we see that we have again been able to decompose the cross-section into a product of terms
that are affected by background and resonant scattering:

background contribution :
1

1 + q2

resonant contribution :
(q + ε)2

1 + ε2

(2.94)

This allows us to see that we do not have significant resonant effects when ε � 1. Some other
interesting properties are listed below.

1. (ε = −q ⇒ σl = 0) i.e. (E = Eres − qΓ/2⇒ σl = 0)
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2. (ε = 1/q ⇒ σl = 4π(2l + 1)/k2 ≡ σmax
l ). This is known as the unitary limit.

3. Strong background scattering: q = 0 ⇒ σl = 4π
k2 (2l + 1)

[
ε2

1+ε2

]
. In this regime, we have

that σl = 0 when E = Eres, known as a window resonance (fully non-interacting system!).

4. Breit-Wigner (no background) resonance: q → ∞, ⇒ σl = 4π(2l+1)
k2

(Γ/2)2

(E−Eres)2+(Γ/2)2 . In

this regime, we see that when E = Eres, we get σl = σmax
l .

Note: If we just consider the l-wave scattering cross-section without the prefactor:∣∣e2iδl − 1
∣∣2 = |1− S|2

=

[
1

1 + q2

] [
(q + ε)2

1 + ε2

] (2.95)

We have that S are the S-matrix terms S = e2iδl . Plotting |1− S|2 against ε give us
asymmetric line-shapes except for certain specific regimes (e.g. q = 0, q → 0).

Having touched a little on scattering involving more than 1 channel, we are now ready to proceed
to multi-channel scattering problems.



Chapter 3

Multi-Channel Scattering

So far, we have looked at single channel problems. That is, we looked at problems where the
interaction was anisotropic so that there will never be transitions between different total angular
momentum ` states. However for more general scenarios, we have that the channels “talk to each
other” leading to off-diagonal terms in relevant scattering matrices as we will see. We start off
with a survey of relevant scattering matrices.

§3.1 Scattering Matrices

We will now be looking at several matrices that are relevant to scattering processes. These will
allow us to analyze scattering systems in an elegant and powerful way. The first scattering matrix
we will be looking at is the transition-matrix, more commonly referred to as the T -matrix.

Note: Be careful when looking at nuclear physics literature because they often use this
name for other processes

§3.1.1 T-Matrix

Recall that for single-channel scattering, we had:

f(θ, φ) =
4π

k

(
e2iδl − 1

2i

)
(3.1)

As such, in the multi-channel regime, we can generalize this definition into a matrix of entries
being the scattering amplitudes. The elements of this matrix are thus defined as:〈

k̂′
∣∣∣ f̂(θ, φ)

∣∣∣k̂〉 ≡ 4π

k

∑
l,m

∑
l′,m′

〈
k̂′
∣∣∣l′,m′〉 〈l′,m′| T̂ |l,m〉〈l,m∣∣∣k̂〉 (3.2)

⇒ f̂(θ, φ) ≡ 4π

k
T̂ (3.3)

23
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Comparing this to the single-channel expression (2.78) we derived earlier, we get:[
T̂
]
l,l′,m,m′

= 〈l′,m′| T̂ |l,m〉 = δl,l′δm,m′
e2iδl − 1

2i
(3.4)

So we get a purely diagonal T -matrix because there is no interaction between channels in this
case (effectively a system of single-channels with no interaction). The single-channel assumptions
holds for single-channel isotropic interactions. With this intuition, we can say that the T -matrix
represents the probability of transitioning from one channel to another. The general expression
for the scattering cross-section in terms of the T -matrix is then:

σ = 4π
∑
l,m

∑
l′,m′

|Tl,l′,m,m′ |2

k2
(3.5)

The result above is a result of quantum mechanical elastic scattering. In quantum mechanical
scattering, when the internal state changes (|l,m〉 → |l′,m′〉), the process is known as inelastic
scattering (except when the internal states are degenerate). This holds true even when the total
kinetic energy of the 2 colliding particles are conserved, which deviates away from the classical
definition.

§3.1.2 S-Matrix

Recall that in the kr � 1 regime, we had the radial equation behaving like:

uEl(r) = Al

(
2µ

π~2k

)1/2

sin

(
kr − lπ

2
− δl

)
(3.6)

∼ exp

{
−i
(
kr − lπ

2

)}
− S exp

{
+i

(
kr − lπ

2

)}
(3.7)

where we have defined S ≡ e2iδl . This is in fact the S-matrix element for a single-channel
system (〈l′,m′| Ŝ |l,m〉 = δl,l′δm,m′e

2iδl). Generalizing this to the multi-channel scenario, we
have:

Ŝ = 1 + 2iT̂ (3.8)

This matrix allows us to find useful things such as the poles of the S matrix being resonances
(e.g. transmission resonances).

§3.1.3 Reaction Matrix

Again in the regime where kr � 1, for single-channel scattering, we have that:

uEl(r) ∼ sin

(
kr − lπ

2

)
+K cos

(
kr − lπ

2

)
(3.9)
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allowing us to define:

K = tan δl (3.10)

So for multi-channel systems (as a matrix), we have this definition generalized to:

K̂ =
1

i
(Ŝ − I)(Ŝ + I)−1 = T̂ (1 + iT̂ )−1 (3.11)

This is known as the reaction matrix or the K-matrix.

§3.1.4 Time-Delay and Phase Shift Matrices

Here are 2 other matrices relevant to scattering problems.

1. Time-delay matrix :

Q̂ = i~Ŝ
d

dE
Ŝ† (3.12)

2. Phase-shift matrix :

δ̂ =
1

2i
ln
(
Ŝ
)

= tan−1(K̂) (3.13)

where remember that these ln and tan−1 definitions are on matrices which dictate the
expansion definitions, hence the 2 possible different definitions depend on the kr regime
we are in.

§3.2 Scattering of Particles with Internal Structure

Consider a particle with an internal structure (multiple internal levels of pseudo-spin S) of eigen-
basis |S〉 and associated energy eigenvalues εS . As such, we have the eigenvalue equation:

ĤA |S〉 = εS |S〉 (3.14)

where ĤA is the Hamiltonian, keeping in mind that since this corresponds to the internal struc-
ture, it has no kinetic energy term. As such in a 2-particle scattering system, the total Hamil-
tonian of the system would be:

Ĥ = −~2∇2

2µ
+ V̂ (r) + Ĥ

(1)
A + Ĥ

(2)
A (3.15)

where V̂ (r) is the interaction potential between the 2 particles. We have that the interaction
potential now being a matrix since each atom can be in different internal states (figure 3.1
below):

V̂ (r) =
∑
α,α′

|α〉Vα,α′(r) 〈α′| , where |α〉 =
∣∣∣S(1)

〉
⊗
∣∣∣S(2)

〉
(3.16)
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The diagonal entries of the above potential matrix are called the channels (which is finally where
this formal name of multi-channel scattering comes from).

ε
(1)
1

ε
(1)
2

ε
(1)
3

ε
(2)
1

ε
(2)
2

ε
(2)
3

Particle 1 Particle 2

Figure 3.1: 2 particles with internal structure.

So we have that the Vα,α(r) diagonal entries are called the direct interactions and Vα,α′(r) for
α 6= α′ are the inter-channel couplings. Because these |α〉 states are tensor product states, we
can define: [

Ĥ
(1)
A + Ĥ

(2)
A

]
|α〉 =

[
ε(2)
α + ε(2)

α

]
|α〉 ≡ εα |α〉 (3.17)

where we note here that Ĥ
(1)
A = Ĥ

(1)
A ⊗ I and Ĥ

(2)
A = I⊗ Ĥ(2)

A (for lighter notation).

Note: If each particle has N possible pseudo-spin internal states, the 2 distinguishable
particle system would have N2 possible states.

In this case of 2-particle scattering, we would expect that the total wavefunction solution would
have a part that is spatially dependent, and the other which is dependent on the pseudo-
spin:

|Ψ〉 = |ψspatial(~r)〉 ⊗ |α〉 (3.18)

§3.2.1 Identical Particles

Asserting that the particles are identical, then each state could be written as either of the 2
following symmetric (s) or antisymmetric (a) states:

|αs〉 = (1 + δS1,S2
)
|S1S2〉+ |S2S1〉√

2
(3.19)

|αa〉 = (1− δS1,S2
)
|S1S2〉 − |S2S1〉√

2
(3.20)

where δS1,S2
is the Kronecker-delta function, and is required for normalization. The number of

states for each case would then be:

Ns =
N(N + 1)

2
(3.21)

Na =
N(N − 1)

2
(3.22)
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Symmetry and antisymmetry of parity is associated to the quantum statistics of the particles
(Fermions vs Bosons), but with stricter conditions for such particles as not just pseudo-spins
would have to obey this parity property, but also the spatial portion of the wavefunction. As
such, we have:

Bosons : |Ψ〉 = |Ψs〉 = |ψs,spatial(~r)〉 ⊗ |αs〉 or |ψa,spatial(~r)〉 ⊗ |αa〉 (3.23)

Fermions : |Ψ〉 = |Ψa〉 = |ψa,spatial(~r)〉 ⊗ |αs〉 or |ψs,spatial(~r)〉 ⊗ |αa〉 (3.24)

Recall that the spatial wavefunction can be written as a sum of partial waves:

ψspatial(~r) =
∑
l,m

Al,m
uE,l(r)

r
Yl,m(θ, φ)

⇒ Ψ(~r, α) =
∑
α

∑
l,m

A
(α)
l,m

u
(α)
E,l(r)

r
Yl,m(θ, φ) |α〉

(3.25)

For the symmetric case (Bosons), we require that l runs only over even numbers, whereas for
Fermions, we have it run only over odd numbers. Plugging this into the Schrördinger’s equation,
we get:

∑
l,m,α

A
(α)
l,m

− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2
+
∑
α̃,α̃′

|α̃〉Vα̃,α̃′(r) 〈α̃′|+
∑
α̃

(|α̃〉Eα̃ 〈α̃| − E)

u(α)
E,l(r)Yl,m(θ, φ) |α〉 = 0

(3.26)

Which then gives us the radial equation:[
− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2

]
u

(α)
E,l(r) +

∑
α,α′

Vα,α′(r)u
(α′)
E,l (r) + (Eα − E)u

(α)
E,l(r) = 0 (3.27)

Which is in fact an N -coupled system of 2nd order differential equations indexed by α =
1, 2, . . . , N . More concisely, we can write this as the “eigenvalue” matrix equation:[

T̂r + Êth + V̂
]
~u = E~u

where [T̂r]α,α′ =

[
− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2

]
δα,α′

[Êth]α,α′ = Eαδα,α′

[V̂ ]α,α′ = Vα,α′

[~u]α′ = u
(α′)
El (r)

(3.28)

Even though this system has N 2nd order differential equations, there will only be N degenerate
eigenstate solutions (instead of 2N) because we only except the solutions that are well-behaved
at the origin. Also, this system is not a traditional eigenvalue problem because E is a fixed value,
so we are working to find the eigenvectors given the eigenvalue. We will adopt the index ν to
denote the eigenstate index.
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Note: Only the potential matrix is not diagonal with off-diagonal entries called the
inter-channel couplings, since it encodes the interactions between the different channels.

Note: The eigenstates ψνE , of the system of differential equations is in general a combi-
nation of various |α〉 states (spin-admixture).

Generally, if a particle with energy E is in an excited channel state such that given its energy,
it would be a bound state, this is known as a meta-stable state since it is likely that the particle
could transit into a lower energy channel and cause the molecular state to decay.

r

V (r)

u
(2)
El (r)

Bound state in closed-channel (α = 2)

u
(1)
El (r)

Free state in open-channel (α = 1)

E1

E2

E3

E

Figure 3.2: Multi-channel meta-stable state.

§3.2.2 Multi-Channel Asymptotic Solutions

We now consider the regime in which the particles are taken to be very far apart from one another
(r → ∞). When this occurs, we should have that the interaction potential vanishes V̂ (r) → 0,
which reduces the multi-channel Schrödinger radial equation to:[

− ~2

2µ

d2

dr2
+
l(l + 1)

2µr2
+ (Eα − E)

]
u

(α)
E,l(r) = 0 (3.29)

This should grants us solutions that are analogous to those found in the single channel regime
(section 2.2) which could have been written as:

uE,l(r) = Al [fE,l(kr) + tan δlgE,l(kr)] (3.30)

We take this solution and generalize it to the multi-channel scattering case to get:

u
(α,ν)
E,l (r) = A

(α,ν)
l

[
δα,νf

(α)
E,l (kαr) +K

(ν,α)
l g

(α)
E,l(kαr)

]
(3.31)

where δα,ν is the Kronecker-delta function, kα =
√

2µ(E − Eα)/~2 and K
(ν,α)
l here is in fact the

reaction matrix we introduced in section 3.1.3 above. The delta-function is present as that term
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describes the incoming wave, which will always only have separate channel contributions. The
upper indices α and ν denote the following.

• α index: Vector component (spin, channel) index.

• ν index: Degenerate eigenstate (with energy E) index.

As such, we can write the eigenstates in a matrix form with entries indexed by α and ν, that
is:

[ûEl] = u
(α,ν)
El (r) (3.32)

This grants us that each energy eigenstate with total energy E is found by taking the sum over
the index α:

u
(ν)
E,l(r) =

∑
α

B(α)u
(α,ν)
E,l (r) (3.33)

It works out that the fundamental matrix of solutions u
(α,ν)
E,l (r) is unitary such that when applied

to the Hamiltonian as follows:

(ûE,l) Ĥ (ûE,l)
†

(3.34)

it produces a diagonal matrix (diagonal entries being the Eα energies). We recall that the
radial asymptotic solutions are Bessel and Neumann functions, so in the multi-channel case,
they become:

fE,l(kαr) =

(
2µ

π~2kα

)1/2

(kαr)jl(kαr)

gE,l(kαr) =

(
2µ

π~2kα

)1/2

(kαr)nl(kαr)

(3.35)

Notice that if for anyone of the eigen-energies Eα, we had E < Eα, this would make kα imaginary.
This of course would result in decaying exponential solutions when exiting that respective α
channel. As such, in the asymptotic region where r � r0, the probability of finding the particle
becomes negligibly small such that we can treat that channel as “closed off”. As such, we adopt
the language of calling channels with opened or closed.

• Closed-Channel: E < Eα

• Open-Channel: E > Eα

We denote the number of open-channels for a given energy E as No and that for closed-channels
Nc. As such, we will have that the reaction matrix K(ν,α) would have effectively on No × No
non-trivial entries that are group as a block matrix within the N ×N total K-matrix, since all
the closed-channel entries would simply be 0. This is illustrated below:

K̂ν,α =


non-trival

entries

. . . 0 0

. . . 0 0
...

...
...

0 . . .

...
. . . . . . 0


α,ν

(3.36)
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where we take that the lower the index of α, the lower the energy (Eα < Eα′ if α < α′). The
ν indices are arranged such that the resulting non-trivial entries form a block matrix as shown
above. We can see this a little more explicitly with an example.

Example:

Consider a system of 2 colliding particles, each with 3 channels. In general, we have:

û =

u(11) u(12) u(13)

u(21) u(22) u(23)

u(31) u(32) u(33)

 (3.37)

Let’s now say that we have channel 3 is closed, this would simplify our matrix to:

û =

u(11) u(12) u(13)

u(21) u(22) u(23)

0 0 0


=

f (11) 0 0
0 f (22) 0
0 0 0

+

K(11) K(12) K(13)

K(21) K(22) K(23)

K(31) K(32) K(33)

g(11) 0 0
0 g(22) 0
0 0 +∞

 (3.38)

where we get that the f (33) (vanishing for r � r0) and g(33) (diverging for r � r0)
solutions are the non-physical solutions. Multiplying out the K-matrix with the outgoing
solutions and dropping the unphysical terms, we get:K(11) K(12) K(13)

K(21) K(22) K(23)

K(31) K(32) K(33)

g(11) 0 0
0 g(22) 0
0 0 +∞

 =

g(11)K(11) g(22)K(12) 0
g(11)K(21) g(22)K(22) 0
g(11)K(31) g(22)K(32) 0

 (3.39)

Comparing this with the first matrix of vanishing channel-3 terms, we get the conditions:

u(13) = u(23) = 0

K(31) = K(32) = 0

⇒ û =

f (11) 0 0
0 f (22) 0
0 0 0

+

K(11) K(12) 0
K(21) K(22) 0

0 0 0

g(11) 0 0
0 g(22) 0
0 0 0


⇒ û =

[
f (11) 0

0 f (22)

]
+

[
K(11) K(12)

K(21) K(22)

] [
g(11) 0

0 g(22)

]
(3.40)

So this tells us that the effective dimensions of any scattering system would be equal to

only the number of open-channels dim{K̂} = No .

Note: In our example above, we dropped all the unphysical terms but in actual fact,
the K-matrix terms would not vanish as they encode the couplings between the channels
regardless of the channels being closed.
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§3.3 Calculating Scattering Matrices

We have seen the reaction matrix popping up in the multi-channel solution, but we have not seen
how to compute it explicitly as of yet. To learn how to do this, we first recall how we computed
phase-shifts (the single-channel analog of the multi-channel regime) in the single-channel case.
We computed the tangent of the phase shift using the Wronskian formula:

tan δl =
W [fEl, uEl]

W [gel, uEl]
(3.41)

The idea in the multi-channel scattering case is very similar, just that now we are working with
objects with indices (matrices), which has to get us using matrix inverses instead. This grants
us:

K̂ = (f̂El − f̂ ′Elγ̂El)(ĝEl − ĝ′Elγ̂El)−1 , γ̂El ≡ ûEl(û′El)−1 (3.42)

where the primes denote derivatives with respect to the radial coordinate. Having this form, we
can then easily derive the S and T -matrices using the formulas relating them to the reaction
matrix we saw in section 3.1. Some properties of these matrices are as follows.

1. The K-matrix is real symmetric.

2. The S and T matrices are unitary (ŜŜ† = T̂ T̂ † = I).

3. Probability flux conservation dictates:∑
i

∣∣∣[Ŝ]ij

∣∣∣2 =
∑
i

∣∣∣[T̂ ]ij

∣∣∣2 = 1 (3.43)

4. dim Ŝ = dim T̂ = dim K̂ = No

§3.3.1 Multi-Channel Scattering Cross-Sections

Now, let us consider the scattering boundary conditions which is going to give us the general
solution (generalizing from the single-channel scattering case):

ψ
(ν)
E =

∑
α

B(ν)
α

[
ei
~kα·~rδα,ν + fν,α(θ, φ)

eikαr

r

]
|α〉 (3.44)

This allows us to compare this solution to the one we have using equation (3.31):

ψ
(ν)
E =

∑
α

∑
l,m

1

r

[
A

(α,ν)
l

[
δα,νf

(α)
E,l (kαr) +K

(ν,α)
l g

(α)
E,l(kαr)

]]
Yl,m(θ, φ) |α〉 (3.45)

as we did in the single-channel case to find the scattering amplitudes fν,α(θ, φ). From here,
following a very similar derivation, we find that for elastic scattering, the scattering cross-section
would be:

σαelastic = 4π
∑
lα

(2l + 1)

k2
α

∣∣∣[T̂ (lα)]α,α

∣∣∣2 (3.46)
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and for the inelastic cross-section, this would be:

σαinelastic = 4π
∑
lα

∑
α′

(2l + 1)

k2
α

∣∣∣[T̂ (lα)]α′,α

∣∣∣2 (3.47)

These grant us the respective reaction matrices:

K̂
(α)
j =

~kα
µ
σαj (3.48)

where j indicates elastic and inelastic scattering. It turns out that we in fact have ṅ(t) =
−Kinelastic · n(t) where n(t) is the density of the gas. So the inelastic reaction matrix elements
tell us about the rate of decrease in the density of a gas, which is intuitive because we see that
the reaction matrix is consists of a velocity ~kα/µ and the cross-section, which in the inelastic
case, is a measure of the probability for transitions to another (likely lower energy) channel. As
a result, a larger reaction matrix grants us a larger effective particle velocity which results in
lower gas densities.

Note: In the limit that k → 0, we have that:

aα =
ln [Ŝ]α,α

2α
= − [K̂]α,α

kα
(3.49)

§3.4 Pathway Analysis

We will now be looking at how to analyze collisions via a formalism known as pathway analysis.
This means of scattering analysis was in fact how Fano approached many scattering problems. We
start by considering the elastic pathways, which is where the incoming and outgoing pathways are
the same. This also allows a diagrammatic means of visualizing the different channel transitions
a particle in collision could undergo.

§3.4.1 Elastic Collision Pathways

Elastic collisions are collisions in which the incoming and outgoing channels are the same. Con-
sider 3 energies E1, E2 and E3 which are the 3 lowest energy levels in a multi-channel system.
Consider that the incoming particle is in the channel with energy E2. There are several possible
pathways here. These are listed below.

1. One possibility (the simplest one) is that the now channel-transitions occur and the particle
simply exits the scattering potential in the same channel it entered (figure 3.3).

2. Alternatively, we could have the incoming particle transit to the channel with energy E1

and the transit back up to exit in the same pathway (figure 3.4).

3. Lastly, we could have the particle enter, transit to channel E3, transit back down to channel
E2 and exit (figure 3.5).
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Figure 3.3: Pathway 1 of elas-
tic scattering.
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Figure 3.4: Pathway 2 of elas-
tic scattering.
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Figure 3.5: Pathway 3 of elas-
tic scattering.

The scattering cross-section that describe these pathways is then given by summing over all the
partial waves of channel 2 labelled by l2:

σ
(2)
elastic = 4π

∑
l2

(2l2 + 1)

∣∣∣T (2)
22

∣∣∣2
k2

2

(3.50)

§3.4.2 Inelastic Collision Pathways

In the system we have set-up, inelastic collisions would occur when the outgoing pathway has an
energy lower than that of the incoming pathway. As such, we must have the particle exiting in
channel E1. So we have the following scenarios.

E1

E2

E3

Vα,α(r)

r

r0

V22

V11

V12

Figure 3.6: Pathway 1 of in-
elastic scattering.
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r
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V22
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Figure 3.7: Pathway 2 of in-
elastic scattering.
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Vα,α(r)

r

r0

V22

V33

V23V13

V11

Figure 3.8: Pathway 3 of in-
elastic scattering.

The scattering cross-section that describes these pathways is then given by summing over all
the partial waves of channel 2 labelled by l2 and also over all off-diagonal elements in the T
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matrix:

σ
(2)
inelastic = 4π

∑
l2

(2l2 + 1)
∑
α′

∣∣∣T (2)
α′,2

∣∣∣2
k2

2

 (3.51)

Note: All other transitions are treated as higher order terms which have very small
probabilities of occurring. As such, we do not consider these cases in our analysis.

In general then (for both elastic and inelastic scattering), we get that the T -matrix entries are
computed via taking the sum over the probabilities of these pathways.

∣∣∣T̂12

∣∣∣2 =

∞∑
i=1

Pi (3.52)

where i indexes the pathways.

Note: The probabilities Pi are the probability for the i-th total pathway. That is,
Pi encompasses the probability of entering channel α, making the channel transitions
specified by the i-th pathway and finally exiting channel α′.

§3.4.3 Bound-States

Bound states in a multi-channel system are states whereby the energy E of the incoming particle
is less than the energy of lowest channel energy (E < E1). If we have a situation where E < Ej
for j > 1, this could allow for resonant states like we saw earlier but not bound states. Recall
that in the single-channel scattering regime, we had the scattering amplitude partial waves is
given by:

fl(θ, φ) =
2l + 1

k cot(δl(k))− ik
Pl(cos θ) (3.53)

in which bound-state solutions are found by solving for the poles of these scattering ampli-
tudes:

k cot(δl(k))− ik = 0 (3.54)

The solutions for k from the equation above grant us the binding energies. Now to generalize
this to the mutli-channel case, we generalize kδl(k) to a matrix M̂(k) such that we have the
equation:

det
{
M̂(k)− ikI

}
= 0 (3.55)
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where the matrix entries are defined as:

Mαν =
kα

Kαν(k)
, k2

α =
2µ(E − Eα)

~2
(3.56)

Kα,ν being the reaction matrix we saw earlier.

§3.5 Contact Interactions and Fermi Pseudopotentials

Before we continue on our analysis of multi-channel systems, we take a small detour toward an
understanding of contact interactions. This is important for non-finite range (r = 0) interaction
regimes, and is a valuable tool for many applications such as many-body physics. To derive the
form of this potential, we look to the Fermi contact potential as proposed by Fermi in 1934.

V (r) =
4π~2a

2µ
δ(~r), δ(~r) =

δ(r)

4πr2
(3.57)

This potential arises by taking a square-well of width r0 and depth V0, and taking the limits as
r0 → 0 and V0 →∞ (illustrated in figure 3.9 below).

r

V (r)

r0(→ 0)O

−V0(→∞)

Figure 3.9: Fermi-pseudopotential

However, this potential leads to some less than desirable behaviour (too singular) for certain
applications. This was fixed by Huang and Yang in 1957 (PR 105, 767) via the form:

V (r) =
4π~2a

2µ
δ(~r)

d

dr
(r) (3.58)

where the parenthesis on the r after the derivative indicates that the derivative and r act together
as an operator:

V (r)ψ(r) =
4π~2a

2µ
δ(~r)

d

dr

(
rψ(r)

)
(3.59)

This is known as a regularized Fermi pseudopotential.

https://journals.aps.org/pr/abstract/10.1103/PhysRev.105.767
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Note: The regularized Fermi pseudopotential for contact interactions we have above can
also be written as:

V (r) =
4π~2a

2µ
δ(~r)

[
1 + r

d

dr

]
(3.60)

if the notation with r after the derivative is confusing.

One thing that is interesting about contact interactions is that it can be decomposed into the
following simple form:

V (r) =
∑
l,m

|l,m〉Vl(r) 〈l,m| (3.61)

where the matrix Vl(r) is diagonal because we are considering isotropic interactions. So in
principle, this is a sum that we can truncate in cold collisions:

V (r) ≈ |0, 0〉V0(r) 〈0, 0|+ . . . (3.62)

In general, we have that the matrix entries are written as:

Vl(r) =
4π~2

2µ
(al)

2l+1 (2l + 1)!!

l!2l
δ(r)

rl
d2l+1

dr2l+1
(rl+1) (3.63)

where the Bethe-Peierls boundary condition asserts that:(
(2l + 1)!!

(2l)!!

d2l+1

dr2l+1
rl+1

)
u(r)

r

∣∣∣∣
r=0

= − rl+1

(al)2l+1

u(r)

r

∣∣∣∣
r=0

(3.64)

which allows us to determine the coefficients of our scattering ansatz. So for the situation that
l = 0, we get:

1

u

du(r)

dr

∣∣∣∣
r=0

= −1

a
(3.65)

The contact potential only acts at the point where r = 0, but for any other position r 6= 0, we
have the Schrödinger equation reducing to:[

d2

dr2
+ k2

]
u(r) = 0

⇒ u(r) = A sin(kr + δ)

(3.66)

given that the energy is E > 0. So matching these boundary conditions, we get:

1

u

du(r)

dr

∣∣∣∣
r=0

=
1

u

du(r)

dr

∣∣∣∣
r=0+

⇒ δ = −ka
(3.67)
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Note: Contact interactions do not satisfy Levinson’s theorem (relation between the num-
ber of bound states of a potential to the difference in phase of a scattered wave at zero
and infinite energies) because they are a pseudopotential.

As for energies E < 0, we get: [
d2

dr2
− κ2

]
u(r) = 0

⇒ u(r) = Ae−κr

⇒ κ =
1

a

(3.68)

Contact interactions work best in the regime where the scattering length is much larger than
the interatomic/intermolecular interactions. Ross and Shawn in 1961 generalized the idea of
the contact interaction potential for multi-channel systems so that we have the potential as a
matrix:

V̂s(r) =
4π~2

2µ
Âδ(~r)

d

dr
(r) (3.69)

where the subscript s on the potential indicates only s-wave scattering, and Â is the scattering
length matrix with elements Âα,ν = aα,ν . The boundary conditions for this are then:

d

dr
uα,ν

∣∣∣∣
r=0

= −
∑
α′

uα′,ν
aα′,ν

(3.70)

Example (Channel-Coupled Contact Interaction):

|1〉

V (r)

|2〉

ε

r0(→ 0)O

−V0(→∞)

Figure 3.10: 2-channel Fermi-pseudopotential

Consider again the contact interaction pseudopotential (square-well and hard-wall po-
tential of width r0 which we take to 0) with 2 channels. Each channel has associated
scattering lengths aj and energy levels εj where ε2 = ε and ε1 = 0 for convenience. We
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can write without loss of generality that:

Vs =
4π~2

2µ

[
a1 1/β

1/β a2

]
δ(~r)

d

dr
(r) (3.71)

where β are the channel couplings. We can then ask, what the scattering length of the
system as a whole is, given that we know the scattering lengths of the individual channels
and their couplings. Consider the case where 0 < E < ε. Having a2 < 0 would not be
interesting since this would not allow any molecular states. However, for a2 > 0, we have
the energy:

Ebare = ε− ~2

2µa2
2

(3.72)

where “bare” means no coupling. So by varying the energy such that it gets close to a
resonance, we will get some interesting behaviours and resonant states. Alternatively, we
could fix E = 0 and vary ε. These would actually allow at some value of ε such that
the E = 0 line intersects the Ebare curve (plotting E vs ε) resulting in a molecular state.
This is known as a Feshbach resonance.

Recall that if a > 0, we can have 1 bound-state associated with energy −~2/(2µa2).
However, a < 0 would produce no bound-states. In the case of our system here, we would
have several possible regimes.

1. aj < 0 for all j: 0 bound-states.
2. a1 > 0, a2 < 0: 1 bound-states.
3. aj > 0 for all j: 1 bound-states + 1 bound-state if ε− ~2/(2µa2

2) < 0.
There are 2 things we can do to study this.

1. Fix ε and vary the energy E. This would allow us to get Fano-lineshape and study
the resonant behaviour through the plot.

2. Fix E = 0 and ε. This would allow us to look at the closed-channel state when it
becomes bound (Feshbach resonances), and the channel (β) couple behaviours.

E < 0:
Consider first the case where E < 0 (no open-channels). This would result in the radial
wavefunction:

u(r) = u(1)(r) |1〉+ u(2)(r) |2〉
= Ae−κr |1〉+Be−κ̃r |2〉

(3.73)

where κ2 = 2µ|E|/~2 and κ̃2 = 2µ(ε+ |E|)/~2 = k2
ε + κ2. At this point, we do not know

the values of these wave-numbers but we do know that it is a bound-state. Let us first



39 3.5. CONTACT INTERACTIONS AND FERMI PSEUDOPOTENTIALS

solve for the constants A and B using the Bethe-Peierl boundary conditions:

d

dr

[
u(1)

u(2)

]
= −

[
1/a1 β
β 1/a2

] [
u(1)

u(2)

]
r=0

⇒
[
−Aκ
−Bκ̃

]
= −

[
1/a1 β
β 1/a2

] [
A
B

]
⇒

[
1/a1 − κ β

β 1/a2 − κ̃

] [
A
B

]
=

[
0
0

]
⇒

(
1

a1
− κ
)(

1

a2
−
√
κ2 + k2

ε

)
− β2 = 0

(3.74)

This is a transcendental equation in κ since all other parameters would be provided to
us. To first gain more analytical insight and check if this equation makes sense, we first
turn off the coupling β = 0 which grants us 2 solutions for κ:

κ =
1

a1
or

√
1

a2
2

− k2
ε (3.75)

⇒ E = − ~2

2µa2
1

or E = ε− ~2

2µa2
2

(3.76)

The first of these solutions is only valid if a1 > 0, and the second when a2 > 0 since
we know that κ ≥ 0 by definition. This makes physical sense because we wanted to
study bound states anyways which already asserts this restriction on aj . These energy
relations allow us to plot E vs ε which without coupling, grant us linear curves. However,
once coupling is turned on, we get level repulsion (separation of the eigenvalues of each
channel). The level repulsion can be seen in a numerical plot as in figure 3.11 below.

Figure 3.11: Plot of E vs ε.
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For the numerics, the parameters a1 = 1, a2 = 0.2, β = 0.1, µ = 0.5, ~ = 1 were used.
The red lines are the energy curves while the horizontal blue dotted line is the line of
−~2/(2µa2

1), while the positive gradient blue dotted line is the line of ε− ~2/(2µa2
2).

Now consider the case where we set κ = 0 (zero energy solution with non-zero coupling),
this would grant us:

kε =
1− a1a2β

2

a2

⇒ ε =
~2

2µa2
2

(1− a1a2β
2)2

(3.77)

So we see that when there is a non-zero coupling, we need a value of ε that is slightly off
~2/(2µa2

2) to get a zero-energy bound-state.

0 < E < ε:
Now consider the regime where 0 < E < ε. This would grant us the solutions:

u(r) = u(1)(r) |1〉+ u(2)(r) |2〉
= A sin(kr + δ) |1〉+Be−κr |2〉

(3.78)

Again applying the Bethe Peierls boundary condition, we end up with the linear system:[
Ak cos δ

B

]
= −

[
1/a1 β
β 1/a2

] [
A sin δ
B

]
⇒ tan δ = −k

(
1

a1
− a2β

2

1− a2κ

)
⇒ a = − lim

k→0
tan δ

=

(
1

a1
− a2β

2

1− a2kε

)−1

(3.79)

If we want to know the limit to which a diverges (a → ∞, implying a resonance), we
have:

1

a1
=

a2β
2

1− a2kε

⇒ kε =
1− a1a2β

2

a2
, ε0 =

~2

2µa2
2

(1− a1a2β
2)2

(3.80)

where ε0 is the separation corresponding to the resonant scattering length. A good check
of this result is to look at the case where the channel separation is very large, granting
us an effective single-channel scattering system. To do this, we take kε to be very large,
which indeed grants us a = a1. Notice that when we take kε → ∞, we get that the
scattering length is just a = a1, telling us that a1 is the background scattering (off-
resonant scattering length).

Fano Lineshapes
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Now consider the Fano lineshapes of this scattering system. Recall that these are the
plots of

F (ε̃, q) =
∣∣e2iδl − 1

∣∣2
= |1− S|2

=

[
1

1 + q2

] [
(q + ε̃)2

1 + ε̃2

] (3.81)

where:

q = − cot δbg and ε̃ =
E − Eres

Γ/2
(3.82)

Since we know the scattering-phase shift, this gives us that the Fano lineshape goes like:

F (E) =
k2(

1
a2
− a2β2

1−a2κ

)2

+ k2

(3.83)

q =
1− a1a2β

2

a1kε
(3.84)

Eres = ε− ~2

2µa2
2

+
~2

2µa2
2

(
2a1a2β

2

1 + a2
1k

2
ε

)
+ . . . (3.85)

What is interesting is that when we have ε ≈ ε0, the lineshapes become very odd (not
the typical Fano lineshape). Because near this threshold regime, we can no longer con-
sider the background and resonant scattering as separate processes as they interfere in a
significantly different way than before.

E ≥ ε:
For this regime, we once again do a similar procedure but now, having to use Bessel
function solutions.



Chapter 4

Scattering in External Fields

We are now going to move into applying external fields to scattering events. In these note, we
will be focusing on Alkali atoms since they have a single outermost electron which allows us to
use weaker fields to perturb and probe the system. It turns out that external fields appear in in
the one-body Hamiltonian, and does not necessary play such a big role in the collision processes
between particles. So we are going to start by looking at the internal structure of single particles
subject to external fields.

§4.1 Internal Atomic Structure

We will mostly be working in regimes where the external is weak, such that it does not affect so
much the electronic structure of the atom below the valence electron. The important quantum
numbers we will need to describe this system are

1. Principle quantum number {n}

2. Orbital angular momentum and its projection {l,ml}

3. Nuclear spin and its projection {i,mi}

4. Valence electron spin and its projection {s,ms}

Then to know the energy levels of this system, we have to write down the effective Hamiltonian
that describes the system:

ĤA = ĤBorn +Aso ~̂L · ~̂S +Ahf ~̂I · ( ~̂S + ~̂L)− µB(gs ~̂S + gi ~̂I + gl ~̂L) · ~B (4.1)

where the subscripts correspond to A (atomic), so (spin-orbit) and hf (hyperfine). The n, l
quantum numbers are associated to the ĤBorn term (below-valence electronic structure), the

Aso ~̂L · ~̂S term is responsible for the fine spin-orbit coupling structure, the Ahf ~̂I · ( ~̂S + ~̂L) term is
responsible for the hyperfine nuclear/electron spin-orbit coupling, and the last term is known as
the Zeeman Hamiltonian which is responsible for the spin coupling with the magnetic field. gs
and gi known as the gyromagnetic numbers and µB is Bohr’s magneton.

42
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To analyze this Hamiltonian, we first pick a basis where ĤBorn is purely diagonal, so that we can
effectively treat it as a number En,l. One way to write the eigenstates of this system is:

|α〉 = |l,ml〉 ⊗ |s,ms〉 ⊗ |i,mi〉 (4.2)

However, this representation gives a horribly dense matrix which is not a wise choice of basis. So

a better choice would be to consider the operator ~̂J = ~̂L+ ~̂S, which grants the eigenstates:

|j,mj ; l, s〉 =
∑
ml,ms

〈s,ms, l,ml|j,mj ; l, s〉 (|s,ms〉 ⊗ |l,ml〉) (4.3)

This basis allows the Aso ~̂L · ~̂S term to also be diagonal. Additionally, we want to include the
nuclear spins in this basis such that we can create a nice representation, so we consider the

operator ~̂J + ~̂I = ~̂F which grants the eigenstates:

|f,mf ; l, s, i〉 =
∑
mj ,mi

〈i,mi, j,mj |f,mf ; l, s, i〉 (|i,mi〉 ⊗ |j,mj ; l, s〉) (4.4)

The notation we will adopt for these states can be written as:

2s+1
n lj(f) (4.5)

Before we perform the analysis for an atom in an external magnetic field, we consider an example.
Rubidium-87 in an external magnetic field with quantum numbers n = 5, i = 5/2, s = 1/2 has
the energy level diagram given in figure 4.1 below.

E

n = 5

2
5p3/2

2
5s1/2

2
5p1/2

Figure 4.1: Energy splitting up to the Zeeman effect.

So we see that the Zeeman structure (due to the Zeeman Hamiltonian term) produces energy
splittings of about 3-orders of magnitude less than those due to spin-orbit coupling. What this
Zeeman effect corresponds to is a breaking of the symmetry of the problem, which results in
a splitting of the degeneracies (as seen in perturbation theory). So in the ultracold regime,
these are the energy transitions we are concerned with since all other energy transitions will
require too much energy to excite (i.e. multi-channel scattering in the ultracold regime arises
due to the Zeeman splitting of energy states, which grant us pseudospin states labelled by
|α〉 = |f,mf 〉).
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Now let’s turn on the external field. We get the Hamiltonian in the “brute-force basis” we
originally as:

ĤA = EnlI +
Aso
2

(
~̂J2 − ~̂L2 − ~̂S2

)
+
Ahf

2

(
~̂F 2 − ~̂I2 − ~̂J2

)
− µB

(
gsŜz + giÎz

)
Bz (4.6)

First, we consider the case when l = 0 and setting En,0 = 0 in the brute-force basis:

〈s,ms; i,mi| ĤA |s,m′s; i,m′i〉

=
Ahf

2
〈s,ms; i,mi| ~̂F 2 |s,m′s; i,m′i〉

−
{
Ahf

2
[i(i+ 1) + s(s+ 1)] + µB [gsms + gimi]Bz

}
δmi,m′iδms,m′s

(4.7)

The only non-diagonal term is that relating to the ~̂F 2 operator, which we can insert a complete
basis set to get:

〈s,ms; i,mi| ~̂F 2 |s,m′s; i,m′i〉 =
∑
f,mf

〈s,ms; i,mi|f,mf 〉 f(f + 1) 〈f,mf |s,m′s; i,m′i〉 (4.8)

We know from the Clebsch-Gordan coefficients that we only have non-trvial terms when we
have:

|i− s| ≤ f ≤ i+ s (4.9)

ms +mi = mf (4.10)

by the selection rules. Similarly for the primed quantum numbers as well. This in general is an
off-diagonal, dense matrix. So these would admit eigenstates:

|α〉 = |α; (s, l), i,mf 〉 =
∑
ms,mi

cms,mi |s,ms; i,mi〉 (4.11)

§4.2 2-Body Hamiltonians

What happens now, when we start to get interaction between 2-atoms? First of all, let us
consider an abstract notion of the number of states in a 2-atom system. Let’s say that each
atom has N internal states. If the atoms are identical, we would expect a total of N2/2 possible
states for the coupled system of 2-atoms. However, we are only concerned with a subspace of all
these states which deals with the interactions. We now aim to gain a better understanding of
this subspace and how to find it. We can write the 2-body Hamiltonian in general as:

Ĥ = Ĥm + Ĥ
(1)
A + Ĥ

(2)
A (4.12)

where Ĥm is called the molecular Hamiltonian responsible for the interactions between atoms, and

Ĥ
(j)
A is the individual atomic Hamiltonian for atom j. In general, the molecular Hamiltonian is
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going to be very complex due to all the internal structure and inter-atomic structure interactions.
We can effectively decompose these as follows:

Ĥm = T̂r + T̂re + V̂ee + V̂e1N + T̂e2N + T̂NN (4.13)

where the r subscript stands for the distance between nuclei, re is the distance between valence
electrons, e stands for the electron terms and N for nuclear terms. The wave function for such
a system would be:

ψM (~r, ~r1, ~r2) = ψ(~r)φ(‖~r‖, ~r1, ~r2) (4.14)

where ~rj is the radius between the nucleus and electron in atom j. This generally would require
the Bohr-Oppenheimer approximation, but however, we are not concerned with the electronic
degrees of freedom, so we “integrate out” such effects to get the effective Hamiltonian:

ĤN (r) ≡ 〈ψee| Ĥm |ψee〉 (4.15)

where |ψee〉 is electron interaction wavefunction. After integrating out these electron depen-
dencies, we are left only with the nuclear degrees of freedom which we can write an effective
Hamiltonian of this entire system to be:

Ĥ =

[
− ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+

~̂L2

2µr2
+ V̂int(r)

]
+
[
Ĥ

(1)
A + Ĥ

(2)
A

]
(4.16)

where V̂int(r) is the interaction potential which accounts for an effective treatment of all the

electronic degrees of freedom and ~̂L is the angular momentum operator for the entire system.
The results above are taken from many-body theory and are the concern mostly in chemical
physics. We also want to write the interaction potential in the spin basis so that we can account
for the spin interactions:

V̂int(r) =
∑
s,ms

|s,ms〉Vs(r) 〈s,ms| (4.17)

such that the Vs(r) are the eigenvalues of the electronic Hamiltonian. We now look at how these
Vs(r) terms would look like as functions for r. First, we consider an ansatz for the wavefunction
for our effective Hamiltonian, which reads:

ψE(~r) =
∑
α

∑
l,m

u
(α)
E,l(r)

r
Yl,m(~r)

 |α〉 (4.18)

This allows us to consider just the radial portion of our effective Schrödinger equation from the
Hamiltonain above to get:[

− ~2

2m

d2

dr2
+
l(l + 1)~2

2µr2
− (E − εα)

]
u

(α)
E,l(r) +

∑
α′

Vα,α′(r)u
(α)
E,l(r) = 0 (4.19)
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where we defined Vα,α′(r) =
∑
s,ms
〈α|s,ms〉Vs(r) 〈s,ms|α′〉. It works out that in the long-range

regime (r � r0), the potential matrix elements go like:

Vα,α → −
C6

r6
(4.20)

Vα,α′ ∼ e−r/β → 0 (4.21)

In the case of alkali atoms in their ground states (l = 0, s = 1/2) which we are looking at, we
would have s = s1 + s2 = 0 or 1 (s = 0 corresponds to the single anti-parallel state, and s = 1
corresponds to the triplet parallel state). Recall the singlet and triplet states are given by:

Singlet :
{
|↓↑〉 − |↑↓〉

Triplet :


|↓↑〉+ |↑↓〉
|↓↓〉
|↑↑〉

(4.22)

So the sum in
∑
s,ms
〈α|s,ms〉Vs(r) 〈s,ms|α′〉 would only run over s = 0, 1. These potentials

would have wells due to the electron-nucleus attraction, however the triplet state would have a
shallower well due to the Pauli exclusion principle of the electronic spins (parallel spins do not
want to share the same state). The Pauli exclusion takes effect at short distances, but at large
distances, these 2 spin s states look the same and follow the Buckingham potential (∼ 1/r6) and
is visualized in figure 4.2 below (using 2 Rubidium-85 atoms). In the molecular Hamiltonian, we

have that ~̂S2 and ~̂I2 are conserved.

Figure 4.2: Potential Curves for 2 Rubidium-85 atoms with effective spins (J.P. D’Incao, 2019).

Now let’s look at the atomic portion of the 2-body Hamiltonian. In fact, just having this
Hamiltonian will already be useful in the long-range regime where there is little inter-atomic

https://en.wikipedia.org/wiki/Buckingham_potential
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interaction. If we consider the case where l1 = l2 = 0, choosing the zero-point energy such that

E
(1)
n,0 + E

(2)
n,0 = 0 and having ~B = Bẑ, then we can write:

Ĥ
(1)
A + Ĥ

(2)
A =

A
(1)
hf

2

(
~̂F 2

1 − ~̂I2
1 − ~̂J2

1

)
− µB

(
gsŜ1,z + giÎ1,z

)
Bz

+
A

(2)
hf

2

(
~̂F 2

2 − ~̂I2
2 − ~̂J2

2

)
− µB

(
gsŜ2,z + giÎ2,z

)
Bz

(4.23)

The basis for this is going to be super messy if we include all the quantum numbers, but we

realize that states with different Mf = m
(1)
f + m

(2)
f do not interact (effectively) and are thus

conserved. This grants us a block diagonal matrix representation. The 2 atom spinor (state) can
then be written as:

|α〉 ≡ |α1〉 ⊗ |α2〉 (4.24)

⇒
[
Ĥ

(1)
A + Ĥ

(2)
A

]
|α〉 = [εα,1 + εα,2] |α〉 (4.25)

where the eigenvalues εα,j are exactly the pseudospin eigenvalues we have seen before during the
start of our multi-channel analysis.

Note: for both parts of the Hamiltonian (molecular and atomic), we have used 2 different
basis {|s,ms〉 ⊗ |i,mi〉} and {|α〉 = |α1〉 ⊗ |α2〉} respectively. It turns out that the
{|s,ms〉 ⊗ |i,mi〉} is good for deeply bound molecular states at short-ranges, but bad for
scattering states where the {|α〉 = |α1〉⊗ |α2〉} basis would then be a better choice. Each
of these bases ensure that the matrix representation of their respective Hamiltonian terms
are diagonal.

§4.2.1 Spin Character in Molecular States

Now to compare the short-range and long-range regimes, one could do this experimentally by
applying an external magnetic field and observing the spin character (energies in particular spin
states) as the magnetic field is varied (plot energy vs B-field). If the energy curve of a the
molecular state runs parallel to energy curves of the separated atoms for some given spin state,
we can say that the molecule has the same spin character as an atom in that spin state.

Another way to determine the spin-character is to consider the channel fraction fα of the channel
α defined as:

fα =

∫ ∞
0

∣∣∣u(α)
E,l(r)

∣∣∣2dr (4.26)

which grants a measure of the proportion of the wavefunction in a given channel. We then again
vary the external magnetic field and observe how the channel fractions vary. This is another
indication of the spin character in the molecular state.
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§4.3 Atoms in Harmonic Traps

We are now going to look at the simple treatment of atoms under harmonic confinement. These
can be implemented in many ways such as counter propagating laser fields. These confinements
add a term Ĥho into our single atom Hamiltonian:

Ĥ = ĤA + Ĥho = ĤA +
1

2
mω2r2 (4.27)

where ω is the confinement frequency. What this would do, is split each of the original energy
levels of the initial atomic Hamiltonain ĤA into a an infinite ladder of energy levels with even
spacing (∼ ~ω). This generally creates a huge mess since there would no longer be a clear distinc-
tion in the original energy levels (splittings overlap). Now considering 2-bodies, we have:

Ĥ = ĤM + Ĥ
(1)
A + Ĥ

(2)
A +

1

2
mω2(r2

1 + r2
2)

= ĤM + Ĥ
(1)
A + Ĥ

(2)
A +

1

2
µω2r2 +

1

2
Mω2R2

(4.28)

We can add the trapping potential into the molecular Hamiltonian to get some effective molecular
Hamiltonian:

ĤM̃ = − ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+

~̂L2

2µr2
+ V̂int(r) +

1

2
µω2r2 +

1

2
Mω2R2

≈ − ~2

2µ

(
d2

dr2
+

2

r

d

dr

)
+

~̂L2

2µr2
+

1

2
µω2r2 +

1

2
Mω2R2

(4.29)

where we can drop the interaction potential since the Harmonic potential dominates (which is
the case in real experiments). A visualization of the spectrum as a function of an externally
applied magnetic field is shown in figure 4.3 below.

Figure 4.3: Spectrum of a 2 atom system as a function of B (J.P. D’Incao, 2019).
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Note: The orientation of the applied magnetic field is in the z-axis, which is orthogonal
to the lattice plane.

§4.4 Atoms in Time-Periodic Fields (Floquet Theory)

There are many techniques to approach such systems, such as Floquet theory, time-propagators,
rotating wave approximations (for 2-level systems), etc. Here, we will focus on the Floquet
approach which has several benefits. Namely, it is 1) non-perturbative and 2) conceptually clear.
Supplementary readings for this include S.I. Chu, D.A. Telnov, Phys Rep, 390,1 (2004).

Floquet theory was introduced in 1883 in which a a transformation was applied to a time-
periodic system of differential equations such that the coefficients of the differential equation
becomes time-independent. This is indeed the motivation for Floquet theory, because it allows
us to think of a time-dependent system (bare state picture) as a stationary system problem
(dressed state picture). An application of this is to solid-state systems which is in that context
referred to as the Bloch formalism. The first step to this is defining our Hamiltonian:

Ĥ(~r, t) = Ĥ0(~r) + Ŵ (~r, t) (4.30)

where we break up our Hamiltonian into a term that is time-independent (bare Hamiltonian)
and another that is time-dependent (dressed Hamiltonian). We also require that:

Ŵ (~r, t+ τ) = Ŵ (~r, t) (4.31)

where τ is the period of the Floquet system. For the purposes of this class, we will only consider
pseudo-spin states within Ŵ , which will be enough for us to gain an understanding of this theory.
There are 2 points to take note of here, which are

1. the wavefunction has to have the same periodicity as the Hamiltonian |ψ(~r, t+ τ)|2 =

|ψ(~r, t)|2;

2. energy of the system is not conserved since the Hamiltonian is time-dependent which breaks
time-translation symmetry.

A powerful concept that is introduced in Floquet theory, is that of quasi-energy, which is a
quantity that is conserved. These are quantities that show up in the dressed state picture, which
is a combined energy of the energy in the bare state picture and some field terms. This can be
thought of as a time-averaged energy of the compound system. To get into the meat of things,
we of course have to write out the Schrödinger’s equation:

i~
∂

∂t
ψ(~r, t) = Ĥ(~r, t)ψ(~r, t) (4.32)

We then perform a trick in which we define a “Floquet Hamiltonian ĤF as:

ĤF ≡ Ĥ(~r, t)− i~ ∂
∂t

such that ĤFψ(~r, t) = 0

(4.33)

https://www.sciencedirect.com/science/article/pii/S0370157303003946
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This admits solutions of the form:

ψ(~r, t) ≡ e−iεt/~ψF (~r, t) (4.34)

where we have defined the Floquet wavefunction ψF (~r, t) which is also periodic in τ . This solution
is not immediately obvious and is an ansatz from the Floquet theorem. Using the Floquet
wavefunction ansatz, we plug this back into the Floquet Hamiltonian equation to get:[

Ĥ(~r, t)− i~ ∂
∂t

]
e−iεt/~ψF (~r, t) = 0

⇒ ĤF (t)ψF (t) = εψF (t)

(4.35)

which is known as the Floquet Schrödinger’s equation. The interesting thing about this result is
that we are now allowed to treat time just like a spatial degree of freedom which will reduce a
lot of complexities that come along with time-dependence. How do we solve this equation then?
First, we need to consider the treatment of the Floquet wavefunction. The first assumption, is
that we know how to solve eigenstates of the bare Hamiltonian:

Ĥ0(~r)φα(~r) = E(0)
α φα(~r) (4.36)

Working in this basis of φα(~r), we get a diagonal matrix representation of the bare Hamiltonian.
We then assert that we can write the Floquet wavefunctions as follows:

ψF (~r, t) =

∞∑
n=−∞

∑
α

cn,αφα(~r)einωt (4.37)

where 〈n|n′〉 =
1

τ

∫ τ

0

einωtein
′ωtdt = δn,n′ (4.38)

where ω = 2π/τ . For simplicity, we often write these Floquet states as:

|ψF 〉 =
∑
n,α

cn,α |n, φα〉 (4.39)

Plugging in these states into the Floquet Schrödinger’s equation, we end up with:∑
n,α

[
〈n′, φ′α| Ĥ(t) |n, φα〉+ (n~ω − ε)δn,n′δα,α′

]
cn,α = 0 (4.40)

which is just an eigenvalue problem.

Example:

Consider a 2-level system where the bare Hamiltonian is written as:

Ĥ0 = E
(0)
1 |1〉 〈1|+ E

(0)
2 |2〉 〈2| (4.41)
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while the time-dependent portion of the Hamiltonian is written as:

Ŵ (t) =
(
|1〉 〈2|+ |2〉 〈1|

)
~Ω cos(ωt) (4.42)

Then using the Floquet wavefunction:

ψF =
∑
n,α

cn,αφαe
inωt (4.43)

We get the matrix elements of the time-dependent Hamiltonian as:[
Ŵ
]n′,α′
n,α

= (4.44)
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Appendix A

Scattering Ansatz

When looking for ansatz to scattering problems, we can decompose the ansat into 3 parts,
namely the 1) incident wave, 2) reflected wave and 3) transmitted wave where the reflected and
transmitted waves can be grouped together as the scattered wave.

1. Incoming Wave:

Because we are looking at finite range potentials, these can take the form:

ϕ(~r) = eikz (A.1)

where we pick our z axis to be the axis of incident wave propagation. k is the wave-number
and directly relates to the energy of the incident wave as:

E =
~2k2

2m
(A.2)

2. Scattered Wave

Working in spherical coordinates, we first look at the r dependence. We know that the scat-
tered wave is going to propagate radially outward, but also needs to diminish in amplitude
to conserve probability current density. As such, we propose the ansatz:

ψ(~r) =
eikr

r
(A.3)

which does satisfy the free-particle Schrödinger equation. However we cannot impose spher-
ical symmetry and must account for this by adding angular dependence:

ψs(~r) = fk(θ, φ)
eikr

r
(A.4)

where we expect fk(θ, φ) to be determined by V (~r) and hence is called the scattering
amplitude.

53
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Our current ansatz under the assumptions above would then be:

ψ(~r) = eikz + fk(θ, φ)
eikr

r
(A.5)

provided that we are sufficiently far from the scattering center (r � a where a is the range of
the potential).

§A.1 Scattering Cross Section

To see how fk(θ, φ) translates into the scattered wave, we look at the scattering cross section σ.
In particular, we perform differential analysis by considering:

dσ =
# of particles scattered into dΩ per unit time

Flux of incident particles
(A.6)

where dΩ is the solid angle about (θ, φ) and the incident particle flux is simply the number of
incident particles per area per unit time. In words, the differential cross section is the area that
removes from the incident beam the particles to be scattered into solid angle dΩ. We shall now
compute the denominator and numerator terms:

1. Incident Flux (Denominator):

This quantity is actually familiar to us and is known as the probability current / flux ~J .

~Jeikz =
~
m

Im {ψ∗∇ψ} =
~k
m
ẑ (A.7)

This result makes sense because it is actually just the velocity ( pm = ~k
m ) of the probability

density (
∣∣eikz∣∣2 = 1).

2. Rate of Scattering into dΩ (Numerator):

We first look at at the number of particles scattered into a differential volume r2drdΩ, dn:

dn = |ψ(~r)|2d3~r

=

∣∣∣∣fk(θ, φ)
eikr

r

∣∣∣∣2r2drdΩ

= |fk(θ, φ)|2drdΩ

(A.8)

Previously, we saw that the velocity dr
dt = p

m = ~k
m , hence:

dn

dt
= |fk(θ, φ)|2 drdΩ

dr/(p/m)

=
~k
m
|fk(θ, φ)|2dΩ

(A.9)
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Putting these 2 results together, we see that the ~k
m factors appear in both the denominator and

numerator, which cancel to give us:

dσ = |fk(θ, φ)|2dΩ ⇒ σ =

∫
|fk(θ, φ)|2dΩ (A.10)

§A.2 Phase Shifts

We will now see that scattering amplitudes can actually be computed in terms of phase shifts.
We start but first drawing intuition from scattering in 1D.

1D Scattering and Phase Shifts:

Consider the finite-range potential with a hard wall as illustrated below.

x

V

aO

Finite-
Range

Potential

Figure A.1: 1D Finite-Range Potential with a Hard-Wall

Recall that for the potential above, we required an odd function which vanishes at the
origin O. The ansatz for the wavefunction for r > a would thus be:

ϕ(x) = N sin(kx) =
N

2i

(
eikx − e−ikx

)
(A.11)

with N being the normalization factor, eikx the outgoing wave and e−ikx the ingoing
wave. This would be fine if there were just a hard-wall potential, but because of the
non-trivial finite-range potential in 0 < r < a, it must be modified. 2 considerations for
this:

1. The outgoing term is required to be modified since it scatters off the finite-range
potential.

2. Probability must be conserved upon modification of the ansatz.
This leads us to modify the outgoing wave with just a phase shift:

ψ(x) =
N

2i

(
eikxe2iδk − e−ikx

)
(A.12)

Remember this result as we now look at scattering in 3D. This will be an invaluable tool
for us.

To approach scattering in 3D, we further assert that we are dealing with a central potential
(spherically symmetric potential) V (~r) = V (r).
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§A.2.1 Analysis of a Spherically Symmetric Potential

As a refresher, derivations of the radial solution RE` and spherical harmonics Ym` are provided
below.

Central Potentials:

In spherical coordinates, the Laplacian on an arbitrary wavefunction ψ is given as:

∇2ψ =
1

r

∂2

∂r2
(rψ) +

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
ψ (A.13)

As such, the full Schrödinger equation with a central potential in spherical coordinates is
given by:

− ~2

2m

[
1

r

∂2

∂r2
r +

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)]
ψ + V (r)ψ = Eψ (A.14)

It can be shown that:

~̂L2 = − ~2

sin θ

∂

∂θ
sin θ

∂

∂θ
− ~2

sin2 θ

∂2

∂φ2
(A.15)

where ~̂L is the angular momentum operators with their respective eigenfunctions are then:

~̂L =
(
L̂x, L̂y, L̂z

)
(A.16)

L̂x ≡ ŷp̂z − ẑp̂y, L̂y ≡ ẑp̂x − x̂p̂z, L̂z ≡ x̂p̂y − ŷp̂x (A.17)

L̂zψ`m = ~mψ`m, m ∈ R (A.18)

~̂L2ψ`m = ~2`(`+ 1)ψ`m , ` ∈ R (A.19)

As such, the Schrödinger equation reduces to:

− ~2

2m

1

r

∂2

∂r2
(rψ) +

L2

2mr2
ψ + V (r)ψ = Eψ (A.20)

for which if we choose a separable ansatz ψ(r, θ, φ) = RE`(r)Y`m(θ, φ) with Y`m(θ, φ)

being eigenstates of ~̂L2, we get:

− ~2

2m

1

r

d2 (rRE`)

dr2
Y`m +

~2`(`+ 1)

2mr2
RE`Y`m + V (r)RE`Y`m = ERE`Y`m (A.21)

From here, we see that all the spherical harmonics Y`m cancel out to give:

− ~2

2m

d2 (rRE`)

dr2
+

~2`(`+ 1)

2mr2
(rRE`) + V (r) (rRE`) = E (rRE`) (A.22)

And if we define uE`(r) ≡ rRE`(r), we get:

− ~2

2m

d2uE`(r)

dr2
+

[
V (r) +

~2`(`+ 1)

2mr2

]
uE`(r) = E · uE`(r) (A.23)

The 2 boxed results constitute the radial and angular equations for a general central
potential.
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§A.3 Central Potential Scattering

Going back to scattering, remember again that we are looking for solutions where r � a. In this

regime, we can look for solutions where V (r) = 0 and E = ~2k2

2m :

− ~2

2m

d2uE`(r)

dr2
+

~2`(`+ 1)

2mr2
uE`(r) =

~2k2

2m
uE`(r)

⇒
[
− d2

dr2
+
l(l + 1)

r2

]
uE`(r) = k2uE`(r)

⇒
[
− d2

dρ2
+
l(l + 1)

ρ2

]
uE`(ρ) = uE`(ρ) , ρ ≡ kr

(A.24)

Since we can do a change of variable to eliminate k2, the energy for this system is not quantized.
It works out that solutions to the boxed equation (A.24) above are linear combinations of spherical
Bessel functions:

uE`(ρ) = A`ρj`(ρ) +B`ρn`(ρ) (A.25)

remembering that ρ is already a function of k which directly related to the energy E, hence the
subscripts in uE`.

Spherical Bessel Functions:

Spherical Bessel functions are canonical solutions to solving the radial portion of the
Helmholtz equation,

(
∇2 + k2

)
A = 0:

r2 d
2f(r)

dr2
+ 2r

df(r)

dr
+
[
r2 − l(l + 1)

]
f(r) = 0

⇒
[
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

]
f(r) = f(r)

(A.26)

These solutions have the form:

jl(r) = (−r)l
(

1

r

d

dr

)l
sin(r)

r
, “Spherical Bessel Functions”

nl(r) = −(−r)l
(

1

r

d

dr

)l
cos(r)

r
, “Spherical Neumann Functions”

(A.27)

and are related to the ordinary Bessel functions of the first kind by the relations:

jl(r) =

√
π

2r
Jl+ 1

2
(r)

nl(r) = (−1)l+1

√
π

2r
J−l− 1

2
(r)

(A.28)

Note that nl(r) diverges / is singular at the origin (r = 0) while jl(r) does not / is
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non-singular. The large radius limit (r →∞) of these functions go like:

jl(r)→
1

r
sin

(
r − lπ

2

)
nl(r)→ −

1

r
cos

(
r − lπ

2

) (A.29)

Knowing that the plane wave eikz = eikr cos θ is a solution to equation (A.24), it must then be
constituted of linear combinations of spherical Bessel functions:

eikrcosθ =

∞∑
`=0

a`m [A`j`(kr) +B`n`(kr)]Y`m(θ, φ) (A.30)

A few things to notice before we proceed.

• Remembering that we are working with a spherically symmetric potential, and since we
have chosen an axis for the incoming wave to propagate (z-axis), we can deduce that the
φ (azimuthal) dependence is irrelevant (z = r cos θ is independent of φ ⇒ m = 0).

• Plane wave solutions have no divergences at the origin, so we cannot include the spherical
Neumann functions in the solution for eikz.

With these in mind, our expansion simpifies to:

eikrcosθ =

∞∑
`=0

a`0A`j`(kr)Y`0(θ) (A.31)

It then works out that the a`0A` coefficients work out to give:

eikrcosθ =
√

4π

∞∑
`=0

(i)l
√

2l + 1 Y`0(θ)j`(kr) (A.32)

So we see that a plane wave can be built as in infinite sum of partial waves (Each term in `) where
each partial wave is an exact solution to (A.24). Applying the approximation when r � a:

eikrz ≈
√

4π

k

∞∑
`=0

(i)l
√

2l + 1 Y`0(θ)
sin
(
kr − `π

2

)
r

=

√
4π

k

∞∑
`=0

(i)l
√

2l + 1 Y`0(θ)
1

2i

[
ei(kr−

`π
2 )

r
− e−i(kr−

`π
2 )

r

] (A.33)

This effectively splits the plane wave into outgoing (ei(kr−
`π
2 )) and incoming (e−i(kr−

`π
2 )) terms

which we can now apply our intuition from the 1-dimensional case to get the full solution:

ψ(~r) =

√
4π

k

∞∑
`=0

(i)l
√

2l + 1 Y`0(θ)
1

2i

[
ei(kr−

`π
2 )e2iδ`

r
− e−i(kr−

`π
2 )

r

]
(A.34)
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If we equate this result to our original elastic scattering ansatz:

eikz + fk(θ)
eikr

r
=

√
4π

k

∞∑
`=0

(i)l
√

2l + 1 Y`0(θ)
1

2i

[
ei(kr−

`π
2 )e2iδ`

r
− e−i(kr−

`π
2 )

r

]

⇒ fk(θ)
eikr

r
=

√
4π

k

∞∑
`=0

(i)l
√

2`+ 1 Y`0(θ)
1

2i

(
e2iδ` − 1

) ei(kr− `π2 )

r

⇒ fk(θ)
eikr

r
=

√
4π

k

∞∑
`=0

[√
2`+ 1 Y`0(θ)eiδ` sin δ`

] eikr
r

⇒ fk(θ) =

√
4π

k

∞∑
`=0

√
2`+ 1 Y`0(θ)eiδ` sin δ`

(A.35)

where we used the identity e−i`π/2 = (−i)`, so that (i)` ·e−i`π/2 = 1 and we have also dropped the
φ dependence of f from spherical symmetry arguments. This indeed grants us an expression for
the scattering amplitudes in terms of phase shifts. Recalling result A.10, we then see that:

σ =

∫
|fk(θ)|2dΩ

=

∫
4π

k2

∞∑
`=0

∞∑
`′=0

√
2`+ 1

√
2`′ + 1 Y`0(θ)e−iδ` sin δ` Y`′0(θ)eiδ`′ sin δ`′dΩ

=
4π

k2

∞∑
`=0

∞∑
`′=0

√
2`+ 1

√
2`′ + 1e−iδ`eiδ`′ sin δ` sin δ`′

∫
Y`0(θ)Y`′0(θ)dΩ

(A.36)

We know from our analysis of central potentials that spherical harmonics are orthogonal func-
tions. That is to say: ∫

Y`0(θ)Y`′0(θ)dΩ = δ`,`′

⇒ σ =
4π

k2

∞∑
`=0

(2`+ 1) sin2 δ`

(A.37)

Noting that above, δ`,`′ is the Kronecker delta function, not a phase shift.
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