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These notes are the second in a series of 2 graduate level documents on classical electrodynamics.
These notes are intended to accompany the relevant texts for this class, which are Jackson’s
“Classical Electrodynamics”, Landau and Lifshitz’ “Classical Field Theory” and “Electrodyamics
of Continuous Media”, and Ryder’s “Quantum Field Theory”. The topics covered in this course
this semester will be as follows.

1. Non-Relativistic Radiation;
2. Scattering and Diffraction;
3. Special Relativity;

(a) 4 Vectors,
(b) Covariant Formalism,
(c) Particle Motion in External Fields,
(d) Classical Field Theory (Goldstone Bosons, Higgs effect, Meissner effect),

4. Relativistic Radiation;
(a) Larmor Formula,
(b) Synchrotron Radiation,
(c) Bremsstrahlung Radiation,

5. Quantum Field Theory (Tentative).

For information on the class and relevant resources, refer to this link. All text in blue colored font
are hyperlinks to ease navigation through these notes or for quick reference. Before beginning,
it would be worth reading V.F. Weisskopf’s “How Light Interacts with Matter”.

Instructor: Professor Thomas DeGrand.
Instructor office hours: Wednesday (2pm - 4pm) and Thursday (1pm - 5pm).
Instructor email: degrand@aurinko.colorado.edu.
Personal use only. Send any corrections and comments to reuben.wang@colorado.edu.

http://www-hep.colorado.edu/~degrand/p7320.html
http://www-hep.colorado.edu/~degrand/p7320/weisskopf.pdf
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Chapter 1

Introduction

Let’s start of with establishing the unit system we will be adopting in this class. As per usual, we
always want a set of units that makes life easiest for you (in context of the physical theory you are
working with). For this course, we will be adopting Gaussian units. This allows us to keep track of
physical dimensions which keeps us sane when going back to check the derivations we go through.
In fact, a lot of the quantities we are concerned with in this class are innately dimensionless (e.g.
antenna patterns, scattering cross-sections, etc), so the unit system we adopted does not play that
huge a role. Nonetheless, we shall start with a lightning introduction to Gaussian units.

§1.1 Gaussian Units

We start some with some relevant equations to juxtapose the equations between MKS and
Gaussian (CGS) units.

MKS

∇ · ~B = 0

∇ · ~E =
ρ

ε0
, ∇2Φ = − ρ

ε0

∇× ~B − µ0ε0
∂ ~E

∂t
= µ0

~J

∇× ~E +
∂ ~B

∂t
= 0

~B =∇× ~A

~E = −∇Φ− ∂ ~A

∂t

CGS

∇ · ~B = 0

∇ · ~E = 4πρ, ∇2Φ = −4πρ

∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J

∇× ~E +
1

c

∂ ~B

∂t
= 0

~B =∇× ~A

~E = −∇Φ− 1

c

∂ ~A

∂t

(1.1)

We see that in CGS, ~E and ~B have the same units, along with Φ and ~A. Turning to macroscopic

1
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electrodynamics, we have the equations:

MKS

~D = ε ~E = ε0 ~E + ~P

~B = µ ~H = µ0
~H + ~M

CGS

~D = ε ~E = ~E + 4π ~P

~B = µ ~H = ~H + 4π ~M

(1.2)

For the problems in this course, all we are going to really need out of Maxwell’s equations is
getting the wave equation out, then getting the energy densities and Poynting vector out of that.
As recap, we have: electrodynamics, we have the equations:

MKS

u =
ε0
2
~E2 +

1

2µ0

~B2

~S = ~E × ~H

CGS

u =
1

8π

(
~E2 + ~B2

)
~S =

c

4π

(
~E × ~H

) (1.3)

§1.1.1 Radiation in Gaussian Units

The notion of radiation can most simply be treated as electromagnetic waves propagating in
free-space. For this simple system, we have that the governing equations are written as:

∇ · ~E = 0, ∇ · ~B = 0 (1.4)

∇× ~E +
1

c

∂ ~B

∂t
, ∇× ~B − 1

c

∂ ~E

∂t
, (1.5)

Taking time-derivatives and curls on the second 2 equations above grants us the wave equation
given as (

∇2 − 1

c2
∂2

∂2t

)[
~E
~B

]
= ~0 (1.6)

We then have the ansatz for the equation above are indeed planewaves which is written as

~E = ε̂E0 exp
{
i
(
~k · ~x− ωt

)}
~B =

(
ck

ω

)
n̂× ~E

s.t. k2 − ω2

c2
= 0, ~k · ~ε = 0

(1.7)

where ε̂ is the direction orthogonal to that of propagation. Nicely, we have that the magnitudes
of the electric and magnetic fields are exactly the same in CGS (since c = ω/k)! This grants us
that the time-averaged Poynting vectors and energy densities have the nice forms:

〈~S〉 =
c

8π

∥∥∥ ~E0

∥∥∥2

n̂ (1.8)

〈u〉 =
1

8π

∥∥∥ ~E0

∥∥∥2

(1.9)
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Now, this allows us to talk about radiation from a source. A quantity of interest for radiation
from a point source is the power incident on some solid angle in space:

dP

dΩ
= r2n̂ · 〈~S〉 (1.10)

which allows us to compute the antenna patterns defined as 1
P
dP
dΩ . We will now dive into radiation

formally and properly understand these quantities.



Chapter 2

Radiation

We now get into radiation, which was alluded to at the end of the previous chapter. In the
previous course (Electromagnetic Theory I), we learnt about how electromagnetic fields propagate
as waves in space. In this chapter, we will be discussing about how these waves are in fact
generated, and the mathematical formalism to describe such system.

§2.1 Solutions to the Wave Equation

Electromagnetic radiation results from the acceleration of charges in space. More specifically,
since waves have a periodic structure in-built into their construction, a series of periodic time-
dependent terms in a system of charges generates electromagnetic multipole moments which thus
lead to non-trivial sources of radiation. To start talking about radiation, we need to solve the
wave equation.

∇2ψ − 1

c2
∂

∂t
ψ = −4πf(~x, t) (2.1)

An adequate means of solving such equations is again via the use of Green’s functions.

§2.1.1 Green’s Functions (Quick Refresher)

Given any dynamical system described by a system of linear time-invariant (LTI) equations, we
can describe the response of the solution to inputs f(~x, t) via a response function ψ(~x, t) which
solves the equation:

L[ψ(~x, t)] = −4πf(~x, t) (2.2)

where L denotes a linear operator (time-invariant) determined by the physical system and the
added factor of −4π is tacked on here so as to suit our context.

Note: So as not to obscure any meaning, we go over some of the terminologies used. The
term “inputs” here refer to external perturbations to the system (e.g. hitting an oscillator
with a hammer, shooting a trapped BEC with a laser pulse, etc...). The term “response”,
then describes the system’s reaction to such external inputs.

4



5 2.1. SOLUTIONS TO THE WAVE EQUATION

Green’s functions G(~x, t; ~x′, t′), are a class of response solutions to such LTI system under the a
δ-function input (f(~x, t) = δ3(~x− ~x′)δ(t− t′)). Explicitly, a Green’s function is a solution to the
LTI system of equations:

L [G(~x, t; ~x′, t′)] = −4πδ3(~x− ~x′)δ(t− t′). (2.3)

Response solutions for any input function f(~x, t) then follows by applying a convolution, in which
we simply have to convolve the input with the Green’s function to obtain this solution. To see
this, first recall that a convolution of 2 functions f and g is defined as:

(f ∗ g)(t) ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ (2.4)

As such, the convolution between a δ-function and some input function f(~x, t) is given as:

(f ∗ δ)(~x, t) =

∫
f(~x ′, t′)δ3(~x− ~x ′)δ(t− t′)d3x′dt′

= −4πf(~x, t).

(2.5)

What we have done above is essentially used the right-hand side of equation (2.3) to convolve
f(~x, t), so if we do the same for the left-hand side, we get:∫

f(~x, t)L [G(~x, t; ~x′, t′)] d3x′dt′ = −4πf(~x, t), (2.6)

for which we can utilize the commutativity between operators
∫
d3x′dt′ and L to get:

L
[∫

f(~x, t)G(~x, t; ~x′, t′)d3x′dt′
]

= −4πf(~x, t)

⇒ ψ(~x, t) =

∫
f(~x, t)G(~x, t; ~x′, t′)d3x′dt′

(2.7)

§2.1.2 Green’s Functions for Wave Equations

Having derived the result above, we can adopt the use of a Green’s function to construct wave-
equation solutions since we can treat:

L =∇2 − 1

c2
∂

∂t
(2.8)

as the linear operator. As such, we replace the input function f(~x, t) with a δ-function in the
wave equation which gives:(

∇2 − 1

c2
∂

∂t

)
G(~x, t; ~x′, t′) = −4πδ3(~x− ~x′)δ(t− t′) (2.9)

where ψ(~x, t) =

∫
d3x′dt′G(~x, t; ~x′, t′)f(~x′, t′). (2.10)
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To suitably work with these equations, it will be very useful to be able to jump back and forth
between momentum-frequency space and spatial-time space {~x, t} → {~k, ω}. First, we define
~R = ~x− ~x′ and T = t− t′, which grants us the relation:

G(~R, T ) =
1

(2π)4

∫ ∞
−∞

d3k

∫ ∞
−∞

dωei
~k·~Re−iωT G̃(~k, ω) (2.11)

We also have that the δ-functions can be written as:

δ3(~R)δ(T ) =
1

(2π)2

∫
d3kei

~k·~R
∫
dωe−iωT (2.12)

Plugging these back into the original wave equations grants us:[
∇2 − 1

c2
∂

∂t

]
G(~R, T ) =

1

(2π)4

∫ ∞
−∞

d3k

∫ ∞
−∞

dωei
~k·~Re−iωT

[
−k2 +

ω2

c2

]
G̃(~k, ω) (2.13)

⇒ G̃(~k, ω) = − 4π[
−k2 + ω2

c2

] . (2.14)

Now plugging this into the integral defining G(~R, T ), we get:

G(~R, T ) =
1

2π

∫ ∞
−∞

dωe−iωT

[
1

(2π)3

∫
4πd3kei

~k·~R

k2 − ω2

c2

]
(2.15)

This integral can be done by first noticing that the integral over k runs over all k, which allows
us to rotate in k-space arbitrarily such that we are in the most convenient coordinate frame.
As such, we rotate such that ~k is aligned with ~R which grants us that the integral just over k
becomes:

Ik(R,ω) =
4π

(2π)3

∫ ∞
0

2πk2dk

k2 − ω2

c2

∫ 1

−1

d(cos θ)eikR cos θ

=
1

iπR

∫ ∞
−∞

kdkeikR

k2 − ω2

c2

=
1

iπR

∫ ∞
−∞

kdkeikR(
k − ω

c

) (
k + ω

c

)
(2.16)

The integral above has poles at k = ±ωc , so we want to convert this integral into a contour
integral, which forces us to evaluate the residues (we pick the poles, one being outside the
contour and the other at k = ω

c + iε):

lim
ε→0+

I
(+)
k (R,ω) = lim

ε→0+

(
2πi

Rπi

)( ω
c + iε

2ω
c + iε

)
eiR(ωc +iε)

=
eiωR/c

R

(2.17)

Putting this back into the Green’s function in ~R and T gives us:

G(R, T ) =
1

2π

∫ ∞
−∞

dωe−iωT
[
eiωR/c

R

]
=
δ
(
T − R

c

)
R

(2.18)
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The 1/R tells us that the Green’s function decays away from the source, which is why it is often
referred to as a retarded Green’s function. Furthermore, we see that this Green’s function admits
solutions that propagate forward in time limited by the speed of light c. This explains why we
chose the poles the way we did (if we had flipped them, the Green’s function we would get would
violate causality called an advanced wave). As such, this grants us the wavefunction solution
as:

ψ(~x, t) =

∫
d3x′

‖~x− ~x′‖
f (~x′, t′ = t− ‖~x− ~x′‖/c) (2.19)

where we noted that the argument in the δ-function of the Green’s function vanishes when:

T =
R

c
⇒ t− t′ =

‖~x− ~x′‖
c

(2.20)

It is worth noting that one could imagine solving the wave-equation with boundary conditions
that are specified at late times. Asking what happened to the wave at early times would then
require the use of advanced wave solutions (refer to Jackson), but otherwise, the retarded wave
solution is the most physical and what we will be using for the rest of the class.

§2.1.3 Waves in the Lorenz Gauge

Starting with the simplest gauge, we consider the wave equation in the Lorenz gauge which gives
us the wave equation: (

∇2 − 1

c2
∂

∂t

)[
~A
Φ

]
= −4π

c

[
~J
cρ

]
(2.21)

Using again the Green’s function technique we did above, the vector potential is then:

~A(~x, t) =
1

c

∫
d3x′dt′G(~x, t; ~x′, t′) ~J(~x′, t′)

=
1

c

∫
d3x′

‖~x− ~x′‖
~J(~x′, t′ = t− ‖~x− ~x′‖/c)

(2.22)

This is the starting point for most of our analysis but many approximations will be made to
this since it is hard to do anything with this exact form. There is a special case where we have
~J(~x, t) = e−iωt ~J(~x), that it the time-dependence is of the current is purely harmonic. This occurs
when we also have the charge density being ρ(~x, t) = e−iωtρ(~x) which in fact gives that:

~A(~x, t) = e−iωt ~A(~x) (2.23)

⇒ ~A(~x, t) = e−iωt
1

c

∫
d3x′

~J(~x′)

‖~x− ~x′‖
eik‖~x−~x

′‖ (2.24)

⇒ ~A(~x) =
1

c

∫
d3x′

~J(~x′)

‖~x− ~x′‖
eik‖~x−~x

′‖ (2.25)
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where k = ω/c. It turns out we don’t need to know Φ in harmonic time-dependencies and

observers far away from the current, since for a localized distribution gives us that ~J → 0 far
away, this gives us that:

∇× ~B =∇×
(
∇× ~A

)
= −ik ~E. (2.26)

Now, let’s take one step back and consider the natural distance scales of most radiation systems
we deal with. We have

1. d: diameter of the source;

2. r: distance to the observer;

3. λ: the wavelength of the radiation.

Now consider that we are very far away from the source (far-field regime), we have that r � λ
which implies kr � 1. In this regime, we have that:

~E, ~B ∼ 1

r
. (2.27)

This regime is very often adopted as it helps to simplifies our lives in many scenarios. Further-
more, this regime is very common in many experiments and real life applications. In this regime,
we have that:

R = ‖~x− ~x′‖ ≈ r − ~x · ~x′

r
(2.28)

where r = ‖~x‖. Calling ~x/r = n̂, we then have:

R ≈ r − n̂ · ~x′ (2.29)

Plugging this into the integral definition of ~A(~x) gives us:

~A(~x) ≈ eikr

cr

∫
d3x′ ~J(~x′)e−ik(n̂·~x

′) (2.30)

some things to note about this result, the factor in front of the integral is completely isotropic.
What is important in the integral is the direction of the observer relative to the distribution of
source points. From this, we can compute ~B by taking its gradient (acts on the eikr, 1/r and
angular terms) as follows:

~B =∇× ~A(~x) (2.31)

in practice, we can often ignore the gradient acting on the 1/r term since we are in the far-field
and can ignore terms in 1/r2. In addition to this, there is also a regime known as the long
wavelength limit which is whereby λ� d (common in atomic systems).

Note: For reference, a order of magnitude measure of wavelength for atoms is given be
d ∼ Å, λ ∼ 1000Å.
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In such a regime, we can then expand the exponent in the integral into a power series which
grants us:

~A(~x) =
eikr

cr

∑
`

1

`!

∫
d3x′ (−ikn̂ · ~x′)` ~J(~x′)

=
eikr

cr

∑
`

1

`!

∫
d3x′ (−ikr′ cos θ)

` ~J(~x′)

(2.32)

This is actually a multipole expansion of sorts, whereby each expansion term is approximately
dependent on (kd)`. We will now use this result to show that simple breathing monopole mode
does not radiate!

Statement: Monopole breathing modes do not produce radiation.

Proof. First consider:

Φ(~x, t) =

∫
d3x′

ρ(~x′, t−R/c)
R

(2.33)

Expanding 1/R in a Legendre polynomial series gives:

1

R
=

1

r

∑
`

(
r′

r

)`
P`(cos θ) (2.34)

which tells us that the monopole ` = 0 mode is:

Φ0(~x, t′) =
1

r

∫
d3x′ρ(~x′, t−R/c) =

Q

r
(2.35)

indeed showing that it is a constant in time and does not produce any radiation.

Now consider the radiation from an electric dipole (electric dipole radiation). We have the dipole
from the vector potential as:

~Adipole(~x) =
eikr

cr

∫
d3x ~J(~x)

=
eikr

cr
(−iω)

∫
d3xρ(~x)~x

(2.36)

where the harmonic field result from earlier was adopted in the above derivation. Recalling
that: ∫

d3xρ(~x)~x = ~p (2.37)

where ~p is the dipole moment, this grants us the result:

~A(~x) = − ik
r
~peikr (2.38)
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Lastly, there is a regime whereby λ� r � d known as the near zone regime, which grants that
kr ∼ 0. This causes the exponent in the integral for ~A to evaluate to unity, which brings us back
to a magnetostatics equation:

~A(~x) =
1

c

∫
d3x′

~J(~x′)

‖~x− ~x′‖
(2.39)

This is less common but present in certain niche applications. Going back to the vector potential
we had in the box above, the goal now is to get from this vector potential to the Poynting vector.
First, we find the magnetic field as:

~B =∇× ~A

=∇×
(
− ik
r
~peikr

)
= ik

(
1 +

i

kr

)
eikr

r
n̂× (−ik~p)

≈ k2eikr

r
n̂× ~p

(2.40)

where we adopted the long-wavelength limit and used the fact that:

∇r =
∑
j

ĵ
xj
r

= n̂

⇒ ∇r ·∇r = 1

(2.41)

As such, we can now compute the electric field as:

~E = −n̂× ~B

= −k
2eikr

r
[n̂× (n̂× ~p)]

= −k
2eikr

r
[n̂ (n̂ · ~p)− ~p]

(2.42)

From these fields, we can get the time-averaged Poynting vector:

〈~S〉 =
c

8π
Re
{
~E × ~B∗

}
(2.43)

when we are dealing with point source radiation, what we are concerned with is the power
radiated per unit solid angle, which we can write as:

dP

dΩ
= r2n̂ · 〈~S〉

=
c

8π
r2n̂ · Re

{
~E × ~B∗

}
=

c

8π
r2 Re

{
n̂
[
n̂|E|2 − ~E∗n̂ · ~E

]}
=

c

8π
r2|E|2

(2.44)
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where it was noted that ~E · n̂ = 0 since the electric field would be transverse to the direction
of propagation. The boxed formula above is the general form of the un-normalized antenna
pattern.

Note: This formula seems to have no reason for us to consider the polarization of ~E.
However, this would not make sense since if we were to obscure the radiation with a
polarizer, there would definitely be less power per unit solid angle. As such, we can
amend the formula as follows:

dPε
dΩ

=
c

8π
r2
∣∣∣ε̂∗ · ~E∣∣∣2 (2.45)

to account for polarization losses, where ε̂ is the polarization axis.

As in the particular case of dipoles, we have that the final result for the non-normalized
antenna pattern of electric dipoles being:

dP

dΩ
=
ck4

8π

[
‖~p‖2 − |n̂ · ~p|2

]
(2.46)

In the case where the dipole alignment axis is fixed in space. We can then simplify the
formula by setting ~p · n̂ = p cos θ. This gives us that:

dP

dΩ
=
ck4

8π
|p|2 sin2 θ (2.47)

⇒ P =
c

3
|p|2k4 (2.48)

Let’s now consider an example.

Example:

Consider a wire of length d aligned along the ẑ-axis where there are electric charges
sloshing back and forth inside it (I(t) = I(z)e−iωt). We also place the origin in the
middle of the wire. Looking closer at the current, we have:

I =

∫
~Jn̂dA

s.t. I(z = ±d/2) = 0

(2.49)

Let’s then model:

I(z) = I0

[
1− 2|z|

d

]
(2.50)

⇒ ρ =
1

iω

dI

dz
= ±i2I0

ωd
(2.51)

Integrating this over the length of the wire to find the electric dipole moment gives us:

pz =

∫ d/2

−d/2
zρ(z)dz = i

I0d

2ω
(2.52)
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As such, assume that we are far away enough from the antenna and adopt the long-
wavelength limit (λ� d) so that we can compute the antenna pattern as:

dP

dΩ
=

c

8π

(
I0d

2ω

)2

k4 sin2 θ =

(
I2
0k

2d2

32πc

)
sin2 θ (2.53)

From this, we can compute the power as well and compare this to the “engineers” formula
P = I2

0R/2 to get the radiation resistance:

Rrad =
k2d2

6c
(2.54)

§2.1.4 Higher Multipoles

If we go back to the equation for the vector potential:

~A(~x) = ik
eikr

cr

∫
d3x′ (n̂ · ~x′) ~J(~x′) (2.55)

this equation is in fact hiding magnetic dipole and electric quadrupole moments.

Note: In this course, we will not be analyzing anything more than quadrupole moments
since all higher order terms are generally unnecessary and painful to compute.

Considering the current in terms of its longitudinal and radial vector components ~J = ~Jl + ~J⊥,
we have that:

∇ · ~Jl = 0; ∇× ~J⊥ = 0 (2.56)

Then to expand the vector potential in a way that is useful to us, we first rewrite it as:

~A(~x) = ik
eikr

cr

∫
d3x′ (n̂ · x′n̂′) ~J(~x′) (2.57)

for which since we know the identity of double cross products to be:

n̂× (n̂′ × ~J) = n̂′(n̂ · ~J)− (n̂ · n̂′) ~J (2.58)

⇒ (n̂ · n̂′) ~J =
1

2

[
(n̂ · n̂′) ~J + n̂′(n̂ · ~J)

]
− 1

2
n̂× (n̂′ × ~J), (2.59)

where the first term in the second line above indeed corresponds to a quadrupole and the second
term a monopole. As for the associated magnetic dipole of a charge distributions instead, we
instead have magnetic moments given as:

~m =

∫
d3x′

1

2c

[
~x′ × ~J(~x′)

]
(2.60)
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With this, we then have that the vector potential for magnetic dipoles is given by:

~A(~x) = ik(n̂× ~m)
eikr

r
(2.61)

⇒ ~B(~x) =∇× ~A(~x) = −k
2eikr

r
[n̂× (n̂× ~m)] (2.62)

To further analyze the vector potential, we can rewrite the vector potential as:

Aj(~x) = ik
eikr

cr

∫
d3x′ (n̂ · ~x′) Jj(~x′)

= ik
eikr

cr

∫
d3x′ (n̂ · ~x′)

[(
∇′xj

)
· ~J(~x′)

]
= ik

eikr

cr

∫
d3x′∇′ ·

[
(n̂ · ~x′) ~J(~x′)

]
= ik

eikr

2cr

∫
d3x′

[
~x′(n̂ · ~x′)∇′ · ~J

]
= −k

2

2

eikr

r

∫
~x′(n̂ · ~x′)ρ(~x′)d3x′

(2.63)

where we used integration by parts to move the divergence around from line 2 to 3 (line 3 to 4

is a simplification where terms happen to cancel out) and the fact that ∇′ · ~J = iωρ from the
continuity equation. It works out that the final expression above is in fact related to quadrupole
radiation, so we have that the magnetic field from an electric quadrupole is given by:

~Bquad = − ik
3

6

eikr

r
[n̂× ~q(n̂)] (2.64)

where qi(n̂) = Qijnj , Qij =

∫
d3x′ρ(~x′)

[
3x′ix

′
j − δij |x′|

2
]

(2.65)

where ~q = ~k0 − ~k. From this, we can compute the un-normalized antenna pattern due to
quadrupole radiation as:

dP

dΩ
=

ck6

288π
|n̂× (n̂× ~q(n̂))|2 =

ck6

288π

[
|q(n̂)|2 − |n̂ · ~q(n̂)|2

]
(2.66)

From this, it works out that the total power radiated from a quadrupole is given by:

P =
ck6

360

∑
i,j

|Qij |2 (2.67)

(Refer to Jackson pg 414 to 415 for the full derivation of this). The key trick to evaluating the
integral to get the total power radiated is that the quadrupole tensor is traceless (Qjj = 0).
As an overview, we have the fields and power distributions due to electric/magnetic dipoles and
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quadrupoles summarized in the listing below:

Electric Dipoles

~B =
k2eikr

r
[n̂× ~p]

~E = −k
2eikr

r
[n̂× (n̂× ~p)]

dP

dΩ
=
ck4

8π
|n̂× (n̂× ~p)|2

P =
ck4

3
‖~p‖2

Magnetic Dipoles

~B = −k
2eikr

r
[n̂× (n̂× ~m)]

~E = −k
2eikr

r
[n̂× ~m]

dP

dΩ
=
ck4

8π
|n̂× (n̂× ~m)|2

P =
ck4

3
‖~m‖2

Electric Quadrupoles

~B = − ik
3eikr

6r
[n̂× ~q(n̂)]

~E =
ik3eikr

6r
[n̂× (n̂× ~q(n̂))]

dP

dΩ
=

ck6

288π
|n̂× (n̂× ~q(n̂))|2

P =
ck6

360

∑
i,j

|Qij |2

(2.68)

Example:

Consider a system of 3 charges along a line, equally space by a distance d between them.
The middle charge has charge 2qe−iωt and the others have charge qe−iωt (figure 2.1).

qe−iωt qe−iωt2qe−iωt

Figure 2.1: System of 3 colinear charges.

Let’s try to compute the quadrupole tensor of this system. Recall that the angular
distribution of the power and the total power emitted is given by:

dP

dΩ
=

ck6

288π

[
|q(n̂)|2 − |n̂ · ~q(n̂)|2

]
(2.69)

P =
ck6

360

∑
i,j

|Qij |2 (2.70)

When worked out, it turns out that the quadrupole tensor is diagonal with these entries
being:

Qxx = Qyy = −1

2
Q0, Qzz = Q0

where Q0 = 4qd2
(2.71)

As such, we have that the total power emitted is given by:

P =
ck6

360
Q2

0

[
1 +

(
−1

2

)2

+

(
−1

2

)2
]

(2.72)

Now to get the angular power distribution, we first need to compute the quadrupole vector
~q as follows:

qi(n̂) = Q̂ijnj

= êi(n̂ · êj)Qij = êi(n̂ · êi)Qii
(2.73)
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where we had that Q̂ij = êiêjQij and we noted that Qij is diagonal. So we get that:

|q|2 = (n̂ · êi)2Q2
ii

= Q2
0

[
cos2 θ +

1

4
sin2 θ

(
cos2 φ+ sin2 φ

)] (2.74)

As for n̂ · ~q, we compute this as:

n̂ · ~q = (n̂ · êi)Qii

⇒ |n̂ · ~q|2 = Q2
0

9

16
sin(2θ)

(2.75)

Plugging these back into the equation for the angular power distribution gives us:

dP

dΩ
=

(
ck6

288π

)(
9Q2

0

6
sin2(2θ)

)
(2.76)

It turns out that there is class of problems with current densities that can be solved without the
use of the multipole expansion. To see this, we first go back to the vector potential formula:

~A(~x) =
1

c

eikr

r

∫
d3xe−ikn̂·~x

′ ~J(~x′) (2.77)

If we now consider 2 co-linear thin wires with a small gap between them, along with another thin
wire orthogonal to the first 2 that has an end sitting right next to the gap (center-fed antenna).
We can write the current as:

~J(~x′) = ẑI(z′)δ(x′)δ(y′)Θ

(
d

2
− |z′|

)
(2.78)

If we have the current as some sinusoidal function, say:

I(z) = I0 sin

[
k

(
d

2
− |z′|

)]
(2.79)

This gives us the vector potential as:

~A(~x) =
I0
c

eikr

r
Ãz ẑ

⇒ Ãz(~x) =
I0
c

∫ d/2

−d/2
dz′ sin

(
k

(
d

2
− |z′|

))
e−ikz

′ cos θ

⇒ Az(~x) =
2I0
c

[
cos
(
kd
2 cos θ

)
− cos

(
kd
2

)
sin2 θ

]
eikr

r

(2.80)

So we can compute the electric and magnetic fields from this to get the angular power distribution
as:

dP

dΩ
= ck2

∣∣∣Ãz∣∣∣2 sin2 θ (2.81)
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which looks much like the radiation from an electric dipole! The point of what we have done, is
to observe that the moment we have a vector potential which points in the z-direction, we are
just back to the linear electric dipole but tacked on with |Az|2. First, consider the limit where
kd� 1, we get:

Az ≈
2I0
c

1− 1
2

(
kd
2 cos θ

)2 − (1− 1
2

(
kd
2

)2)
sin2 θ


=

2I0
c

[
1
2

(
kd
2

)2 (
1− cos2 θ

)
sin2 θ

]

=
I0
c

(
kd

2

)2

(2.82)

So all the angular dependence goes away and we are exactly back to the linear electric dipole. To
see how well this approximation works, we can consider a “half-wavelength” antenna (kd = π),
which would give us:

dP

dΩ
=

I2
0

2πc

cos2
(
π
2 cos θ

)
sin2 θ

(2.83)

If we compare this to the dipole approximation, we had above, we get:

dP/dΩ

(dP/dΩ)dipole

≈ 0.66

[
cos2

(
π
2 cos θ

)
sin2 θ

]
(2.84)

So we get that the dipole approximated angular power distribution has radiation resistance about
2/3 that of the actual angular power distribution, but when we just care about the antenna
pattern, this factor is of no significance and the dipole approximation actually works really
well.



Chapter 3

Scattering

When we talk about scattering, the starting point is to consider a plane wave incoming and
interacting with a target at the origin, which then produces an outgoing spherical wave as
illustrated in figure 3.1 below.

Figure 3.1: Scattered electromagnetic wave.

The scalar field ansatz for such a system can be written as:

ψ(~x) = E0e
ikz +

eikr

r
F (n̂, n̂0) (3.1)

where n̂0 is the direction of the incoming beam, and n̂ is the direction of detector from the target.
we also define

f(n̂, n̂0) ≡ F (n̂, n̂0)

E0
(3.2)

⇒ ψ(~x) = E0

[
eikz +

eikr

r
f(n̂, n̂0)

]
(3.3)

17
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where f(n̂, n̂0) is known as the scattering amplitude which gives a measure of the strength of the
scattered wave. It turns out that we can think of the scattered wave is analogous to radiation
from a source, where the radiation is due to the induced multipole moment from the incoming
wave. This allows us to then write we have:

dPscatt

dΩ
∼ r2

∣∣∣∣eikrr f(n̂, n̂0)

∣∣∣∣2 (3.4)

for which the angular power distribution is related to a quantity known as the differential scat-
tering cross-section:

dσ

dΩ
= |f(n̂, n̂0)|2 ∼ 1

E2
0

dP

dΩ
. (3.5)

The differential cross-section tells us ”the ratio of the scattered electric field flux of a scatterer
into a differential solid to the incident electric field flux”. This will be presented mote formally
in just a bit, but first we note that in general, there are 2 paths to getting solutions to scattering
problems. These are:

1. Exact Solutions: Analytic results with direct solutions or exact parameterizations (e.g.
optical theorem 3.0.1).

2. Approximate Treatments: Often involves perturbation theory where the scatterer is weak
(e.g. Feynman diagrams), or some useful kinematic limit.

Theorem 3.0.1. Optical Theorem:

σ =

∫
dσ

dΩ
dΩ =

4π

k
Im{f(n̂, n̂0)} (3.6)

Exact methods are, as you would expect, in general difficult. So we differ to approximation
schemes in which the results are more often than not, precise enough for all intends and purposes
and allow us to extract useful physics.

§3.1 Long-Wavelength Scattering

Let’s start by considering a scattering event whereby the incident electric field on a target has a
large wavelength. That is, we have the condition that λ� d with d being the effective diameter
of the scatterer. In this regime, we have that the incident field is approximately uniform across
the scatter, which grants that the problem is analogous to dipole radiation where the dipole
moment is induced by the incident field. As such, we can immediately write down the scattered
wave angular power distribution as the dipole power radiation formula:

dPscatt

dΩ
=

c

8π
r2|Eout|2 ∼ |Eout|2 (3.7)

Then, we consider the electromagnetic power flux entering the system (incident on the target)
which is in fact just the time-averaged Poynting vector:

Φin =
c

8π
|Ein|2, (3.8)
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from which we can define, from the qualitative description of the differential cross-section
given in the previous section, the quantity:

dσ

dΩ
=

1

Φin

dPscatt

dΩ
(3.9)

This is the analogous quantity from that used in classical hard sphere scattering processes. To
state again, “the differential scattering cross-section is the ratio of the scattered radiation flux
off a scatterer/target into some differential solid angle dPscatt/dΩ, to the incident radiation flux
on the scatterer/target Φin”. The 2 main ways we are going to compute this is via the following
2 methods.

1. Direct use of the induced dipole moment;

2. Born’s approximation.

§3.1.1 Induced Dipole Scattering

Let’s start with method 1. Clearly, this method is only useful when the induced dipole moment
is a quantity that can be easily computed. This happens when the geometry of the scatterer
is simple like a perfect sphere. As such, we consider a perfect dielectric sphere of radius a, for
which radiation is incident on it with a wavelength λ � a. The incident fields can be modeled
as plane waves which are written as:

~E0(~x, t) = ε̂0E0e
i(kn̂0·~x−ωt)

~B0(~x, t) = n̂0 × ~E0(~x, t)
(3.10)

Since λ � a, we treat the incident electric field as uniform across the dielectric sphere which is
the basis of the long wavelength approximation. The induced electric dipole moment would then
be given by:

~p(t) =

[
ε− 1

ε+ 2

]
a3 ~E0(t) (3.11)

in Gaussian units. This result follows directly from the dipole moment generated by a dielectric
sphere in a uniform electric field as done in Jackson section 4.4 (page 158). The scattered fields
are then easily computed via the electric dipole radiation field formulas:

~Bs =
k2eikr

r
(n̂× ~p) , ~Es = −k

2eikr

r
[~p− n̂ (n̂ · ~p)] (3.12)

⇒ dP

dΩ
=
cr2

8π
|Es|2 (3.13)

In the above derivation, we realize that we did not consider the polarization of the electric field.
However, this can conveniently be accounted for by writing the scattered polarization ε̂ as a
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linear combination over polarization axes (inserting the resolution of the identity):

~Es =
∑
j

ε̂j

(
ε̂∗j · ~Es

)
⇒ dP

dΩ
(ε̂) =

cr2

8π

∣∣∣ε̂∗ · ~Es∣∣∣2
=
ck4

8π
‖~p‖2|ε̂∗ · ε̂0|2

=
ck4a6

8π

(
ε− 1

ε+ 2

)2

|ε̂∗ · ε̂0|2E2
0

(3.14)

where we noted above that ε̂∗ · n̂ = 0 since the polarization would always be orthogonal to the
direction of propagation of the scattered wave (for the systems we are concerned with in this
class at least). As such, we can compute the differential cross-section:

dσ

dΩ
=

1

Φin

dP

dΩ

=
k4|ε̂∗ · ~p|
E2

0

=

∣∣∣∣ε− 1

ε+ 2

∣∣∣∣2k4a6|ε̂∗ · ε̂0|2.
(3.15)

The derivation above was pretty straight forward, for which the final expression above is par-
ticular for dipole scattering in this spherical target geometry, however the k4 dependence of the
differential cross-section is in fact a universal result and known as Rayleigh’s law :

dσ

dΩ
∝ k4 . (3.16)

In practice, we also want to know how to compute |ε̂∗ · ε̂0|2. Often, what we normally do is
average over all polarizations since it is common that the incoming field unpolarized. To do this
averaging, it is convenient to pick coordinates that make in the relative (incoming vs scattered)
polarizations convenient for us to work with. The convenient coordinate system is one whereby
a plane is defined such that we have a parallel and perpendicular component of the polarizations
relative to this plane. A visualization of this is given in figure 3.2 below.

n̂0

n̂

ε̂0,‖

ε̂0,⊥

ε̂‖

ε̂⊥

θ

Figure 3.2: Visualization of a scattering process.
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From figure 3.2, we can derive the following projection relations of the relative polarizations:

ε̂
(1)
0 · ε̂(1) = cos θ

ε̂
(2)
0 · ε̂(2) = 1

ε̂
(i)
0 · ε̂(j) = 0, i 6= j

(3.17)

So these give us the differential cross-section of incoming radiation polarized in and out of the
scattering plane as:

in-plane :
dσ‖

dΩ
=

1

2
σ0 cos2 θ

out-of-plane :
dσ⊥
dΩ

=
1

2
σ0

(3.18)

where σ0 ≡
∣∣∣ ε−1
ε+2

∣∣∣2k4a6.

§3.1.2 Scattering Off Perfect Conducting Spheres

Recall from electro and magnetostatics, we had that the with a perfectly conducting sphere of
radius a, we had the fields:

~Ein =
3

εr + 2
~Eout (3.19)

~Bin =
3µ

µ+ 2
~Bout (3.20)

The dipole moments due to the induced currents on the conducting sphere are then:

~p =

(
εr − 1

εr + 2

)
a3 ~E0, ~m =

(
µ− 1

µ+ 2

)
a3 ~B0 (3.21)

So to get what a scattered wave would look like off this conducting sphere, we simply tack on
the harmonic field time-dependence and take the sum of the 2 field emitted due to the electric
and magnetic dipole moments as:

~Escatt = ~EE + ~EB

= −k2 e
ikr

r
n̂× (n̂× ~p)− k2 e

ikr

r
n̂× ~m

= −k2a3E0
eikr

r
n̂× (n̂× ε̂0) +

k2a3

2
E0

eikr

r
n̂× (n̂× ε̂0)

(3.22)

This then allows us to compute the differential cross-section as:

dσ

dΩ
(ε̂, n̂; ε̂0, n̂0) = k4a6

∣∣∣∣ε̂∗ · ε̂0 −
1

2
(n̂× ε̂∗) · (n̂0 × ε̂0)

∣∣∣∣2 (3.23)
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Now averaging over ε̂0, we get:

dσ‖

dΩ
=
k4a6

2

∣∣∣∣cos θ − 1

2

∣∣∣∣2;
dσ⊥
dΩ

=
k4a6

2

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2 (3.24)

⇒ dσ

dΩ
= k4a6

[
5

8
(1 + cos2 θ)− cos θ

]
(3.25)

We then defined the metric of back-scattering:

Π(θ) ≡
dσ⊥
dΩ −

dσ‖
dΩ

dσ⊥
dΩ +

dσ‖
dΩ

(3.26)

For which in the case of perfect conducting sphere scattering, this metric evaluates to:

Π(θ) =
3 sin2 θ

5(1 + cos2 θ)− 8 cos θ
(3.27)

More details on this are also given in Jackson section 10.1 (pages 456 - 460).

§3.2 The Born Approximation

We are now going to look at how to approach scattering problems with method 2, that is by
using the Born’s approximation. This method is a perturbative treatment of sorts, and assumes
that the scattered field is small compared to the incident field on the scatterer. The way we can
see anything in the world, is through the fact that the dielectric constant of objects is different
from that in air. More specifically, the fluctuations in ε(~x) or µ(~x) induces scattering. To see
this, we of course start from Maxwell’s equations:

∇ · ~D = 4πρ, ∇ · ~B = 0

∇× ~E +
1

c

∂ ~B

∂t
= 0, ∇× ~H − 4π

c
~J − 1

c

∂ ~D

∂t
= 0,

(3.28)

from which we derive that:

∇×
(
∇× ( ~D − ~E)

)
=∇

(
∇ · ~D

)
−∇2 ~D +∇

(
1

c
~B
∂ ~B

∂t

)
∂

∂t

(
∂ ~D

∂t

)
= c

∂

∂t

(
∇× ~H

)
⇒

(
∇2 − 1

c2
∂2

∂t2

)
~D = −∇×

[
∇×

(
∇× ( ~D − ~E)

)
+

1

c

∂

∂t
∇× ( ~B − ~H)

]
(3.29)
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Then taking D ∼ e−iωt, we get:(
∇2 + k2

)
~D = −∇×

[
∇×

(
∇× ( ~D − ~E)

)
+

1

c

∂

∂t
∇× ( ~B − ~H)

]
⇒ ~D(~x) = ~D0(~x) + ~Dscatt(~x)

where ~Dscatt(~x) =

∫
d3xGk(~x, ~x′)

(
−∇×

[
∇×

(
∇× ( ~D − ~E)

)
+

1

c

∂

∂t
∇× ( ~B − ~H)

])
(3.30)

The Green’s function can be taken as:

Gk(~x, ~x′) = − 1

4π

eikR

R
≈ − 1

4π

eikr

r
e−ikn̂·~x

′
(3.31)

which effectively allows us to simplify our expression for ~D scattered off the target as:

~Dscatt =
eikr

r
n̂×

(
n̂× ~fs(n̂)

)
where ~fs(n̂) = − k

2

4π

∫
d3x′e−ikn̂·~x

′
[
~D(~x′)− ~E(~x′)

]

⇒ dσ

dΩ
(ε̂, ε̂0) =

∣∣∣ε̂∗ · ~fs(n̂)
∣∣∣2

|D0|2

(3.32)

where the scattering amplitude is now a vector since we are now working with vector fields.
Strangely, the scattering amplitude is dependent on the total D and E field, which if we had we
wouldn’t need to compute all these things in the first place! To resolve this, we will assume that
the variation in the relative dielectric constant can be written as a perturbation from unity:

ε(~x) = 1 + δε(~x) (3.33)

where δε(~x)� 1. The Born approximation is then the approximation where we assume that we

can approximate the total field as just the incident field and simply replace ~D → ~D0, ~E → ~E0

to give us:

~E = E0ε̂0e
i~k·~x. (3.34)

This allows the reduction:

~D(~x)− ~E(~x) → ~D0(~x)− ~E0(~x) = [ε(~x)E0 − E0] ei
~k·~xε̂0 (3.35)

⇒ ~FBorn = − k
2

4π
E0ε̂0

∫
d3x′ei(

~k0−~k)·~x′
δε(~x′) = − k

2

4π
E0ε̂0δ̃ε(~k) (3.36)

So we have that the Born approximation reduces the scattering amplitude to a Fourier transform
of the dielectric variation in space into k-space. The differential cross-section also with a variation
in µ (µ(~x) = 1 + δµ(~x)) is then:

dσ

dΩ
=

k4

16π2

∣∣∣∣ε̂∗ · ε̂0

∫
d3x′ei(

~k0−~k)·~x′
δε(~x′) + (n̂× ε̂)

∗ · (n̂0 × ε̂0)

∫
d3x′ei~q·~x

′
δµ(~x′)

∣∣∣∣2 (3.37)
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Notice that in this approximation, we are keeping all the k-values and using the assertion
that:

δε

ε
,
δµ

µ
� 1 (3.38)

This was all for individual scatterers and individual cross-sections. What about if we had an
ensemble of scatterers?

§3.2.1 Multi-Scatterer Systems

To first tackle this, let’s first consider our coordinate system is such that the scatterer is not
centered at the origin (which is what we have been assuming all this time). The electric field (an
similarly also the magnetic field) would then be:

~Ein(~x) = ε̂0E0e
i(kn̂0−~x0) (3.39)

where ~x0 is the scattering center. We now define ~x′ = ~x0 + ~x′′ where ~x′′ is some convenient
relative coordinate. The current density can then be written as:

~J(~x′) = eikn̂0·~x0 ~J(~x′′) (3.40)

We can then use this to construct the vector potential in the far-field limit as:

~A(~x) =
eikr

r

∫
eik(n̂0−n̂)·~x0e−ikn̂·~x

′′ ~J(~x′′)d3x′′

=
eikr

r

∫
eik~q·~x0e−ikn̂·~x

′′ ~J(~x′′)d3x′′
(3.41)

Notice that the phase eik~q·~x0 is not being integrated over, so it actually plays no role when we
are concerned with differential cross-sections (normally left out in textbooks including Jackson).
The resulting many-scatterer differential cross-section is then:

dσ

dΩ
=
k4

E2
0

∣∣∣∣∣∣
∑
j

ε̂∗ · ~pjei~q·~xj

∣∣∣∣∣∣
2

(3.42)

where j denotes the scatterer index. So we infact have that:

~F (n̂, ~xj) = ~F (n̂, 0)ei~q·~xj (3.43)

If we then assume identical scatterers, we then get:

dσ

dΩ
=

∣∣∣ε̂∗ · ~F (n̂, 0)
∣∣∣2

E2
0

∣∣∣∣∣∣
∑
j

ei~q·~xj

∣∣∣∣∣∣
2

(3.44)
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The absolute-squared sum term is called several things in different fields, such as the structure
factor is atomic physics and form factor in particle physics. We can thus rewrite the many-
scatterer differential cross-section as:

dσ

dΩ
=
dσ0

dΩ
(ε̂) F (~q)

where
dσ0

dΩ
(ε̂) ≡

∣∣∣ε̂∗ · ~F (n̂, 0)
∣∣∣2

E2
0

, F (~q) ≡

∣∣∣∣∣∣
∑
j

ei~q·~xj

∣∣∣∣∣∣
2 (3.45)

2 common scenarios for many-scatterer systems are

1. regular array of scatteres: (leads to Bragg peaks);

2. randomly-positioned scatterers: The structure factor in such systems can also be:

F (~q) =
∑
ij

ei~q·(~xi−~xj) (3.46)

however in the sum above, all the terms where i 6= j sum to zero due to their random
positions. As such, we have only the diagonal (i = j) terms as non-trivial which grants:

F (~q) =

N∑
j=1

1 = N

⇒ dσ

dΩ
= N

dσ0

dΩ

(3.47)

This result is known as incoherent scattering. However in the forward direction (~q =
~k0 − ~k → 0), we instead get:

dσ

dΩ
= N2 dσ0

dΩ
(3.48)

This is known as coherent scattering, but have peaks that are extremely narrow.

Now consider an incoming electromagnetic wave entering some small volume of cross-sectional
area A and width ∆r. We now want to know how the scattering beam is attenuated by power
losses through the this volume. In general, we have that the power loss through a volume is
given by:

power loss through volume =

[
incident flux

unit area

]
×
[

power loss per mole

incident flux
= σ

]
× [number of molecules]

(3.49)

How can we relate the structure factor, to the computation of such a loss? Well, we first
write:

F (~q) =

∣∣∣∣∣∣
∑
j

ei~q·~xj

∣∣∣∣∣∣
2

=

∣∣∣∣∫ d3xδn(~x)ei~q·~x
∣∣∣∣2 (3.50)
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where δ(~x) ≡ n(~x)−n is the fluctuation in density of the medium the incoming field is traversing
with:

n =
1

V

∫
d3xn(~x) (3.51)

Now, we can take the average over the molecular ensemble:

F (~q) =

〈∣∣∣∣∫ d3xδn(~x)ei~q·~x
∣∣∣∣2
〉

=

〈∫
d3xδn(~x)ei~q·~x

∫
d3yδn(~y)e−i~q·~y

〉
=

∫
d3xd3yei~q·(~x−~y) 〈δn(~x)δn(~y)〉 = V

∫
d3rei~q·~r

〈
δn(~r)δn(~0)

〉
(3.52)

where the last simplification came from the appropriate change of variable as commonly done
in statistical mechanics. So we see we get some kind of correlation function of the fluctuations
between 2 different positions. So in fact see that scattering light off some volume of scatterers
can tell us about the structure of the material. We note that:

lim
q→0

F (~q) = V

∫
d3r

〈
δn(~r)δn(~0)

〉
= 〈N2〉 − 〈N〉2

(3.53)

which is just the variance of the number of particles in the volume.

Example:

Consider an experiment which tries to perform the magnetic scattering over a material’s
local spin density. We then have that:

Fspin(~q) =

∫
d3r 〈(σ(r)− σ) (σ(0)− σ)〉

⇒ lim
q→0

Fspin(~q) = 〈σ2〉 − 〈σ〉2
(3.54)

This quantity 〈σ2〉− 〈σ〉2 is in fact the magnetic susceptibility χ, which is also computed
as:

χ =
∂M

∂h

∣∣∣∣
h=0

= 〈σ2〉 − 〈σ〉2 (3.55)

Example:

Consider water. The P -T phase diagram of water has gaseous, liquid and solid phases,
for which liquids and gases get indistinguishable (in terms of correlation functions) past
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the critical point (P = 218 atm, T = 647 K). At the critical point, we have that:

∂P

∂V

∣∣∣∣(critical)

T

= 0

⇒ kT = − 1

V

1
∂P
∂V

∣∣
T

→∞
(3.56)

This is known as critical opalescence, which causes the differential scattering cross-section
to be extremely large and allows a measurement of this phase via light scattering experi-
ments.
What exactly is happening at these critical points then? Consider again the structure
factor as a correlation function:

F (~q) ∼
∫
〈δn(~r)δn(0)〉ei~q·~rd3r (3.57)

The correlation function can be modelled by the Orenstein-Zernike function:

〈δn(~r)δn(0)〉 =
e−r/ξ

r
(3.58)

where ξ is the correlation length. Using this model, this grants us:

F (q) ∼ 1

q2 + 1/ξ2
(3.59)

At these critical points, what happens is that the correlation length becomes extremely
long (note that this is a correlation length of the fluctuations). When this happens, F (q)
goes like 1/q2 and so in the limit where q → 0, the differential cross-section indeed blows
up.

Example:

Now we can also ask a common question of why is the sky blue? Molecular polarizability
is given by:

~pj = γmolE0ε̂0

⇒ σ =
8π

3
k4γ2

molN = σ0N
(3.60)

So because we have this k4 dependence, light with higher frequencies get scattered more
often which is indeed why we see blue skies. More information if given in Jackson 10.2c
(pages 465 - 468).

§3.2.2 The Optical Theorem

Consider having a scattered electric field as:

ε̂∗ · ~Esc =
eikr

r
ε̂∗ · ~f(~k0,~k)E0 (3.61)



CHAPTER 3. SCATTERING 28

with the incident wave being:

~E = ε̂0E0e
i~k0·~r (3.62)

The cross-section formulas are also given by:

dσ

dΩ
=
∣∣∣ε̂∗ · ~f ∣∣∣2, σ =

∫
dΩ

dσ

dΩ
(3.63)

The optical theorem is then given by:

σtotal =
4π

k0
Im
{
ε̂0 · ~f(~k0,~k = ~k0

}
(3.64)

The way the theorem is derived is by considering 2 spherical surfaces S1 and S2 enclosing the
scatterer, and then σtotal decomposing the cross-section into an elastic and a absorption cross-
section to give σtotal = σelastic+σabsorption (the σabsorption constitutes an inelastic scattering cross-
section in quantum mechanics). The mathematical details are sorted out in Jackson. The result
however, is very useful because it is an exact result (corresponding to probability conservation
in quantum mechanics).

Note: Approximation schemes to find scattering cross-sections often do not result in
them obeying the optical theorem (e.g. in perturbative treatments).

§3.3 Diffraction

“Diffraction is basically scattering from a hole”.

− T. DeGrand, 2020

We are going to start this off by talking about scalar fields (much like sound waves) rather than
vector fields. This makes the analysis simpler for now, and we can just treat the scalar field as
some component of a vector field ~E or ~B. As a broad overview, the set-up of a diffraction problem
can be described by 2 surfaces S1 and S2, in which a wave is first incident S1, diffracted through
it due to some geometrically specified “openings” (apertures), then observed by detectors on
surface S2.

In most cases we are concerned with, S1 is a flat-plane with some rectangular or circular apertures
and S2 is some detector situated far away from S1. Formally, we can take the incoming wave to
be plane-waves (since the governing equation is linear which will allow solutions to be constructed
by linear combination), resulting in us dealing with solutions to the Helmholtz equation:(

∇2 + k2
)
ψ = 0 (3.65)

⇒
(
∇2 + k2

)
G(~x, ~x′; k) = −δ3(~x− ~x′) (3.66)

We recall Green’s theorem:∮
S

(G(x, x′)
∂ψ

∂n′
− ψ ∂G

∂n′
)dA′ =

∫
V

(
G(x, x′)∇2

x′ψ(x′)− ψ(x′)∇x′G(x, x′)
)
d3x′

⇒ ψ(~x) =

∫
S

[G(x, x′)n̂′ ·∇x′ψ(~x′)− ψ(~x′)n̂′ ·∇x′G(x, x′)] dA′ (Jackson 10.75)

(3.67)
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Taking the Green’s function as:

G(x, x′) =
1

4π

ei
~k·(~x−~x′)

r
(3.68)

⇒ ψ(~x) =

∫
S

n̂′ ·

[
∇x′ψ(~x′)− ψ(~x′)

~R

R

(
ik − 1

R

)]
ei
~k·~R

R
dA′ (3.69)

where ~R ≡ ~x − ~x′. Green’s theorem relates the solution in a volume to that on the boundary
of that volume, so we consider the physical argument where if we pick the boundary to lie on
the diffraction screen S2 and a great-dome that extends to infinity, we have terms that cancel at
infinity. That is, in the region where r′ is very large, we have a result known as the Kirchhoff’s
integral formula:

ψ(x) = − 1

4π

∫
dA′

eikR

R
n̂′ ·

[
∇x′ψ(x′) +

~R

R
ψ(x′)

]
(3.70)

There are 3 things we need to keep in mind however, when we use the Kirchoff integral for-
mula.

1. Mathematical consistencies:

To be consistent mathematically, solutions to the Helmholtz equation only admit Dirich-
let or Neumann boundary conditions (not both). However we somehow want Neumann
conditions for the incoming wave and Dirichlet conditions for the outgoing wave. Let’s
just first think about how to satisfy both boundary conditions. To do this, we construct
Green’s functions that vanish adequately at the boundary (or its derivative) by the method
of images, which gives:

Dirichlet : GD(x, x′) =
1

4π

[
eikR

R
− eikR

′′

R′′

]

Neumann : GN (x, x′) =
1

4π

[
eikR

R
+
eikR

′′

R′′

] (3.71)

⇒ Dirichlet : ψD(x) =
1

4π

∫
S1

ψ(x′)2

(
ẑ · ~R
R

)
eikR

R

=
k

2πi

∫
S1

dA′

(
eikr

′

r′

)
eikr

r
cos θ

Neumann : ψN (x) =
1

4π

∫
S1

ψ(x′)
eikR

R
2n̂′ ·∇x′ψ(x′)

=
k

2πi

∫
S1

dA′

(
eikr

′

r′

)
eikr

r
cos θ′

(3.72)

where θ is the angle of the outgoing wave from the aperture normal and θ′ the angle of the
incoming wave.
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2. Practical considerations:

Often times in optics, we have that ψa(x′) = t(x′)ψsource(x0) where ψa is the wavefunction
at the aperture and t(x′) is some transfer function. However, for most cases we care about,
we can simply at t(x′) = 1 which makes life easier.

A thing that is relevant to us is the uncertainty principle in waves (∆k∆x ≥ 1). This is
due to the fact that we are squeezing the incoming wave through a small aperture, which
then cause ∆x to be small. This causes a spreading over the wave-vectors and a spreading
of the incoming wave onto its “geometrical shadow”. We can then take the approximation
with quadratures as:

∆x =

√
a2 +

( r

ak

)2

(3.73)

where a is the intrinsic width of the beam whereas r is the distance of the screen from
the aperture. The regime where r/k � a2 (or λr � a2) is known as the Fresnel limit,
which grants that what we see on the detector is just the shape of the hole since ∆x →
a. Alternatively, we have the Fraunhofer limit where λr � a2 (we can use the far-field
approximations we did for antennas or scattering).

Both of the approximations above are in fact far field approximations and only differ in
terms of the wavelength relative to the aperture size. This difference in application lies in
how eikR is expanded (recalling R = ‖~x− ~x′‖). Let’s consider an important expansion of
kR for these approximations:

kR = kr − kn̂ · ~x′ + k2

2r

[
(r′)2 − (n̂ · ~x′)2

]
+ . . . (3.74)

where r = |x| and r′ = |x|′. Noting that k ∝ 1/λ, have that in each approximation,

(a) Fraunhofer diffraction:

eikR

R
≈ eikr

r
e−ikn̂·~x

′

⇒ ψD(r) =
k

2πi

eikr

r
A cos θ

∫
ap

dA′e−iqn̂·~x
′

(3.75)

given that ψ0(~x′) = Aei
~k0·~x′

where ~q = ~k0 −~k with the integral going over the area of
the aperture. This tells us that the “diffracted wave is just the Fourier transform
of the incoming wave through the aperture”.

(b) Fresnel diffraction:

For this approximation, in the region close to the aperture, we can consider the diffrac-
tion that occurs off a knifes edge. That is, we consider diffraction just due to one edge
of the aperture.
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Figure 3.3: Diffraction of a knife’s edge.

we can in fact a pick a coordinate system such that the linear term in the expansion
in equation (3.74) goes away if we are considering diffraction off a knifes edge. We
do this by picking the coordinate system to have x = 0 at the top edge of the lower
aperture barrier, and y = 0 where the detector is (z is the optical axis). So we have:

R =
√

(x− x′)2 + (y′)2 + z2

≈ z +
1

2z

[
(x− x′)2 + (y′)2

] (3.76)

where z is the large coordinate. We then also assert that n̂ · R̂ = 1 (incident wave is
normal to the barrier). So we can set up this problem as:

ψ0(~x′) =
√
I0e

i~k0·~x′

⇒ ψD(~x) =
k

2πi

eikz

z

√
I0

∫ ∞
0

dx′
∫ ∞
∞

dy′ exp

(
ik

[
(x− x′)2

2z
+

(y′)2

2z

]) (3.77)

3. Scalar to vector field modifications to the equation above:

To now extend what we have been doing with scalar waves into vector fields, we use the
vector Smythe-Kirchhoff formula, which is given as:

~E(~x) =
1

2π
∇×

[∫
ap

eikR

R
n̂× ~E(~x′)dA′

]
(3.78)

Derivation of this is provided in Jackson section 10.7. This formula simplifies nicely in the
Fraunhofer limit to:

~EF (~x) =
ik

2π
E0

eikr

r
[n̂× (ẑ× ε̂0)]

∫
dA′ exp

(
i
[
~k0 − kn̂

]
· ~x′
)

(3.79)

which differs from the result we had for the scalar field mostly in polarization direction
considerations. The magnetic field is another story because we have to consider the com-
plimentary surface but this will usually not be of concern to us.

Note: The assumption of diffraction we will adopt here is that the medium that causes
the diffraction is only modified by the geometry of the aperture and not the material
itself.
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Example:

Consider diffraction through a square aperture in the Fraunhofer limit. We have that:

~k0 = [0, 0, k]T

~k = [kx, ky, kz]
T

~x′ = [x′, y′, 0]

(3.80)

We then have that the integral over the incoming wave across the aperture is then given
by: ∫

ap

ei
~k0·~x′

dA′ =

∫ L/2

−L/2
eikyy

′
dy′
∫ L/2

−L/2
eikxx

′
dx′

=
L2

4

(
sin
(
kxL

2

)
kxL/2

) sin
(
kyL

2

)
kyL/2

 (3.81)

which are these nice sinc functions we’ve all seen before in diffraction experiments. We
can also compute the intensity, which is found by:

I = |ψd|2

∼
sin2

(
kLθ

2

)(
kLθ

2

)2 (3.82)

where we have taken that kx = k sin θ ≈ kθ. So we see that the intensity falls off like 1/θ2

further away from the optical axis on the detector screen.

Note: All we have done so far is that there is no field emerging from the aperture barrier
(not just the aperture/hole), but in real life this is not the case! In fact, derivation have
mostly been done only for conducting surfaces. Most of what we will see is not having to
worry about the barrier but only what comes through the hole.

§3.3.1 Circular Aperture Diffraction

Setting up the coordinate frame such that the x, y-plane lies on the surface of the barrier and the
z-axis is in the direction of incident wave propagation, it can be worked out (as done in problem
set 4) that the outgoing power distribution of a wave through a circular aperture of radius a is
given by:

1

Pi

dP

dΩ
=

(ka)2

4π

[
j1(qa)

qa

]2

×

{
1− sin2 θ cos2 φ, ε̂0 = ŷ

1− sin2 θ sin2 φ, ε̂0 = x̂
(3.83)

where j1(qa) is the Bessel function of the first kind of index 1, q =
∣∣∣~k0 − ~k

∣∣∣ and the angular

dependence arises from the polarization of the incident wave. Because of the Bessel function
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dependence, the largest angular resolution that can be resolved is given by:

∆θ ≈ 1.22
λ

2d
(3.84)

This is common in astronomy (telescope lenses) and optics.

Example:

Consider a human eye that detects wavelengths on the order of λ ∼ 5.6× 10−3 cm. The
diameter of the pupil is on the order of d ∼ 1.6 to 6 mm, so we get the angular resolution
of a human eye is bounded by:

1× 10−4 < ∆θ < 5× 10−4 rad (3.85)

§3.3.2 Babinet’s Principle

We will be discussing this concept from the point of view of scalar diffraction theory. We start
with the Kirchhoff’s diffraction integral before any approximations:

ψ(x) = − 1

4π

∫
dA′

eikR

R
n̂′ ·

[
∇x′ψ(x′) + ik

(
1− i

kR

) ~R

R
ψ(x′)

]
(3.86)

Recall the way we set-up the surface relevant in a diffraction experiment, where we bound the
volume enclosing the diffraction wave by the flat-plane barrier S1 and a great hemisphere that
bounds infinity S2. Now Babinet further decomposed the problem in a smart way where we
considered 2 regimes.

1. The entire S1 region is the aperture except for a small opaque region. This causes some
slight scattering off this small region that is negligable). This gives rise to scattered wave
ψA.

2. The converse region from above, where the aperture is now only the small region and the
rest of the S1 is opaque. This gives rise to scattered wave ψB .

We then notice that if the whole region S1 were to be empty, no diffraction would occur, so
ψs = 0. So we get that by superposition:

ψA + ψB = 0

⇒ |ψA|2 = |ψB |2

⇒ Idiff
a = Idiff

b

(3.87)

This result is known as Babinet’s principle. A result from this principle is a phenomena known
as the Arago/Fresnel spot .

https://en.wikipedia.org/wiki/Arago_spot


Chapter 4

Special Relativity

“Einstein said it all.”

− T. DeGrand, 2020

Here, we will be learning a lot of frame transformations which has roots in dynamics. Before
relativity, classical mechanics and electricity and magnetism were separate. Einstein’s contribu-
tion was to say that these had nothing distinct but related by spacetime. Linear operators and
the appropriate symmetries cause E&M to fall out of the theory of special relativity naturally.
Special relativity is a peculiar subject, and is often taught largely differently (depending on the
audience). For instance even though special relativity is indeed the precursor of general relativ-
ity, but the emphasis of general relativity is largely different from literature focused on special
relativity. In AMO, relativistic effects can often be treated perturbatively, but is still a essential
piece for precise theories.

§4.1 Introduction

Consider 2 inertial frames. This means that we have 2 coordinate systems of interest and are
moving relative to each other at constant velocity. The origin of observer in frame 2 as seen be
the observer in frame 1 is then:

~r + ~v(t− t0) (4.1)

where ~r and t are what the observers measure. The postulate of special relativity is stated as
follows.

Postulate of Special Relativity

The speed of light c is constant in all inertial reference frames.

Now consider 2 events that are separated by ∆~x in space and ∆t in time, that are seen by a
relativistic observer in some inertial reference frame. A relativistic observer in another inertial
frame would see these events occur at ∆~x′ and ∆t′ where:

∆~x 6= ∆~x, ∆t 6= ∆t′ (4.2)

34
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Despite this, there is a quantity that will be invariant to both observers, which is the quan-
tity:

(∆s)2 = c2(∆t)2 − (∆~x)2 = c2(∆t′)2 − (∆~x′)2 (4.3)

where ∆s is known as the spacetime interval. Contrasting this to Galilean invariance, where if
we have:

~x′ = ~x+ ~vt

t′ = t
(4.4)

then we have:

(∆~x)2 = (∆~x′)2, (∆t)2 = (∆t′)2 (4.5)

So in Galilean physics, we have:

~F = m
d2x

dt2
= m

d2x′

d(t′)2
(4.6)

But this does not hold in a Lorentz transformation (relativistic frame transformation)! What
is a Lorentz transformation? Well we can think of it in terms of a rotation. We know that
rotations do not change the norm of a vector. Analogously, we want the spacetime interval to
remain unchanged under this rotation as asserted by the postulate of special relativity. In fact,
if we write t = iw where i is the imaginary number, we exactly get that the rotation matrix
allows Lorentz invariance. So first working in 1 spatial dimension, we have the transformations
being written as:

x′ = x cosh θ − ct sinh θ

ct′ = −x sinh θ + ct cosh θ
(4.7)

To find what θ is, we suppose that in the frame S′, we have x′ = 0. However, the origin of S′ is
moving away by x = vt as seen from another observer in another frame S. So we get that:

x′ = 0 = x cosh θ − ct sinh θ

⇒ tanh θ =
x

ct
=
vt

ct
=
v

c
≡ β

⇒ cosh θ =
1√

1− β2
≡ γ, sinh θ =

β√
1− β2

≡ βγ

(4.8)

So plugging this back into the frame-transformations, we get:

x′ = γ(x− vt)

t′ = γ
(
t− vx

c2

) (4.9)

Generally in relativity, we draw spacetime diagrams with the time-axis being vertical and the
spatial axis horizontal. 45◦ lines that pass through the origin are known as light cones, and divide
the spacetime diagram into regions that are accessible by physical particles (with velocities v < c,
inside the light cone) and regions that are not. Trajectories of particles in spacetime diagrams
are known as world lines.
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§4.1.1 Time-Like and Space-Like Separation

Because spacetime intervals are invariant, we have lines:

x2 − c2t2 = constant (4.10)

which make up hyperbolas which define the positions of particles vary under Lorentz transfor-
mations. Stated again,

Under a Lorentz transformation, a spacetime point moves along the hyperbola x2 − c2t2 =
constant.

For 2 events, we call the time interval between them occurring ∆t0 = t1 − t2 the proper time,
which vanishes when these events happen on the surface of the light cone ((∆s)2 = 0). Another
way to define this, is the shortest time an observer in an arbitrary frame can measure between
2 events at the same spatial point.

Conversely, events that occur at the same time but at different spatial positions are known as
space-like separated. In the spacetime diagram, these move along a hyperbola outside the light
cone under a Lorentz transformation. This distinction leads us to worry about whether events
occur inside or outside the light cone when we talk about dynamics.

Figure 4.1: Space-like and Time-like Regions.

Example:

Consider a frame K which is the frame of some stationary observer that observes a
particle moving with velocity u(t). Also, there is another frame K ′ in which the particle
is stationary and time ticks in this frame as τ (the proper time). We know that in both
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frames, we have the spacetime interval is constant:

(ds)2 = c2dτ2

= c2(dt)2 − |dx|2

= c2(dt)2

[
1− 1

c2

(
dx

dt

)2
]

= c2(1− β2)dt2

(4.11)

where dx = udt. So we can get:

dτ =
dt

γ

⇒
∫ τ2

τ1

γ(τ)dτ =

∫ t2

t1

dt = ∆t >

∫ τ2

τ1

dτ

(4.12)

§4.2 4-Vectors

In this class, we are going to define 4-vectors as any quantity which transforms like x and ct
under a Lorentz transformation. That is:

Aµ = [A0, A1, A2, A3]T

⇒ A′0 = γ(A0 − ~β · ~A)

A′‖ = γ(A‖ − βA⊥)

A′⊥ = A⊥

(4.13)

where overhead-arrows denote 3-vectors as per in Euclidean space. The scalar product of 2
4-vectors are then defined as:

AµB
µ = A0B0 − ~A · ~B (4.14)

Now, consider a wave with frequency ω and wave-vector ~k. We can then think about ω and ~k in 2
different frames K and K ′. The way to think about this is considering a wave-train (pulse) with
3 wave peaks and 2 wave troughs. We note that in either frame, the number of these peaks and
troughs does not change. Defining φ as the number of wave crests, we have that this quantity is
invariant under Lorentz transformation. So we have:

eiφei(ωt−
~k·~x) (4.15)

So this tells us that kµx
µ = ωt− ~k · ~x remains invariant, for which we can define:

kµ = [ω/c,~k] (4.16)



CHAPTER 4. SPECIAL RELATIVITY 38

which is indeed a 4-vector since we know [ct, ~x] is one and will remain invariant under Lorentz
transformation. So we get that kµ transforms like:

k′0 = γ(k0 − ~β · ~k)

k′‖ = γ(k‖ − βk0)

k′⊥ = k⊥

(4.17)

So we get that:

ω′ =
ω(1− β)√

1− β2
= ω

√
1− β
1 + β

(4.18)

which is the relativistic Doppler shift formula. We also get:

k′⊥
k′‖

= tan θ′

=
k sin θ

γ (k cos θ − βk0)

=
sin θ

γ(cos θ − β)

(4.19)

where θ is the angle of the ~k vector and the ~x axis in the spacetime diagram.

Side Note: There is another type of Doppler shift known as gravitational red shift. This
occurs if we were to shoot a photon away from the surface of a massive body (usually
taken as the Earth). This shift goes like:

∆ω

ω
= −gh

c2
∼ 10−17 (4.20)

where g is the acceleration due to gravity close to the surface of the massive body, h is
the height and c is the speed of light. This alludes to the principle of equivalence.

§4.2.1 4-Velocity

How do we generalize the 3-velocity in Newtonian mechanics to relativistic 4-velocities? Well, we
can consider a particle with velocity u′ in the frame K ′, while K ′ moves with a velocity u with
respect to another stationary frame K. We want to then compute the velocity of the particle as
observed from K, which is done by boosting:

dx0 = γv(dx
′
0 + βdx′1)

dx1 = γv(dx
′
1 + βdx′0)

(4.21)
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We also have:

u′j = c
dx′j
dx′0

, uj = c
dxj
dx0

⇒ u1 = c
dx1

dx0
=
dx′1 + βdx′0
dx′0 + βdx′1

⇒ u‖ =
u′‖ + v√
1 + ~v·~u′

c2

, u⊥ =
u′⊥

γ
(
1 + ~v·~u′

c2

)
(4.22)

These are known as the relativistic velocity addition formulas. These makes things not so elegant,
but we can get around this by defining the vector:

uµ ≡
[
dt

dτ
, γu~u

]T
(4.23)

where we note that dt/dτ = cγu. More concisely, we have:

uµ =
dxµ
dτ

(4.24)

In the rest frame, this 4-vector reduces to [c, 0, 0, 0]T . The invariant quantity found by contracting
this 4-vector with itself is:

uµu
µ = c2 (4.25)

With this definition, complicated velocity addition formula we had earlier is in fact encoded into
this 4-velocity when it is Lorentz transformed (this working is left to the reader)!

§4.2.2 4-Acceleration

After the introduction of the 4-velocity, we can also define a 4-acceleration as:

aµ =
d

dτ
uµ (4.26)

To get how this looks like explicitly, we compute:

dγ

dt
=
γ3

c2
~u · ~a

⇒ d

dt
(γ~u) = γ~a+ ~u

γ3

c2
~u · ~a

(4.27)

Plugging this result into the 4-acceleration gives us:

aµ =

[
γ4 ~u · ~a

c
, γ4

(
~u · ~a
c2

)
~u+ γ2~a

]T
(4.28)
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In the frame where u = 0 and γ = 1, we notice that we have:

aµ = [0, ~a]T , uµ = [c, ~0]T

⇒ aµu
µ = 0

(4.29)

So this tells us that we can pick a frame that makes life easy and we will always have aµu
µ = 0

since this is a invariant quantity.

§4.2.3 4-Momentum

It seems that having the 4-velocity would make writing the 4-momentum trivial, however al-
though this works out to be true, the rationale is not so straight forward. In relativity, we
construct 4-vectors such that they transform the same way under Lorentz transformations, but
also so that they can be useful in doing physics. The way 4-momentum is constructed in relativity,
is such that there is an intrinsic relation between momentum and energy.

To get some intuition of the momentum/energy relation, we look to quantum mechanics. Con-
sider a spatial translation in quantum mechanics:

ψ(q + δq) = ψ(q) + δq
∂ψ(q)

∂q
(4.30)

This leads to the derivation of the momentum operator with the commutation relation [p̂, q̂] = i~,
so we get that the momentum operator is the generator of the spatial translations. Similar, we
get that the Hamiltonian is the generator of time-translations.

Now going back to relativity, we know that changes in frames interchange the translation of time
and space, so from the notion of quantum generators, we see that Ĥ and p̂ have to be related
and therefore E and p. A good check of the derivation in relativity, is that when we move to
the non-relativistic limit (e.g. v � c), we should retrieve classical mechanics. With these things
in mind, we indeed find that we can define the 4-momentum to be pµ = muµ. Explicitly, we
have:

pµ =

[
E(~p)

c
, ~p

]T
= [γmc, γm~u]

T
(4.31)

The relation above tells gives us the famous Einstein relation:

E = γmc2 (4.32)

Or also written as E2 − (pc)2 =
(
mc2

)2
. This relation is very useful because c and m are

spacetime invariant. This gives us 3 other useful relations:

β =
cp

E
, γ =

E

mc2
(4.33)

Now checking the classical limit, we can Taylor expand the energy and 3-momentum terms:

E = γmc = mc2 +
1

2
mu2 + . . .

~p = γm~u = m~u+ . . .
(4.34)
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which indeed gives us the classical kinetic energy and momentum. Now let’s see what happens
when we Lorentz transform this 4-momentum (Λµνpν):

E′ = γ
(
E − βcp‖

)
p′‖ = γ

(
p‖ −

β

c
E

)
p′⊥ = p⊥

(4.35)

Now if we consider a relativistic high energy process where we have incoming particles colliding
and producing other particles, the sum of all the incoming and outgoing particles should have
total energy and momentum add to 0 (

∑
j pj =

∑
j Ej = 0). We see that even when we Lorentz

transform these quantities, they still indeed do sum to 0, so energy and momentum are indeed
conserved. When we deal with massless particles, we only write the 4-vector as:

pµ =

[
E

c
, ~p

]T
(4.36)

and not in the form where m is involved because it is not true that massless particles have no
energy/momentum.

Another way to appeal to your senses about the construction of this 4-momentum, we look at a
very crude derivation (that happens to be exact for non-interacting particles). Recall that:

kµ =
[ω
c
, ~k

]T
(4.37)

Nature is described by quantum fields that have fundamental modes as plane waves with fre-
quency ω and wave-number k. Then quantum mechanics came along and asserted E = ~ω and
p = ~k, so if we frivolously put things together, we get:

~kµ =

[
~ω
c
, ~~k

]T
=

[
E

c
, ~p

]
(4.38)

So we indeed retrieve the 4-momentum we had gotten to earlier.

§4.3 Relativistic Scattering

First, we consider elastic scattering. Consider an oncoming particle a that collides with another
particle b both with the same mass m. We consider the rest-frame of particle b and pick the
coordinate frame such that we have the 4-momenta of these particles being:

p(a)
µ = [E, p, 0, 0]

T

p(b)
µ = [m, 0, 0, 0]

T
(4.39)

where we have now set c to 1. The cost-collision particles (now labeled by c and d) will have
momentas

p(c)
µ = [Ec, pc cos θc, pc sin θc, 0]

T

p(d)
µ = [Ed, pd cos θd, pd sin θd, 0]

T
(4.40)



CHAPTER 4. SPECIAL RELATIVITY 42

where by conservation of momentum, we have pc sin θc = pd sin θd. This problem can actually be
more conveniently formalized if we move to the center of mass frame, for which by the assertion
of conservation of energy and momentum, we have:

(p(a)
µ )′ = [E′, p′, 0, 0]

T

(p(b)
µ )′ = [E′,−p′, 0, 0]

T

(p(c)
µ )′ = [E′, p′ cos θ, p′ sin θ, 0]

T

(p(d)
µ )′ = [E′,−p′ cos θ,−p′ sin θ, 0]

T

(4.41)

where the primes denote the center of mass frame 4-momenta. Now, what we if wanted to move
this back into the rest-frame of particle b, well we do a Lorentz transformation. However, we
need to know γ and β to do that. Well, that’s not too hard because we know things from Lorentz
invariants which gives us:

γ =
E′

m
, β =

p

E
=

√
1− m2

E2
(4.42)

Also, we know that:

(p(a) + p(b))µ(p(a) + p(b))µ = (p(a)′ + p(b)′)µ(p(a)′ + p(b)′)µ

⇒ 2m2 + 2mE = 4(E′)2
(4.43)

where E is the b-frame energy and E′ is half of the CoM-frame energy. Now what about the
angles θ? Well, we can consider:

(p(a) − p(c))µ(p(a) − p(c))µ = (p(a)′ − p(c)′)µ(p(a)′ − p(c)′)µ

⇒ (p(a) − p(c))µ(p(a) − p(c))µ = 2m2 − 2
[
(E′)2 − (p′)2 cos θ

] (4.44)

§4.4 Relativistic Dynamics

To do dynamics in relativity, we want to work with simple building blocks so that it is easy to
keep track of things when we move between frames. To start, we will be considering differential
geometry that is relevant for special relativity. To describe events in terms of 4-vectors, we
write:

xµ = [x0, x1, x2, x3] (4.45)

where we imagine that there are some transformation rules such that:

Λ : xµ 7→ xµ′(xµ) (4.46)

indicating that the transformed 4-vector is a function of the initial 4-vector. We also want that
observables such as positions, momenta, fields, etc. transform “simply”. Math tells us that these
observables have a mathematical description with things called tensors, which are objects of rank
k. Some instances of tensors are

1. rank-0: scalars (s = s′);
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2. rank-1: vectors “generalization of 4-vectors” (Aµ′ = Λµ
′

νA
ν or Aµ′ = ∂xµ′

xν A
ν);

3. rank-2: “vectors with more indices”;

When we work with 4-vectors, some literature will write components of a vector in terms of unit
vectors:

Ṽ = V µê(µ)

= Λµ νV
ν ê(µ)

(4.47)

where we also have that:

ê(µ) = Λν µê(ν) (4.48)

Furthermore, we notice that if we act on 4-vectors with:

V µ = Λµ
′

νV
ν′

= Λµ ν′Λ
ν′

ρ V
ρ

⇒ Λµ ν′Λ
ν′

ρ = δµρ
(4.49)

So the reverse transformation of a Lorentz transformation is simply its inverse.

§4.4.1 Covariant 4-Vectors and Index Contraction

So far, we have been writing 4-vectors with their indices on the top, these are known as con-
travariant 4-vectors. However we also have 4-vectors with indices below, and these are known as
covariant/dual/one-form 4-vectors. These are analogous to bras for kets in quantum mechanics.
These objects transform like:

Bµ′ =
∂xν

∂xµ′Bν = Λν µ′Bν (4.50)

An example of this object, would be a 4-gradient operators:

∂α′ =
∂

∂xα′

=
∂xβ

∂xα′

∂

∂xβ
=

[
∂
∂x0

∇

] (4.51)

The contravariant (upper index) version of this is written as:

∂α =
∂

∂xα
=

[
∂
∂x0

−∇

]
. (4.52)

Contraction of the covariant and contravariant gives an operator known as the d’Alembert oper-
ator :

� = ∂α∂
α =

∂2

∂(x0)2
−∇2 (4.53)
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which is the generalization of the Laplacian in 4-space. These lower-index objects are necessary
to take inner-products which we refer to as contracting the indices. To see how this is done we
have:

Ṽ · Ã = VµA
µ

=

(
∂xν

∂xα
Vν

)(
∂xα

∂xµ
Aµ
)

= Vν

(
∂xν

∂xα
∂xα

∂xµ

)
Aµ

(4.54)

So we see that there is this 2-index object:

T νµ =
∂xν

∂xα
∂xα

∂xµ
(4.55)

which relates this inner product. In special relativity, if we again consider the invariant spacetime
interval:

(ds)2 = (dx0)2 − dxjdxj (4.56)

where j ∈ {1, 2, 3}. We can also write this as:

(ds)2 = gµνdx
µdxν (4.57)

where gµν is known as the metric tensor. The metric tensor is a (0, 2)-Cartesian tensor for which
in special relativity (Minkowski space), is diagonal and has components:

g00 = 1, gjj = −1 (4.58)

These objects allow us to take contravariant objects to their covariant counter parts (lowers
upper-indices). The metric tensor has the property that:

gανg
νβ = δβα (4.59)

The matrix representation of the Minkowski metric tensor is written as:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (4.60)

for which contraction in the matrix language will be written as:

AµB
µ = AµBνgµν

= ATgB
(4.61)
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§4.4.2 Cartesian Tensors and Lorentz Transformations

As alluded in the previous section, we can generalize 4-vectors into objects with more in-
dices:

Tµ1...µk
ν1...νl

(4.62)

which are known as rank-(k, l) Cartesian tensors. These transform as you would expect, that is
Lorentz transformations are necessary for every index for instance:

Tµ1...µk = Λµ1

ν′
1
. . .Λµk ν′

k
T ν

′
1...ν

′
k (4.63)

We can then ask, what is the most general transformation we can write such that we preserve
the norm of the vector with respect to the metric tensor? One way of going about this is by
constructing the group of all such isometries of the 4-vectors in Minkowski space. To do so, we
consider some transformation:

xµ
′

= Λµ
′

νx
ν

⇒ x′ = Λx
(4.64)

and assert that:

(x′,gx′) = (x,gx)

⇒ xTΛTgΛx = xTgx

⇒ ΛTgΛ = g

⇒ gµνΛµρΛ
ν
σgρσ

(4.65)

where the parentheses above denote an inner product in 4-space. Now, we consider the determi-
nant of these expressions:

det
(
ΛTgΛ

)
= det(g) (4.66)

Since the determinant of a product is the product of the determinants, which implies that the
det Λ = ±1. It turns out that there are 2 types of possible Λ transformations:

1. Proper Transformations: Can be generated by continuous deformation of the identity
element (e.g. rotations).

2. Improper Transformations: Cannot be generated by continuous deformation of the iden-
tity element (e.g. reflections).

The former constitutes a Lie group. We are now going to consider Λ being a proper transforma-
tion. We can thus consider the Lorentz transformation as a deviation ε away from the identity
operator:

Λµν = δµν + εµν (4.67)

where δµν is the identity. Then consider a multiplication of these matrices on the metric tensor
up to first-order in ε:

gµν
[
δµρ + εµρ

]
[δνσ + ενσ] ≈ gρσ + εσρ + ερσ = gρσ

⇒ εσρ = −ερσ
(4.68)
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So we get that the additional variation on the identity must be antisymmetric. Plugging this
result and applying the transformation on some 4-vector gives:

xµ
′

= [δµν + εµν ]xµ

= xµ + εµνx
ν

(4.69)

We can then define:

Lµν = i [xµ∂ν − xν∂µ] (4.70)

⇒ δxµ ≡ εµνxν =
i

2
ερσLρσx

µ (4.71)

where this antisymmetric Lµν operator looks like a generalized angular momentum operator
that generates rotations in 4-space (just as in quantum mechanics)! Note here that since imagi-
nary numbers are introduced above, we are encroaching the realm of quantum mechanics where
complex values are intrinsic to the theory. With this definition, we can further simplify:

δxµ = −1

2
[ερµxρ − εµσxσ] = εµνxν (4.72)

Now we can ask, what is the commutation relations of these new generators we have constructed?
Well, let’s check:

[Lµν , Lρσ] = igνρLνσ − igµρLνσ − igνσLµρ + igµσLνρ (4.73)

So we have that these objects L are generators of a Lie algebra:

[Li, Lj ] = iεijkLk

where Li =
1

2
εijkLjk

(4.74)

with i, j, k ∈ {1, 2, 3}. However, we can consider objects that have intrinsic properties (e.g.
spin in quantum mechanics) which follow the same commutation relations as in equation (4.73).
Calling these other operators Sµ,ν , this will allow us to write a more generic generator:

Mµν = Lµν + Sµν

where [Lµν , Sµν ] = 0,
(4.75)

which grants the most general form of an infinitesimal rotation as:

D(ε) = 1 +
i

2
εµνMµν . (4.76)

We then further define:

Ji ≡
1

2
εijkMjk, Ki ≡M0i (4.77)
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which have the commutation relations:

[Ji, Jj ] = iεijkJk (4.78)

[Ji,Kj ] = iεijkKk (4.79)

[Ki,Kj ] = −iεijkJk. (4.80)

It turns out that these J operators are the generators of rotations, and K the generators
of Lorentz boosts! With this in mind, it is also good to note the following commutation
relations and their implications:

1. [Ji, Jj ] = iεijkJk: rotations do not commute;

2. [Ji,Kj ] = iεijkKk: rotations and boosts do not commute;

3. [Ki,Kj ] = −iεijkJk: Non-colinear boosts do not commute and in fact result in a rotation.

In 4-space, these generators have a well-defined matrix representation given by:

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (4.81)

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (4.82)

Notice that the square of these matrices are diagonal, so all squared generators commute. Addi-
tionally, we can take linear combinations of these generators to get:

Ai ≡
1

2
[Ji + iKi] , Bi ≡

1

2
[Ji − iKi] . (4.83)

It then works out that these have:

[Ai, Bj ] = 0 (4.84)

[Ai, Aj ] = iεijkAk (4.85)

[Bi, Bj ] = iεijkBk (4.86)

which tells us that these A and B objects have the Lie algebra of su(2) (spin operators). Hear-
kening back to non-relativistic quantum mechanics, we recall that rotations are generated by
angular momentum operators for which the angular momentum eigenstates are labeled by the
quantum number j (denoting total angular momentum) and m ∈ [−j, j] (denoting the z projec-
tion of angular momentum leading to 2j+1, m-states). As such, we get that each of these A and
B operators have a total angular momentum-like quantity associated to them {a, b}, for which
we can write:

A2 |ψAB〉 = a(a+ 1) |ψAB〉 (4.87)

B2 |ψAB〉 = b(b+ 1) |ψAB〉 (4.88)
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where |ψAB〉 is indeed a quantum state. This is in fact where intrinsic spin of particles pop out
from in relativistic quantum field theories! Let’s now look at some properties.

It turns out that the eigenstates of the irreducible representations of the generators of the Lorentz
group are not necessarily parity eigenstates under exchange of A and B (only parity eigenstates
if a = b). Specifically, under the parity operator PABij we have:

PABij Jj = Ji (4.89)

PABij Kj = −Ki (4.90)

implying that while Ki transforms as an axial vector (pseudovector), Ji transforms as a vector.
In general, we have that the eigenstate of the matrix representation of the operator J = A+ B
(analogous to the addition of angular momentum) to be a [(2a+ 1) + (2b+ 1)]-dimesional vector.
To see this, we consider some examples.

Examples:

The left-handed (chirality) neutrino is a fermionic particle (spin-1/2) that interacts with
only the weak force and gravity. It turns out that these particles have the property of
either (a = 1/2, b = 0) or (a = 0, b = 1/2). In the 2-dimensional spinor representation of
spin-1/2 particles, these would clearly not be parity symmetric.

However, we see that if we have the Direct product (a, b) = (0, 1/2)+(2/1, 0) as proposed
by Dirac to construct Dirac fermions which have a 4-component spinor representation,
these are indeed parity symmetric.

Having the structure of the generators, we can now ask how we can actually generate elements
of the Lorentz group. That is asking, how do states actually transform under general Lorentz
transformations? Well, as per in quantum mechanics, we can apply the exponential mapping to
these generators to get:

D(ε) = 1 +
i

2
εµνMµν

= 1 + i~θA · ~A+ i~θB · ~B

⇒ D(~θA, ~θB) = exp
(
i~θA · ~A

)
exp

(
i~θB · ~B

) (4.91)

where the factorization of the exponential maps came from the fact that [Ai, Bi] = 0. The vectors

A and B in the expression above denote vector-operators, whereas ~θA and ~θB are the associated
unit-vectors just like in quantum angular momentum. Alternatively, we can decompose this into
the J and K operators as follows:

D(~ω, ~ζ) = 1 + i~ω · ~J − ~ζ · ~K (4.92)

where ~ω = (~θA + ~θB)/2 and ~ζ = (~θA− ~θB)/2. Most of the concerns in SR are for Lorentz boosts,
so let us consider the case where ~ω = ~0 (recalling J ’s are associated to rotations and K’s to

https://en.wikipedia.org/wiki/Dirac_spinor
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boosts). Furthermore, let’s say that the boost is purely along the x direction. This gives us
that:

D(ζ) = 1 + ζσx + . . . (4.93)

where we can represent Kx as the Pauli-x matrix since it follow the same Lie algebra. This gives
the matrix representation of this boost as:

D(ζ) = exp (ζσx)

=

[
cosh(ζ) sinh(ζ)
sinh(ζ) cosh(ζ)

]

⇒ V ′ =


cosh(ζ) sinh(ζ) 0 0
sinh(ζ) cosh(ζ) 0 0

0 0 1 0
0 0 0 1

V
(4.94)

The hyperbolic functions are thus indicative of the hyperbolic geometry of spacetime which we
implicitly assert when we impose the Minkowski metric tensor gµν .

§4.4.3 Thomas Precession

The property stated in the previous section that non-colinear boosts do not have a commutative
structure gives rise to an interesting phenomenon in relativistic electronic orbits known as Thomas
precession. That is, the commutation relations imply 2 successive Lorentz boosts are equivalent
to one Lorentz boost and a proper rotation:

(Lorentz Boost)1 + (Lorentz Boost)2 = (Lorentz Boost)3 + (3D Rotation) (4.95)

Thomas precession is a relativistic kinematic correction to the measured g factor of an elec-
tron, for which it accounts for the electron following a curvilinear orbit. This was explained by
Llewellyn Thomas in 1927 after knowledge of the Zeeman effect. To understand this, we first
recall that in classical mechanics, a transformation into a rotating frame results in the emergence
of fictitious forces (centrifugal force, Coriolis force, Euler force). Furthermore, the time deriva-

tive of any vector function ~f(t) in the lab-frame is related to its rotating frame correspondent
by:

d~f(t)

dt

∣∣∣∣∣
lab

=
d~f(t)

dt

∣∣∣∣∣
rot

+ ~ω× ~f(t) (4.96)

where the subscript “lab” indicates the quantity as observed in the lab-frame, and “rot” as
observed in the rotating frame. ω = θ̇(t). Knowing this, we now consider an electron orbiting
a charged nucleus. We know from quantum theory that the magnetic moment ~µ of electron is
generated from its intrinsic spin-1/2 character as:

~µ =
ge

2mec
~S (4.97)

wehere g ≈ 2 (as derived from the Zeeman effect experiments). As the electron traverses along
its orbit, we have that its velocity would vary due to curvilinear trajectories. However, we can
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consider an infinitesimal interval of time δt such that within any δt instant, the electron travels
will a fixed velocity ~v. We will show in section ?? that a relativistic particle moving in external
electric and magnetic fields will experience a magnetic field in its rest-frame given by:

~B ′ ≈ ~B − ~β × ~E, (4.98)

where ~β = ~v/c. So for an electron orbiting a nucleus which emits an electric field ~E (due to its

charge distribution) and a magnetic field ~B (due to its spin), we have that its spin equation of
motion in its rest-frame will be governed by:

d~S

dt

∣∣∣∣∣
rest

= ~µ× ~B ′

= ~µ×
[
~B − ~β × ~E

] (4.99)

Now, if we move out of the momentarily-comoving frame (rotating-frame) of the electron into
the lab-frame, the associated change in the electron’s velocity within each δt interval would be
β → β + δβ. The electron has a spin equation of motion would have to be corrected as per
equation (4.96) to:

d~S

dt

∣∣∣∣∣
lab

=
d~S

dt

∣∣∣∣∣
rest

+ ~ω× ~S (4.100)

= ~S ×
[
ge

2mec

(
~B − ~β × ~E

)
− ~ωT

]
(4.101)

where ~ωT is known as the Thomas frequency derived of course, by Thomas. The derivation
involves the commutative structure of Ji and Ki considering these infinitesimal velocity changes
and boosts to the lab-frame (Jackson section 11.8 pages 550 - 552). Fast forward to the result,
the Thomas frequency works out to be:

~ωT = − lim
δt→0

∆Ω

δt
=

γ2

1 + γ

~a× ~v
c2

(4.102)

where ~a is the acceleration of the electron in the lab-frame. For the electron in particular (in a
“screened” Coulomb field), we have:

~ωT = −
~L

2m2
ec

2

1

r

dV

dr
(4.103)

where ~L is the angular momentum of the electron. As such, we have that the Thomas corrected
interaction energy is given as:

U ′ = −~S ·

[
ge ~B′

2mec
− ~ωT

]

⇒ U ′ = − ge

2mc
~S · ~B +

g − 1

2m2
ec

2

(
~S · ~L

) 1

r

∂V

∂r

(4.104)
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which is the sum of the interaction energy due to the rest coupling of the electron spin and
nuclear magnetic fields, and the interaction energy due to relativistic kinematics. We see that
in the kinematic interaction energy term, the g-factor is suppressed g → g− 1 which was indeed
measured by Uhlenbeck and Goudsmit in 1926. This result can also be pulled out of the Dirac
equation when expanded in power of v/c. This result ignores the details about the value of g in
higher orders of α (as done in relativistic quantum field theories):

g

2
= 1 + c1

(α
π

)
+ c2

(α
π

)2

+ . . . (4.105)

where α is the fine-structure constant. Much work (both experimental and theoretical) is still on-
going for this, for which experiments (like the eEDM experiment performed by the Cornell group)
are trying to measure the electron g-factor so as bound the allowed quantum field theories.

“If you can’t be the giant you want to be the giant killer.”

− T. DeGrand, 2020.

https://jila.colorado.edu/bec/CornellGroup/


Chapter 5

The Covariance of
Electrodynamics

We are now going to study about how electrodynamics looks different in different inertial frames.
The hope is that physics remains the same in all inertial reference frames. We will then be
looking at electrodynamics from a field theory perspective which will elucidate important notions
such as gauge invariance a little more clearly.

To start, we recall the continuity equation:

∂ρ

∂t
+∇ · ~J = 0 (5.1)

which we know is true in classical electrodynamics. We can extrapolate this into 4-space and
postulate that these quantities ρ and ~J form a 4-vector:

Jµ =
[
cρ, ~J

]
⇒ ∂µJ

µ = 0
(5.2)

Let’s push on this a little. We recall that charge is defined as:

Q =

∫
d3xρ(~x) (5.3)

This should intuitively be an invariant quantity, however the volume contracts when an observer
is boosted to another inertial frame. To possibly fix this, we can consider the integral over
spacetime volume:

d4x = dx0d3x (5.4)

for which this quantity is indeed Lorentz invariant. This immediately then tells us that if Q is
invariant, ρ must transform like x0 which indeed tells us our postulate checks out. Now we also

52
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recall the Lorentz gauge condition:

1

c

∂Φ

∂t
+∇ · ~A = 0

⇒
[

1

c

∂2

∂t2
−∇2

] [
Φ
~A

]
=

4π

c

[
cρ
~J

] (5.5)

which this, we can also then postulate that:

Aµ =
[
Φ, ~A

]
(5.6)

is another 4-vector. However, Lorentz gauge is completely arbitrary and what we then choose
another gauge? Well, let’s take a step back. We are going to start with a classical Lagrangian
and encode/impose the appropriate symmetries on it. From this, equations of motion will then
naturally pop out of this Lagrangian which intrinsically encode these symmetries. We can then
ask questions like if we retrieve Maxwell’s equations from this, are these unique? Can we quantize
this theory to get a quantum theory (get a Hamiltonian)?

§5.1 Classical Field Theory and Noether’s Theorem

Having these newly defined fields in mind, we are going to consider electric and magnetic fields as
classical fields instead of things emergent from point particles. This also gives the foundational
formalism to bring us to quantum field theories in the future (not in this course). To get started,
we make some remarks on classical mechanics. In classical mechanics, we have a set of coordinates
{qj , q̇j}, a Lagrangian L(qj , q̇j) and a set of equations of motion:

∑
j

d

dt

∂L
∂q̇j
− ∂L
∂qj

= 0 (5.7)

from the least-action principle. Classical field theories are very similar, but instead of the conju-
gate variables above, the coordinates we will be considering are the fields themselves (qj → φj(x)
and pj → ∂µφj). Furthermore, we deal with a quantity known as the Lagrangian density L in-
stead of the Lagrangian, which is defined as:

L =

∫
d3xL (5.8)

for which the action is then defined for the Lgrangian density as:

S =

∫
d4xL (φj , ∂µφj). (5.9)

Minimizing the action via the calculus of variations give the result:

∂µ

[
∂L

∂(∂µφj)

]
− ∂L

∂φj
= 0 (5.10)
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which is analogous to the Euler-Lagrange equations of motion in traditional analytical mechanics.
To analyze this, we consider a small variation of the field variable:

φj → φj + δφj (5.11)

⇒ ∂µφj → ∂µφj + δ (∂µφj) (5.12)

Plugging this into the Lagrangian density, we get that the variation in the Lagrangian density is
given by:

δL =
∑
j

[
∂L

∂φj
δφj +

∂L

∂(∂µφj)
δ (∂µφj)

]

=
∑
j

[
∂µ

(
∂L

∂(∂µφj)

)
δφj +

∂L

∂(∂µφj)
δ (∂µφj)

]

= ∂µ

∑
j

∂L

∂(∂µφj)
δφj

 .
(5.13)

We now define the term in the square-brackets above as a form of generalized contravariant
current:

Jµ ≡
∑
j

∂L

∂(∂µφj)
δφj , (5.14)

from which we see that if δL = 0 under some continuous transformation of φj , this implies
∂µJ

µ = 0, telling us that Jµ is conserved! So we have the statement of Noether’s theorem:

“Given any continuous symmetry (transformation of the field variables, φj) which leaves
the Lagrangian density invariant, there will be an associated Noether current, Jµ which
remains conserved under this symmetry transformation”.

This is the statement that symmetries lead to conserved quantities, which is one of the most
profound results in physics! The Noether current will also have an associated Noether charge
defined as:

Q =

∫
d3xJ0. (5.15)

These Noether charges in φ can either be internal Neother charges or external Neother charges.
The former (a.k.a internal symmetries) pertain to a transformation acting only on the field
variables, therefore do not transform spacetime points, and leave the Lagrangian density or
physics invariant (e.g. φ(t, ~x)→ eiθ(t,~x)φ(t, ~x)). The latter however (a.k.a external symmetries),
pertains to transformations of the spacetime coordinates, leading to results like the conservation
of momentum and energy. Let us first consider internal symmetries since these will prove rather
interesting. Let’s an example.
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Example:

Consider the Lagrangian density:

L =
1

2

[
(∂µφ1)

2
+ (∂µφ2)

2
]
− V (φ1, φ2) (5.16)

We postulate that there is a symmetry in the system under linear combination of the 2
field variables {φ1, φ2}:[

φ′1
φ′2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
φ1

φ2

]
≈
[

1 θ
−θ 1

] [
φ1

φ2

]
. (5.17)

This would result in the variation of the Lagrangian density as:

δL =

2∑
j=1

[
∂L

∂φj
δφj +

∂L

∂(∂µφj)
δ (∂µφj)

]
(5.18)

for which we notice that the terms ∂L
∂φj

δφj would vanish if the potential is some function

of φ2
1 + φ2

2 =
∥∥∥~φ∥∥∥2

. Asserting this, we then have that:

δL = (∂µφ1) (θ∂µφ2) + (∂µφ2) (−θ∂µφ1) = 0 (5.19)

So we get the transformation we write down above is indeed a symmetry! For which we
get that the associated Noether current as:

Jµ = (∂µφ1) θφ2 − (∂µφ2) θφ1 (5.20)

Alternatively, we had consider the field variable as a single complex valued field φ =
φ1 + iφ2, we would retrieve the equivalent derivation above with the Lagrangian:

L =
1

2
∂µφ∂

µφ∗ − V (φ, φ∗) (5.21)

where the transformation is equivalent to tacking on a coordinate dependent phase to the
field variable:

δφ = iθφ. (5.22)

However, what happens if the phase is now coordinate dependent? That is θ = qε(~x, t).
This implies that:

δφ(~x, t) = iqε(~x, t)φ(~x, t)

⇒ φ′(~x, t) = exp [iqε(~x, t))]φ(~x, t)
(5.23)

To get the variation in L , we consider then:

δ (∂µφ) = iqε(~x, t)∂µφ+ iqφ∂µε(~x, t)

⇒ δL = ε(~x, t)∂µJ
µ +

[
∂L

∂(∂µφ)
iqφ+

∂L

∂(∂µφ∗)
(−iqφ∗)

]
∂µε(~x, t)

(5.24)
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We already know that ∂µJ
µ = 0, and we also notice that term in the square bracket is in

fact the Noether current which gives:

δL = ε(~x, t)∂µJ
µ(~x, t) + Jµ(~x, t)∂µε(~x, t) (5.25)

which gives that the variation on the Lagrangian is in fact not zero! What then do we do?
Well, let’s perhaps construct another Lagrangian which has another degree of freedom
such that we get δL under this transformation. Consider:

δφ(~x, t) = iqε(~x, t)φ(~x, t) (5.26)

δAµ(~x, t) = ∂µφ(~x, t)

⇒ ~A ′ = ~A+∇ε(~x, t), A0′
= A0 +

∂ε

∂t

(5.27)

So the variation of the Lagrangian density now is the same as before but with an additional
term:

∂L

∂Aλ
δAλ +

∂L

∂(∂µAλ)
δ(∂µAλ)

⇒ δL = (∂λε) J
λ +

∂L

∂Aλ
∂λε+

∂L

∂(∂νAλ)
∂ν∂λε = 0

(5.28)

where we asserted the above variation is zero so as to solve for our new invariant La-
grangian density. The above result tells us that the variation of the Lagrangian vanishes
if:

∂L

∂Aλ
= −Jλ (5.29)

∂L

∂(∂νAλ)
= − ∂L

∂(∂λAν)
(5.30)

As such, we get that a new invariant Lagrangian density term and a necessary tensor
dependence in the total Lagrangian density:

LI = −JµAµ (5.31)

L = L (∂µAν − ∂νAµ) (5.32)

The example above might have been quite confusing, but we can summarize the take-aways. In
summary, we have that if we have a complex “matter field” φ(~x, t), the Lagrangian density L is
invariant under the global symmetry:

δφ(~x, t) = iεqφ(~x, t) (5.33)

However, if we replace the global transformation by a local coordinate dependent one (known as
a local gauge transformation):

δφ(~x, t) = iε(~x, t)qφ(~x, t) (5.34)

then we get conservation if the following 3 properties are satisfied:
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1. An additional gauge field Aµ(~x, t) needs to be added such that δAµ(~x, t) = ∂µε(~x, t);

2. The gauge field must couple to the global conserved Noether current Jµ under the global
symmetry;

3. The terms in the Lagrangian density that determines the dynamics of the gauge field must
be a function of an antisymmetric tensor:

Fµν = ∂µAν − ∂νAµ (5.35)

which gives the total Lagrangian density of the system as:

L = L (φ, ∂µφ)− JµAµ + L (Fµν) (5.36)

Theories which are invariant under these local gauge transformations are known as gauge theo-
ries”.

“Everything that we know about that is fundamental is a gauge theory.”

− T. DeGrand, 2020.

It turns out that there is another way to build in local gauge invariances. To do this, we once
again make the Lagrangian density a function of the anti-symmetric tensor, but also we convert
the one of the cojugate field variables to one with a covariant derivative:

∂µφ → Dµφ ≡ ∂µφ− iqAµφ (5.37)

With this modification, we have that this new conjugate variable Dµφ transforms like φ under
gauge transformations. As such, we have:

L (φ,Dµφ, Fµν) = L
(
φ′, D′µφ

′, F ′µν
)

(5.38)

To check this, we consider:

D′µφ
′ = ∂µφ

′ − iqA′µφ′

= ∂µ
[
eiqεφ

]
− iq [Aµ − ∂µε] eiqεφ

= eiqε [∂µφ− iqAµφ]

= eiqεDµφ

(5.39)

indeed showing that Dµφ transforms just like φ. Now we ask, what then is a good candidate
Lagrangian? Well, we know that L (Fµν) is a scalar, so we want to write something that is a
function of Fµν but with all indices contracted:

L (Fµν) = c1FµνF
µν + c2(FµνF

µν)2 + . . . (5.40)

§5.2 The Faraday Tensor

It turns out that the Lagrangian in this form that produces the Maxwell equations, is written
as:

LEM = − 1

16π
FµνF

µν − 1

c
JµA

µ . (5.41)
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This is the Lagrangian for classical electrodynamics. Let’s now see how Maxwell’s equa-
tions fall out of this. Recall that the equations of motion for such Lagrangian densities are given
by:

∂β
∂L

∂(∂βAα)
− ∂L

∂Aα
= 0, (5.42)

so plugging in the Lagrangian density that we have term by term gives:

∂L

∂(∂βAα)
= − 1

16π
gλµgνσ

[
δµβδ

σ
αF

λν − δσβδµαFλν + δλβδ
ν
αF

µσ − δνβδλαFµσ
]

⇒ ∂β
∂L

∂(∂βAα)
− ∂L

∂Aα
= − 4

16π
∂βFβα +

1

c
Jα = 0

⇒ ∂βFβα =
4π

c
Jα

(5.43)

where we used the fact that Fµν is antisymmetric above. As such, we can derive the explicit
matrix form of Fαβ as:

~B =∇× ~A, ~E = −∇Φ− 1

c

∂ ~A

∂t

⇒ Fαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (5.44)

The antisymmetric tensor above is known as the Faraday tensor. Taking the 4-dimensional
divergence of Jα then gives:

∂αJ
α = 0

⇒ ∇ · ~E = 4πρ, ∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J

(5.45)

The lack of magnetic monopoles ∇ · ~B = 0 then follows naturally by construction and not by
the assertion of no experimental evidence of magnetic monopoles. We can then construct a dual
field strength tensor via the 4-dimensional Levi-Civita tensor:

Fαβ ≡ 1

2
εαβµνFµν (5.46)

which also allows us to pop-out the Maxwell’s equations via:

∂αFαβ = ∂α

(
1

2
εαβµνFµν

)
=

1

2
εαβµν∂α∂µAν = 0

(5.47)

which vanishes since εαβµν is completely anti-symmetric whereas ∂α∂µ is symmetric, causing
the contraction of the indices α and µ to sum to zero. Now, considering the transformation
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properties of the Faraday tensor, it is a 2-index object so we need 2 Lorentz transformation to
move it into another frame as follows:

Fµ
′ν′

= Λµ
′

µΛν
′

νF
µν or F′ = ΛFΛT (5.48)

If we take Λ as a Lorentz boost along the x-direction (x1-direction), we have the fields be-
come:

E′1 = E1, E′1 = B1

E′2 = γ(E2 − βB3), B′2 = γ(B2 + βE3)

E′3 = γ(E3 + βB2), B′3 = γ(B3 − βE2)

(5.49)

or more generally (and succinctly):

~E′ = γ
(
~E + ~β × ~B

)
− γ2

γ + 1
~β(~β · ~E) (5.50)

~B′ = γ( ~B − ~β × ~E)− γ2

γ + 1
~β(~β · ~B) (5.51)

which tells us that magnetic and electric fields intrinsically couple when we Lorentz transform
between relativistic inertial frames! Let us consider an example to see this occurring explic-
itly.

Example:

Consider a point charge q in an inertial reference S′ moving with velocity v in the x-
direction relative to an observer in a stationary lab-frame S. we further assert that the
observer in S is at position (0, b, 0) where b > 0. In the frame S′, we have that the electric
field from the point charge is given by:

~E′ =
q

(r′)2
n̂′, ~B′ = 0 (5.52)

Now to consider what the observer in S sees, we note that we need to convert both the
fields and the coordinates! We write the components explicitly in the S′ frame of the
field with coordinates in the S frame as:

t′ = γt (5.53)

E′1 =
q(−γvt)

[b2 + (γbt)2]
3/2

, E′2 =
qb

[b2 + (γbt)2]
3/2

(5.54)

Then further boosting the fields into the S frame by Lorentz transformation gives:

E1 = E′1 =
q(−γvt)

[b2 + (γvt)2]
3/2

, E2 = γE′2 =
γqb

[b2 + (γvt)2]
3/2

(5.55)

B3 = βγE′2 = βE2 (5.56)

So we get that in the frame S, the observer sees that the charge also produces a non-trivial
magnetic field! Consider the plot of E2 vs vt, we see that this is in fact a Lorentzian curve
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with the peak at qbγ/b3 and width ∼ b/γ. On the other hand, E1 vs vt is an odd function,
implying that the the radially symmetric field in the rest-frame will become squeeze along
one-axis and stretched in the other when we boost to another frame.

Let’s go back and ask the equation, why is the Lagrangian density for electromagnetism given
as:

LEM = − 1

16π
FµνF

µν (5.57)

and does not include higher order terms? Well, it turns out that there is actually more but
these are “small corrections” to what is written above. To see this, we first set ~ = c = 1. In
these units, ~c gives a quantity with units of energy × length. The Lagrangian density gives us
a quantity of energy density (∼ E/L3), for which in these units are ∼ 1/L4. We further note
that:

Fµν ∼ electric field ∼ q

L2

⇒ Fµν ∼
1

L2

⇒ FµνF
µν ∼ 1

L4

(5.58)

So if we want a Lagrangian density in higher powers in FµνF
µν , the coefficients that multiply

these higher powers of FµνF
µν must be dimensionful quantities so that we retrieve L ∼ 1/L4.

So the most general Lagrangian density we can write down is given as:

L = c1FµνF
µν +

c2
Λ4

(FµνF
µν)2 + . . . (5.59)

where Λ4 is some energy scale. We can ask then what is Λ? Well, it could be a scale for new
physics! One theory (quantum field theory) is that Λ gives a scale for virtual electron-positron
pairs which will give us Λ ∼ me ∼ 0.5 MeV. The point being made here is that when we
are dealing with energy scales in which classical electrodynamic scales dominate, so we really
can throw away these higher order “corrections”, but not so much at lower energy quantum
electrodynamic scales.

§5.3 The “Mass of the Photon”

There is discussion of the “mass of a photon” in modern literature on relativistic physics, which
is really asking the question, ‘what is the dispersion relation for classical fields?”. Photons are
actually a particular type of particle which falls into a broader category of particles known as
gauge bosons. Gauge bosons in particle physics, are force carriers of the fundamental interactions
in nature, photons of course, being the carriers of electromagnetic interactions. It turns out that
even though the photon is massless (due to gauge invariance), gauge bosons (which are things
analogous to the photon) can in fact have mass. To comprehend this, it would be good to diverge
a little from pure electrodynamics and discuss 2 related topics:

1. Goldstone’s theorem (Goldstone bosons);

2. the Higgs effect.
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The Higgs effect is what actually causes these gauge bosons to pick up a mass. Let us first
consider a general classical field with field variables {φj , ∂µφj} for which j runs from [1, n]. We
can write the Lagrangian density of this field to be:

L =
1

2

n∑
j=1

(∂νφj) (∂νφj)− V (φj) (5.60)

where V (φj) =
µ2

0

2

 n∑
j=1

φ2
j

+
λ

4!

 n∑
j=1

φ2
j

2

(5.61)

with µ0 and λ being interaction parameters. This relatively simple model is adopted in a variety
of contexts, one of which arises in condensed matter physics when describing the spin of a
“patch” of a system of atoms (for which this Lagrangian is referred to as the Ginzburg-Landau
model). In this context, the (∂νφj) (∂νφj) measures the interaction between spin-patches, and
V (φj) measures the self-interactions within spin-patches. This is also used in mesoscopic systems
which exhibit quantum behaviour such as a Bose-Einstein condensate (BEC) or superconducting
liquid Helium using complex valued scalar fields.

The context we are interested in and will get a little into the meat of, is that for fundamental
particle physics. Here, we take µ as the particle mass so we have a “force”:

−∂V
∂φ

=
∂L

∂φ
, (5.62)

arising from the potential which attempts to drive the field variables φ toward the minima of V .
This is known as the Higgs effect. Clearly, this effect will only manifest if V (φ) has at least one
minimum in φ, so we explore such a case. The easiest way to approach this is to first linearize
the equations of motion about this minimum (defined to be at φ0):

V (φ) ≈ V (φ)|φ=φ0
+

1

2
V ′′(φ)|φ=φ0

(φ− φ0)2 (5.63)

Using this expansion, we get that the equation of motion goes like:(
∂2

∂t2
−∇2

)
(φ− φ0) = −V ′′(φ0)(φ− φ0). (5.64)

Recall that for a massless vector field, we had:(
1

c2
∂2

∂t2
−∇2

)
~A = 0, (5.65)

for which if we have a plane-wave solution ~A ∼ ei(~k·~x−ωt), we get:(
−ω

2

c2
+ k2

)
~A = 0. (5.66)

It also works out that for a massive scalar relativistic field, the equations of motion is:(
∂2

∂t2
−∇2 +m2

)
Φ = 0 (5.67)
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known as the Klein-Gordon equation (setting c = 1), for which static solutions (∂2Φ/∂t2 = 0)
gives us solutions where Φ ∼ e−mr/r, which is a short-ranged potential. So particles that are
massive tell us that masses cause the potential to be “screened”. The Klein-Gordon equation
comes from asserting special relativity, in which its most general formulation comes from quan-
tizing the mass-energy relativistic relation (not done in this class). Comparing this with the
Klein-Gordon equation of motion, this tells us that the mass is related to the second derivative
of the potential at its minimum:

µ2 = V ′′(φ0) (5.68)

⇒
[
ω2 − k2 − V ′′(φ0)

]
φ = 0 (5.69)

where we adopt the notation µ for mass now. Now, since µ0 in general is just a model parameter,
we can consider 2 scenarios for the potential:

V (φ;µ0) =
1

2
µ2

0φ
2 +

λ

4!
φ4. (5.70)

1. µ2
0 > 0:

In this parameter regime, we have that the potential curve looks like that shown in figure
5.1 below.

φ

V (φ)

0

Figure 5.1: Plots of V (φ) for µ2
0 > 0.

From the plot above, we see that the minimum here occurs at φ0 = 0, granting the lin-
earization result that µ2 = µ2

0.

2. µ2
0 < 0:

This parameter regime is a little more interesting, as we have that the potential curve looks
like that shown in figure 5.2 below.
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φ

V (φ)

0
−|φ0| +|φ0|

Figure 5.2: Plots of V (φ) for µ2
0 < 0.

From the plot above, we see that there are now 2 different minima which occur at:

V ′(φ) = µ2φ+
λ

6
φ3

⇒ φ0 = ±
√
−6µ2

0

λ

(5.71)

With this result, we get that the second derivative of the potential with respect to φ
evaluated at φ0 is:

d2V (φ)

dφ2

∣∣∣∣
φ=φ0

= µ2
0 +

λ

2
φ2

0 = −2µ2
0 (5.72)

⇒ µ2 = −2µ2
0 (5.73)

which tells us that µ2 measures the “rocking” of the system (much like the frequency
of a harmonic oscillator), keeping in mind that µ2

0 < 0. We note that since the initial
Lagrangian density consists of even powers of the conjugate field variables, granting it a
discrete symmetry in the transformation:

φ(x, t) → −φ(x, t). (5.74)

However if the system then “chooses” to preferentially minimize its potential by sitting in
any one of the 2 minima, one refers to this as spontaneous symmetry breaking . The
symmetry being referenced here is a global one and so, if the system is within one of these
2 minima, it is very hard from a local picture to to see the discrete symmetry mentioned
above. To see this, we consider a small perturbation away from one of these minima:

φ(x, t) = φ0 + χ(x, t)

⇒ V (φ0 + χ(x, t)) =
1

2
µ2

0 (φ0 + χ(x, t))
2

+
λ

4!
(φ0 + χ(x, t))

4

=

[
1

2
µ2

0 +
λ

4
φ2

0

]
χ2 +O(χ3)

(5.75)

Showing that it is very difficult now to still tell that φ→ −φ (i.e. χ→ −φ0 − (χ+ φ0)) is
still a symmetry.
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“An ant living in a magnetized ferromagnet, has a hard time realizing that the underlying
system is rotationally invariant.”

− T. Degrand, 2020.

§5.3.1 Goldstone Bosons

Now we are going to consider another example where by we can write the Lagrangian as:

L =
1

2
[(∂µφ1) (∂µφ1) + (∂µφ2) (∂µφ2)] +

1

2
µ2

0

[
φ2

1 + φ2
2

]
− λ

4!

[
φ2

1 + φ2
2

]2
(5.76)

which gives us a continuous symmetry (as opposed to a discrete one seen in the previous
example) under the transformation:[

φ′1
φ′2

]
=

[
cos Ω sin Ω
− sin Ω cos Ω

] [
φ1

φ2

]
. (5.77)

A continuous symmetry implies a conserved Noether current associated to this symmetry. If
we try and draw the potential in a 3D-space with the axes being {φ1, φ2, V (φ1, φ2)} (just like
we did above), the case where µ2

0 > 0 is not very interesting once again as it will just be some
cylindrically symmetric bowl like potential. However, the case where µ2

0 < 0 will give us a
potential that looks like that shown in figure 5.3 below.

Figure 5.3: Potential function for µ2
0 < 0.

This is known as the Mexican hat potential. A system which wants to minimize its energy then
wants to sit in the trough of this potential which is explicitly given as:

φ2
1 + φ2

2 = −6µ2
0

λ
≡ φ2

0 (5.78)

Suppose now that the symmetry is now broken by setting:

φ2
1 = φ2

0

φ2 = 0.
(5.79)
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A perturbation applied to this system can then be written as:

φ1(x, t) = φ0 + χ1(x, t)

φ2(x, t) = χ2(x, t)
(5.80)

Plugging this into the potential and then looking at the terms up to quadratic powers in χ1 and
χ2 gives us:

V (φ1, φ2) ≈ χ1

[
φ0

(
µ2

0 +
λ

6

)
+ φ2

0

]
+ χ2

1

[
µ2

0

2
+
λ

4
φ2

0

]
+ χ2

2

[
µ2

0

2
+

λ

12
φ2

0

]
= χ2

1

[
−µ

2
0

2

] (5.81)

where we plugged in the solution to φ0 into the expression above to get the simplification. This
tells us that the χ1 field has a mass, but the χ1 field is massless! This result is in fact rather
generic (universal), and it an example of something called Goldstone’s theorem, for which the
general statement of this theorem is as follows.

Theorem 5.3.1. Goldstone’s Theorem: When a global continuous symmetry (U(1)
symmetry) is spontaneously broken, there is an accompanying massless mode known as
the Goldstone boson.

Massless modes imply that arbitrarily long wavelength excitations can be supported. An example
of a Goldstone boson is a spin-wave in a magnet (behaves like soundwaves).

§5.3.2 The Higgs Effect

Thus far we have been talking about global gauge symmetries and associated spontaneously
breaking of these symmetries. What happens if these occurred on local gauge symmetries? Well
let’s look back at classical electrodynamics for an answer. Recall that we derived Maxwell’s
equations by imposing local gauge invariances through the use of covariant derivatives. That is,
the Lagrangian remains invariant under the transformation:

φ(~x, t) → eiΛ(~x,t)φ(~x, t). (5.82)

So let’s try to do the same for the Lagrangian we had for Goldstone bosons but with the appro-
priate function of the Faraday tensor inserted. This gives us:

L = [(∂µ − iqAµ)φ] [(∂µ + iqAµ)φ∗]− 1

4
FµνF

µν − µ2
0|φ|

2
+ λ|φ|4 (5.83)

where the fields now are asserted to be complex valued (sines and cosines replaced with complex
phases). The sign convention for the potential is also chosen such that we have the Mexican hat
potential with minima at:

|φ|2 = −µ
2
0

λ
≡ a2

2
(5.84)
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where a is defined such that it is exactly the radius of the minima from the origin. As per before,
let’s consider a small perturbation away from the minimum just as before such that:

φ(~x, t) =
a+ χ1(~x, t) + iχ2(~x, t)√

2
. (5.85)

Plugging this into the potential and simplifying gives:

V (φ) =
λa2

2
χ2

1, (5.86)

showing that the χ2
1 is massive and the χ2 field is massless. As for the derivative terms in the

Lagrangian, we plug in this perturbative solution to get:

Dµφ =
1√
2

[∂µχ1 − qAµχ2 + i (∂µχ2 − qAµχ1 − qAµa)]

⇒ (Dµφ)∗(Dµφ) =
1

2

[
(∂µχ1 − qAµχ2)

2
+ (∂µχ2 − qAµχ1 − qAµa)

2
]
,

(5.87)

for which if we only keep the quadratic term (because that’s all we’re interested in), we get:

(Dµφ)∗(Dµφ) ≈ 1

2
[∂µχ1∂

µχ1 + ∂µχ2∂
µχ2] +

q2a2

2
AµA

µ +
qa√

2
Aµ∂

µχ2 (5.88)

⇒ L ≈ 1

2
[∂µχ1∂

µχ1 + ∂µχ2∂
µχ2] +

q2a2

2
AµA

µ +
qa√

2
Aµ∂

µχ2 −
1

4
FµνF

µν +
λa2

2
χ2

1. (5.89)

Looking at this equation, we see that we have a term that is quadratic in the vector potential!
This seems to indicate that the photon has acquired a mass. However, the Aµ∂

µχ2 term presents
a confusion as it is an object we have not yet encountered. To tackle this puzzle, we first go back
and consider the local gauge transformation since that is where all this fell out of. Denoting the
gauge transformed field with a prime, we have:

φ′(~x, t) = eiΛ(~x,t)φ(~x, t) ≈ [1 + iΛ(~x, t)]φ(~x, t), (5.90)

for which plugging in the perturbative ansatz once more gives:

φ′(~x, t) ≈ (a+ χ1 − Λχ2) + i (χ2 + Λχ1 + aΛ)√
2

. (5.91)

However, since gauge transformations do not change the physical system, we must have that φ′

still lives in the circular trough of the Mexican hat potential. So we can write:

φ′(~x, t) =
a+ χ′1 + iχ′2√

2
. (5.92)

Knowing this, we can now solve the puzzle we had with that strange new term by choosing a
gauge such that χ′2 = 0, which is done by:

χ2 + Λχ1 + aΛ = 0

⇒ Λ = − χ2

χ1 + a
.

(5.93)
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With this change of gauge, we have that the Lagrangian is now:

L ≈ 1

2
[∂µχ

′
1∂
µχ′1 + ∂µχ

′
2∂
µχ′2] +

q2a2

2
(A′)µ(A′)µ − 1

4
(F ′)µν(F ′)µν +

λa2

2
(χ′1)2, (5.94)

which gives rise to a massive gauge boson from the field Aµ of mass:

µ2
A = q2a2 =

q2µ2
0

λ
, (5.95)

and a massive scalar field χ1 which is in fact the Higgs field with mass:

µ2
H = λa2. (5.96)

This process in which gauge bosons which are “supposed” to be massless pick up a mass because
there is spontaneous symmetry breaking in the scalar field (of a local gauge symmetry) is known
as the Higgs effect.

Having seen both local and global symmetry breaking, let us compare and contrast these a little
by constructing a table 5.1.

Unbroken Symmetry Broken Symmetry
Global 2 massive scalar fields 1 massive scalar field + Goldstone boson
Local 2 massive scalar fields + massless photon Higgs Effect

Table 5.1: Local vs global symmetry breaking.

§5.3.3 The Meissner Effect and Superconductivity

We are now going to look at a phenomenon that is the basis for superconductivity (the property
of a material an extremely low temperature regime such that its electrical resistance vanishes and
a magnetic flux is expelled). A means of observing superconductivity is through the exponential
suppression of electromagnetic fields inside the superconducting material. The Meissner effect is
the screening of magnetic fields in a superconductor that effectively arises from the same mecha-
nism as what we saw for gauge boson mass generation. What happens physically is that at some
critical temperature, the electron-phonon interactions in a material cause electron-electron inter-
actions to become attractive, allowing the system to lower its energy from the usual free-electron
gas state and condense (forming a fermionic condensation) via the formation of cooper-pairs (a
pair of bound fermions). Formally, we can write down a wavefunction for the superconducting
state Ψs(r) such that its norm-square gives the number density of cooper-pairs ncp(r):

|Ψs(r)|2 = ncp(r) =
ne(r)

2
(5.97)

where ne(r) is the number density of electrons in the superconducting state. The goal is then
to write down a free-energy function (portion of energy that is able to perform thermodynamic
work at constant temperature) in term of this wavefunction and its derivatives then try to derive
the equations of motion from it. Firstly, the cooper-pair state will have the intrinsic charge
and mass parameters, q∗ = 2e and m∗ ≈ 2me respectively. Because these things are charged
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and interact with the electromagnetic field, all derivatives will have to be replaced by covariant
derivatives:

~
i
∇ → ~

i
∇− q∗

c
~A. (5.98)

The free-energy for the superconductor is then written as the free-energy for a free-electron gas
F0(T0) at some temperature T0 plus other terms associated to the expelled magnetic field and
the cooper-pairs:

F (Ψs) = F0(T0) +
1

8π

∫
d3r
∥∥∥∇× ~A

∥∥∥+

∫
d3r

[
a|Ψs|2 +

b

2
|Ψs|4 + . . .

]
+

∫
d3r

∣∣∣∣ 1

2m∗

(
~
i
∇− q∗

c
~A

)
Ψs

∣∣∣∣2. (5.99)

The minimum of this free-energy function occurs when we solve for the equations of motion from
this energy function which will give us:

∇× ~B =
4π

c
~Js (5.100)

where ~Js is the superconducting current. The superconducting current comes from taking the
derivative of the free-energy with respective to the vector-potential, which gives:

~Js(~r) = i
q∗~
2m∗

[Ψ∗s∇Ψs −Ψs(∇Ψs)
∗]− (q∗)2

m∗c
|Ψs|2 ~A(~r). (5.101)

The equation of motion for the Ψs itself is also then given as: 1

2m∗

(
~
i
∇− q∗ ~A

c

)2

+ b|Ψ2|2
Ψs = −aΨs (5.102)

which is a nonlinear equation in Ψs. We see that the nonlinear term associated to the constant b
acts as repulsive assuming b > 0, which tells us that the superconducting wavefunction seemingly
wants to the spread out over the entire volume. To be consistent with equation (5.100), we require
that the magnetic field inside the superconductor is zero and as a simplification of our model,
we assert that the density of superconducting electrons in the material is uniform (derivatives of
Ψs vanish). This grants us that the difference between the free-energy of the superconducting
state and the free-electron state is given as:

∆F = Fs − F0

=

∫
d3r

[
a|Ψs|2 +

b

2
|Ψs|4 + . . .

]
≈ V

[
a|Ψs|2 +

b

2
|Ψs|4

] (5.103)

where V =
∫
d3r. Furthermore, we have that the equation of motion for the Ψs field reduces

to: [
a+ b|Ψ2|2

]
Ψs = 0, (5.104)

which grants us 2 possible regimes in a (assuming b is positive as we already did earlier).
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1. a > 0: Ψs = 0;

2. a < 0: |Ψs|2 = −a/b > 0, which will give:

∆F

V
= −a

2

2b
< 0, (5.105)

which says that the free-energy favors the forming of the superconducting state.

Now looking back at the equation for the superconducting current, we have for the uniform
density superconductor that:

~Js(~r) = − (q∗)2

m∗c
|Ψs|2 ~A(~r)

⇒ c

4π
(∇× ~B) = − (q∗)2

m∗c
|Ψs|2 ~A

⇒ ∇× (∇× ~B) = −4π(q∗)2

m∗c2
|Ψs|2

(
∇× ~A

)
⇒ ∇2 ~B =

4π(q∗)2

m∗c2
|Ψs|2 ~B

(5.106)

where we used that fact that ∇ · ~B = 0 above. This result is known as the Meissner effect
(Meissner equation). We then define a length parameter:

λL ≡

√
m∗c2

4π(q∗)2ns

⇒ ∇2 ~B =
1

λ2
L

~B

(5.107)

where ns = |Ψs|2. Solving the equation above for ~B will indeed give us that magnetic field is
“screened” and to quickly see this, we consider a 1D system:

d2B(z)

dz2
=

1

λ2
L

B(z)

⇒ B(z) = B0e
−z/λL ,

(5.108)

showing that the magnetic field dies away exponentially. This equation for ~B is the just a
Helmholtz equation that follows from the London equation (will be discussed further down), for
which λL is known as the London penetration depth. Earlier, we mentioned that this mechanism
is equivalent to that for photon mass generation. This can be seen by considering the Green’s
function solution to the Klein-Gordon equation used when we studied the Higgs effect:(

∂2

∂t2
−∇2 −m2

)
G(t, ~r; t′, ~r′) = δ(t− t′)δ3(~r − ~r′). (5.109)

Considering just the static behavior, the above expression simplifies to:(
∇2 +m2

)
G(~r;~r′) = −δ3(~r − ~r′) (5.110)

⇒ G(~r, ~r′) ∼ e−m‖~r−~r
′‖

‖~r − ~r′‖
, (5.111)
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which we see it matches up exactly to the solution for the screened magnetic field! Going back
to superconductivity, what does it mean to have no resistance (infinite conductivity)? We know
for an ordinary conductor, we have:

~J = σ ~E = en~v (5.112)

where e is the electronic charge and n is the electron number density. In a superconductor how-
ever, it experimentally turns out that Ohm’s law becomes a ballistic transport equation:

m∗
d~v

dt
= q∗ ~E

⇒ d

dt
~Js =

ns(q
∗)2

m∗
~E

(5.113)

known as the London equation that governs superconductivity. If we now go back to the Meissner
equation, we can in fact see that:

~Js(~r) = − (q∗)2

m∗c
|Ψs|2 ~A(~r)

⇒ ∇× ~Js = − (q∗)2

m∗c
|Ψs|2

(
∇× ~A

)
= − (q∗)2

m∗c
|Ψs|2 ~B,

(5.114)

and from Maxwell’s equations:

∇× ~E = −1

c

∂ ~B

∂t

⇒ ∇× ~E = −1

c

∂

∂t

[
− m∗c

(q∗)2|Ψs|2
(
∇× ~Js

)]

⇒ ~E =
m∗

(q∗)2ns

∂ ~Js
∂t

,

(5.115)

bringing us back to the London equation. So we see that the London equation and thus su-
perconductivity, falls out of the Meissner effect, implying that superconductivity is a result of
photons picking up a mass.



Chapter 6

Relativistic Particle Dynamics

Up to now, we have gotten away with dealing with relativistic electromagnetism without ever
touching on the Lorentz force law. To have a complete theory of electrodynamics however, we
need to know how this fits into the relativistic formalism we have been working with. Thus far,
we have seen electromagnetism fall out of the Lagrangian formalism in which symmetries are
encoded. One of these symmetries is translation invariance, and is what will lead us to forces in
relativistic electrodynamics.

§6.1 The Stress-Energy Tensor

To start off, we consider an infinitesimal translation and see what this leads us to.

xµ
′

= xµ + εµ

⇒ δL =
∂L
∂xµ

εµ = εµ∂
µL.

(6.1)

However, we also know that:

δL =
∑
j

∂L
∂φi

δφj +
∂L

∂ (∂µφi)
δ (∂µφi)

⇒ εµ∂
µL = ∂µ

∑
j

∂L
∂ (∂µφi)

εν∂
νφj

 . (6.2)

Noting that the contracted index of the variation in coordinates by εµ is arbitrary, we can now
define the conserved quantity:

Tµν ≡ −gµνL+
∂L

∂ (∂µφi)
∂νφj (6.3)

known as the stress-energy tensor (a.k.a. energy-momentum tensor). We can see that this is
a symmetric tensor. To get an understanding of what this is, we look at an explicit exam-
ple.

71
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§6.1.1 Understanding the Stress-Energy Tensor

Consider a finite box of N particles with a rest-number density n0 = N/V ∗. If we go into a
frame where the box is moving with velocity v, the number of particles in invariant but lengths
of the box will be contracted so we have:

n0 → n = γn0. (6.4)

We can then construct a Noether current associated to the number of particle which we call the
number current density :

Nµ = nvµ, (6.5)

where vµ is the 4-velocity, so we see that Nµ is conserved, ∂µN
µ = 0. Now further consider

the flow of particle through some differential area dA of the box. Then the number of particles
exiting the box through this area in a differential time interval dt would be:

dN

dt
= ~N · n̂dA, (6.6)

where n̂ is the normal vector to dA. This is also known as the number-flux of particles through
dA. Before proceeding, we note that a density is a scalar quantity associated with a 3-volume.
Defining a 3-volume in 4-space requires us to define a vector of volumetric orientation nα, which
allows us to say that the number of particles in a 3-volume ∆V is given by:

∆n = Nαnα∆V. (6.7)

With this, we can now turn our attention to the momentum of the particles in this volume. To
do so, we in fact need something with 2-indices Tµν (with the right units), since we need to
contract one of those indices with the orientation vector associated to the 3-volume and get a
1-index momentum object:

∆pµ = Tµνnν∆V. (6.8)

To see what Tµν would constitute of, we consider the case of the box at rest. The intuition we
gain from this will then generalize to all inertial reference frames. IN the rest-fram of the box,
we just have that nµ = (1, 0, 0, 0), which gives us that:

∆pµ = Tµ0∆V (6.9)

⇒ T 00 = E , T i0 = Πi (6.10)

where E is an energy-density and Πi ≡ ∆pi/∆V a momentum-density. Furthermore, we also
have:

T i1 =
∆pi/∆t

∆y∆z
=

force

area
(6.11)

which tells us that the spatial part of this tensor T is a pressure-like quantity, while:

T 01 =
∆p0/∆t

∆y∆z
=

power

area
, (6.12)
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telling us that the temporal part of T is an energy-flux like quantity. So we see that all com-
ponents of the stress-energy tensor would have well-defined physical quantities in all reference
frames. Harkening back to Noether’s theorem, it works out that by construction, integrals of T
are conserved quantities. The one in particular we are most concerned with would be:

P 0 =

∫
d3xT 00 =

∫
d3x

∑
j

Πj φ̇j − L

 = total energy. (6.13)

At this point, it would be instructive to write the stress-energy tensor explicitly for actual physical
systems. We will look at 2 in particular.

1. Dust:

This is in fact the system we have already seen above, which is defined to be a system of
non-interacting particles. As we saw above, within the rest-frame, the dust stress-energy
tensor just has one non-trivial element:

T 00 = ρE (6.14)

where ρE is the energy density. Generalizing this to any inertial reference frame is given
by:

Tµν = ρEu
µuν , (6.15)

where uµ is the 4-velocity.

2. Perfect Fluid:

A perfect fluid is system that only requires 2 quantities to characterize it. These are the
pressure P and energy density ρ. In its rest-frame, we have:

Tµν =


ρE 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (6.16)

whereas in a generic inertial frame, we have:

Tµν = (ρE + P )uµuν + Pgµν (6.17)

This is all well and good, but let’s remember that this is a class on electrodynamics, so we
can ask how this in fact comes into play for electrodynamic systems. In electrodynamics, the
stress-energy tensor for the Lagrangian in free-space (no currents Jµ) is given by:

L = − 1

16π
Fµ0Fµ0. (6.18)

So using equation (6.3), the stress-energy tensor works out to be:

Tµν = −gµνL − 1

4
gµαFαβ∂

νAβ . (6.19)
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This can be massaged into something gauge invariant (by dropping terms that do not lead to
energy-momentum conservation):

Θµν =
1

4π

[
gµαFαβF

βν +
1

4
gµνFαβF

αβ

]
, (6.20)

such that ∂µΘµν = 0 with components:

Θ00 =
1

8π

[
E2 +B2

]
≡ uE (6.21)

Θ0i = Θi0 =
1

4π

(
~E × ~B

)
i
≡ c~g (6.22)

Θij = − 1

4π

[
EiEj +BiBj −

1

2
δij
(
E2 +B2

)]
= −T ij . (6.23)

We see that the Θ00 entry resembles an energy density while the Θ0i entries a Poynting-vector
(energy-flux) like quantity. Altogether, we can write this as:

Θµν =

[
uE c~g
c~g −T ij

]
. (6.24)

If we now want to re-introduce currents (go from free-space to a charge-rich environment), we
can do some algebra to get:

∂µΘµν = −1

c
FαβJβ . (6.25)

More details of this is given in Jackson section 12.10. Recall that at the start of the section,
our motivation was to look for an object in 4-space that encapsulates the Lorentz force law.
Well, the object we have just constructed, Θµν is indeed that object where the time-like compo-
nents produce energy conservation and space-like components the Lorentz force law (in terms of
densities):

[
∂αΘαβ

]
β=0

:
∂uE
∂t

+∇ · ~S = − ~J · ~E (6.26)[
∂αΘαβ

]
β=i

:
∂gi
∂t
− ∂jTij = −

[
ρEEi +

1

c

(
~J × ~B

)
i

]
. (6.27)

§6.2 Point Particles in External Fields

Knowing how forces fit into the relativistic picture of electrodynamics, we can now look at the
motion of charged, relativistic particles in external electric and magnetic fields. To start off, we
consider a static and uniform magnetic field which is pretty much the simplest example we can
do.
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§6.2.1 Particles in Uniform Magnetic Fields

Since there is no electric field, we have that the energy is conserved (magnetic fields do not do
work on charged particles):

dE

dt
= 0 (6.28)

⇒ |v| = constant (6.29)

⇒ γ = constant. (6.30)

A quantity of interest retrieved from these constants of motion is known as the cyclotron frequency
defined as:

~ωB ≡
q

γmc
~B , (6.31)

where q is the charge of the particle (this may sometimes be swapped out with e, denoting the
electronic charge). This frequency will grants us a rate of change of the velocity of the charged
particle in this uniform magnetic field, starting with the Lorentz force law:

d

dt
~p =

q

c

(
~v× ~B

)
⇒ d~v

dt
= ~v× ~ωB .

(6.32)

If we now take that ~ωB = ωB ẑ, which gives us that:

~v(t) = ẑvz + ωBr0 (x̂− iŷ) e−iωBt

⇒ ~r(t) = ~R+ vztẑ + ir0 (x̂− iŷ) e−iωBt

and
d~v

dt
= −iω2

Br0 (x̂− iŷ) e−iωBt,

(6.33)

where ~R is a constant vector and r0 is known as the gyration radius set by initial conditions.
Of course, the actual physical quantity would be the real part of what we got above so we
have:

d~v

dt
= x̂r0 sin(ωBt) + ŷr0 cos(ωBt) (6.34)

which tells us that the motion of the positively charged particle in a uniform magnetic field would
move in a circle of radius r0. Not too surprising!

Note: If we track the direction of circular motion, we see that this has a minus sign with
respect to the right-hand rule. So, we get the right-hand rule for electrons (with negative
charge) and the opposite for positively charged particles.

We can also consider if we initiate the particle motion with a tilt angle α from the x, y-plane
such that it then follows a helix around the z-axis. In this scenario, we have now have transverse
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and axial components of the momentum. Often times, r0 here is known as the bend radius which
can directly give us the transverse component of the momentum p⊥ as follows:

p⊥ = γmv⊥ = γmωBr0 =
eBr0

c

⇒ cp⊥ = eBr0 .
(6.35)

That is, knowing the bend radius and strength of the magnetic field immediately allows us to
compute the transverse momentum of the particle.

§6.2.2 Particles in Cross-Fields

Another interesting set-up of uniform fields is uniform ~E and ~B fields that are orthogonal to each
other ( ~E · ~B = 0). In this scenario, there is a non-trivial electric field so energy is not constant

in time. However, we note that we can always boost to a frame where either ~E or ~B vanishes.
To derive this boost, we consider:

~E ′ = γ
(
~E + ~β × ~B

)
− γ2

γ + 1
~β
(
~β · ~E

)
(6.36)

~B ′ = γ
(
~B − ~β × ~E

)
− γ2

γ + 1
~β
(
~β · ~B

)
. (6.37)

There are a few conditions that have to be met if we want to kill off anyone of the fields in this
primed frame. Let’s consider the 2 cases separately.

1. ~E ′ = 0:

This can only be achieved if |E| < |B|, for which it works out (with some algebra) that
this is acheived by setting the moving frame-velocity to:

~u ′

c
=

~B × ~E

B2
(6.38)

⇒


~E ′ = 0;

~B ′ = γ ~B

[
1−

∣∣∣∣EB
∣∣∣∣2
]

=
~B

γ
.

(6.39)

In the primed frame, the motion of the particle would thus just be a circle. However in
the unprimed frame, the motion of the particle becomes a cycloid along the direction of
~E × ~B. This is commonly referred to as “ ~E × ~B drift”.

2. ~B ′ = 0:

This can only be achieved if |B| < |E|, and is achieved by setting:

~u ′

c
=

~E × ~B

|E|2
(6.40)

⇒


~B ′ = 0;

~E ′‖ = 0, ~E ′⊥ =
~E

γ
.

(6.41)
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In this frame, only an electric field is present in the direction transverse to the particles
initial velocity. This results in the particle moving in a hyperbolic trajectory with ever
increasing velocity.

This is also found in Jackson section 12.3, with some elaboration on the use of cross-fields to
construct a velocity selector.

Thus, far We have seen particle motion in uniform and static fields. What happens when fields
are non-uniform? One way to treat this is via approximation schemes as we will do in the
proceeding sections.

§6.2.3 Approximate Methods for Particle Dynamics

The first non-uniform field system we are going to consider is a non-uniform but static magnetic
field. The first thing to do here is a Taylor expansion of the magnetic field around some position
in which the magnetic field looks locally uniform:

~B(~x) = ~B(~x0) + δ~x ·∇ ~B(~x0) + . . . . (6.42)

We also assume that all inhomogeneous variations in B are transverse to Bz, so we can treat
the motion as roughly circular about the field lines (i.e. magnetic field is approximately uniform
along z with some “wiggles” in the transverse directions). Defining then that ∇⊥Bz points in

the direction n̂ (such that n̂ · ~B = 0) and a coordinate ξ being the radius away from the z-axis,
we then have:

∇⊥Bz =
∂B

∂ξ
n̂. (6.43)

This allows us to write a coordinate dependent cyclotron frequency as:

~ωB(~x) = ~ω0

[
1 +

1

B0

∂B

∂ξ

∣∣∣∣
0

n̂ · ~x
]

(6.44)

where ω0 is the cyclotron frequency that would arise from a uniform field B0. This is also saying
that the deviation from a uniform magnetic field we are considering is some gradient in the
transverse direction. Taking that the deviation from this uniform field cyclotron frequency is
small, we define:

δ ≡ 1

B0

∂B

∂ξ

∣∣∣∣
0

n̂ · ~x

⇒ ~ωB(~x) = ~ω0 [1 + δ] .

(6.45)

Then taking that we can also expand ~v⊥ = ~v0 + ~v1 + . . . (expansion terms for velocities away
from ~v0 which is the velocity that would be due to a uniform magnetic field), we get:

d~v⊥
dt

= [~v0 + ~v1]× ~ωB

≈ ~v0 × ~ω0 + (~v0δ + ~v1)× ~ω0,
(6.46)
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where we dropped the δ~v1 term. Now considering the terms separately, we get that the zeroth-
order term grants us:

~x0(t) = ~χ+
~v0 × ~ω0

ω2
0

(6.47)

which is just the circular motion we had from a uniform magnetic field with ~χ being a constant.
To isolate what is happening with the inhomogeneity, we take a time-average. Firstly, we note
that the time-average of periodic circular motion is zero, so the zeroth order motion falls away
and we are left with: 〈

d~v⊥
dt

〉
= 〈~v0 + δ~v1〉× ~ωB = 0

⇒ 〈~v⊥〉 =
1

B0

∂B

∂ξ

∣∣∣∣
0

〈(n̂ · ~x0)(~ω0 × ~x0)〉

⇒ ~v1 =
1

B0

∂B

∂ξ

∣∣∣∣
0

a2

2
(ω̂0 × n̂),

(6.48)

where a is the peak amplitude of ~x0 and we have now defined ωB = eB0/(2mc). In summary,
we get:

~v1 =
ω2
Ba

2

2B0

(
~B ×∇⊥B

)
. (6.49)

This tells us that for a magnetic field that is close to uniform but with a slight inhomogene-
ity, we get cyclotron motion around the magnetic field but with an added component in the
radial direction which plasma physicist refer to as radiant drift. Let’s now consider a specific
example.

Example:

Consider an approximately uniform linear external field ~B0 but with a slight curvature of
the field lines (taken to be the arc of some large circle of radius R). As the particle moves
through the field, it is going to experience some form of centrifugal acceleration given by
v2
‖/R, which gives us the electric field:

~E =
~F

q
=
γmv2

‖

q

~R

R2
. (6.50)

This results in a sort of ~E × ~B drift velocity known as curvature field velocity :

~vc
c

=
v2
‖

ωBR

(
~R× ~B0

RB0

)
. (6.51)

More information on this is given in Jackson section 12.4.
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§6.2.4 Adiabatic Invariants

Thus far, we have been dealing with inhomogeneities in external fields by asserting that they
are static. What we will now look at is if these fields were to be time-varying. The first type of
time-dependence we consider is if the field vary extremely slowly in time (i.e. adiabatically). In
such contexts, the use of a quantity known as the adiabatic invariant is very handy.

Consider working with the Hamiltonian formalism of an electromagnetic system such that we
have conjugate variables q and p that undergo periodic motion. In Hamilton-Jacobi theory, we
can define an “action” (not the actual action from Lagrangian mechanics) quantity:

J ≡
∮
pdq , (6.52)

which is in fact a constant of motion of mechanical systems even if we take our system and change
its parameters, given that this change occurs adiabatically. This is the adiabatic invariant. The
invariance of this quantity is best understood by considering a simple example. Let’s take this
guy and apply it to a system where we are increasing the strength of a uniform magnetic field
with a charged particle moving through it. We are going to pick the closed integral to traverse
over one cycle of the circular trajectory S of radius a and we recall that we have:

~p = γm~v +
e ~A

c

⇒ J =

∮
S

[
γm~v +

e ~A

c

]
· d~l

= 2πγmωBa
2 − e

c
ΦB

= γmωBπa
2,

(6.53)

where ΦB = Bπa2 is the magnetic flux through the area of the loop S for which we applied
Stoke’s theorem to achieve this result. Because this is invariant, there are several invariants we
can consider from this result such as the flux of the orbit Ba2, or the orbital magnetic moment
µ = eωBa

2/(2c), or the the transverse momentum squared over the field p2
⊥/B = (γmωBa)2/B.

The invariance of the orbital flux Ba2, tells us that a particle would have an orbit that decreases
in radius as B increases over time. However, v2 = v2

⊥+v2
‖ would remain constant since a magnetic

field does not do work and we have energy conservation. So along with the invariant p2
⊥/B, we

get:

v2
⊥(z)

B(z)
= constant . (6.54)

This implies that if we adiabatically increase the strength of a magnetic field (B → ∞), we
magnetically confine a charged particle (~v⊥ → 0) along the z-direction. This is analogous to
modifying the potential such that the particle would bounce off a potential barrier given that the
magnetic field is sufficiently large by the end of the adiabatic process (More details in Jackson
12.5).
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§6.3 Relativistic Radiation of Moving Charges

We are now going to be looking at radiation that is emitted by accelerated, relativistic charged
particle. This phenomenon was used by Bohr to argue that the motion of electrons around a
nucleus had to be quantized, otherwise they would radiate in circular motion and spiral inward,
causing the atom to collapse. To approach this topic we start from the covariant formulation of
Maxwell’s equations in the presence of external sources:

∂µF
µν =

4π

c
Jν(x). (6.55)

Using the definition of the Faraday tensor in terms of 4-potentials and working in the Lorenz
gauge (∂µA

µ = 0), get:

�Aν =
4π

c
Jν(x), (6.56)

where � is once again the d’Alembert operator (4-Laplacian). This is essentially a 4-space version
of the wave equation, for which solutions can be found through the use of Green’s functions, giving
us:

Aµ(x) =
4π

c

∫
d4x′D(x− x′)Jµ(x′). (6.57)

where D(x − x′) is known as the retarded/causal Green’s function because it ensures that the
observation time x0 is always after the source emission time x0′

. To solve this expression, we
need to know what the retarded Green’s function and the currents are. To start with, we know
the Green’s function in the Lorenz gauge (as derived in Jackson 12.11) is written as:

D(x− x′) =
Θ(t− t′)

4πR
δ(t− t′ −R/c) (6.58)

where ~R = ~x− ~x ′. We are now going to define z0 ≡ t− t′ such that zµ = (z0, ~R), for which can
then do a change of variable within the δ-function using its properties to get:

δ(zµz
µ) = δ(z2

0 −R2)

=
δ(z0 −R) + δ(z0 +R)

2R

⇒ D(x− x′) = Θ(z0)
δ(zµz

µ)

2π
.

(6.59)

We can then also define ηµ = (1, 0, 0, 0) which allows us to write:

D(x− x′) = Θ(zµη
µ)
δ(zµz

µ)

2π
, (6.60)

which is intuitively a completely covariant object. Since we are dealing with point charges moving
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in external fields, we take the charge density as:

ρ(x) = qδ3(~x− ~w(t))

= q

∫
dt′δ(t− t′)δ3(~x− ~w(t′))

=
q

c

∫
dt′δ4(x− w(τ))

=
q

c

∫
dτcγ(t)δ4(x− w(τ)),

(6.61)

where w denotes the coordinates of the charge. From this, we can get the current:

Jµ(x) = qc

∫
dτuµ(τ)δ4(x− w(τ)), (6.62)

and plug this back into the 4-vector potential to get:

Aµ(x) = 2q

∫
dτuµ(τ)Θ(x0 − w0(τ))δ [(x− w(τ))µ(x− w(τ))µ] . (6.63)

This formula tells us that given some radiative phenomenon occurring at some earlier time, it
would reach us, the observer at some later time. Evaluating the δ-function in the integral, We
can simplify the 4-potential to:

Aµ(x) =
quµ(τ)

(x− w(τ))µ u
µ(τ)

∣∣∣∣∣
τ=τ0

. (6.64)

This is known as the Lienard-Wiechart potential. Explicitly, we can write the retarded 4-potential
entries as:

Φ(~r, t) =
q

(1− ~β · n̂)R
, ~A(~r, t) =

q~β

(1− ~β · n̂)R
, (6.65)

where n̂ is a unit vector in the direction of ~x− ~w(τ) and ~β = ~v(τ)/c. More details are found in
Jackson 14.1.

§6.3.1 The Relativistic Larmor’s Formula

We are now going to look at the relativistic extension of a classical expression for radiation of an
accelerating charge. This is the Larmor formula and is used to calculate the total power radiated
from accelerated non-relativistic charges:

P =
2

3

q2a2

c3
, (6.66)
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where q is the charge and a is the proper acceleration. To derive this, we use the Lienard-Wiechart
potential derived in the previous section (equation 6.64) and take the limit where v � c to get
the gradient of the scalar potential:

−∇Φ =
q

rc

(
n̂ · ~̇β

)
n̂, (6.67)

and the time-derivative of the magnetic vector potential (using the multipole expansion and only
keeping the dipole term):

~A =
1

r
~̇p(t0)

⇒ 1

c

∂ ~A

∂t
=

1

rc
~̈p(t0).

(6.68)

Putting these together, we get:

~E = −∇Φ− 1

c

∂ ~A

∂t

⇒ ~E =
q

cr

[
n̂
(
n̂ · ~̇β

)
− ~̇β

]
=

q

rc

[
n̂×

(
n̂× ~̇β

)]
.

(6.69)

This results in fact looks rather similar to the radiation from a classical electric dipole which
takes the form:

~Erad = −k
2eikr

r

[
n̂×

(
n̂× ~̇β

)]
. (6.70)

So it turns out that these 2 systems will in fact have very similar antenna patterns, except for
the following. In the case of a moving accelerating charge in an external field, the radiated
field computed in equation (6.69) is associated to an instantaneous energy flux, implying ~E and
~B are fully real. On the other hand, the dipole radiation in equation (6.70) occurs due to a
complex eiωt time-dependence which we later take the time-average of. So we see that when
we compute the angular power distribution from the Lienard-Wiechart potentials, the moving
charge produces:

dP

dΩ
= R2n̂ · ~S

⇒ dP

dΩ
=

q2

4πc

[
n̂×

(
n̂× ~̇β

)]2
,

(6.71)

where the angular power distribution now can be an explicit function of time, unlike how we
were doing these time-averages before. In the simple case where we have linear motion of the

charged particle with acceleration ~a = c~̇β and R̂ · â = cos θ, we get:

dP

dΩ
=
q2a2

4πc
sin2 θ (6.72)

⇒ P =
2

3

q2a2

c3
(6.73)
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which is indeed Larmor formula for power radiated. Now what about relativity? Well we can
generalize the result above to account for relativity by first rewriting the power from the Larmor
formula as:

P =
2q2

3m2c3

(
d~p

dt
· d~p
dt

)
, (6.74)

where ~p above is the momentum (not dipole moment). So to generalize this to relativity, we
instead write the momenta as 4-momenta:

P = − 2q2

3m2c3

(
dpµ

dτ

dpµ
dτ

)
. (6.75)

Recall that the 4-acceleration is defined as aµ = duµ/dτ , which works out explicitly to be:

aµ = cγ2

 γ2
(
~β · ~̇β

)
~̇β + γ2~β

(
~β · ~̇β

) . (6.76)

Plugging this into the genrealized Larmor formula gives:

P =
2

3

q2

c
γ4

[
β̇2 + γ2

(
~β · ~̇β

)2
]

=
2

3

q2

c
γ4

[
(1 + γ2β2)β̇2 − γ2

(
~β × ~̇β

)2
]

⇒ P =
2

3

q2

c
γ6

[
~̇β2 −

(
~β × ~̇β

)2
]
.

(6.77)

It turns that that this was already derived in 1898 by Lienard before the theory of relativity!
What is interesting about this, is that there is a factor of γ to the sixth power, so it is thoroughly
affected by relativistic effects. To see this in application, we consider 2 examples, the first being
an example where relativistic radiation is negligible, while the second the converse.

1. Linear Accelerated Motion:

Let’s consider we have some particle accelerating along its initial direction of motion. This
causes the cross-product term to vanish in the power formula, leaving us with:

P =
2

3

q2

c
γ6 ~̇β2. (6.78)

If we go back to the original generalization of the radiated power, we also note that we can
recast the expression into the following:

P = − 2q2

3m2c3

(
dpµ

dτ

dpµ
dτ

)
= − 2q2

3m2c3
γ2

[
1

c2

(
dE

dτ

)2

−
(
d~p

dτ

)2
]

=
2q2

3m2c3

(
d~p

dt

)2

=
2q2

3m2c3

(
∂E

∂x

)2

.

(6.79)
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Let’s then compare this to the input power, which we take as Pin = (∂E/∂x)v. So we
have:

Prad
Pin

=
2q2

3m2c3
1

v

∂E

∂x
. (6.80)

This number turns out to be extremely small, so the power loss from radiation from a
linear accelerating charge is negligible.

2. Circular Motion:

For circular motion, we consider the regime whereby in each orbit, the charge is accelerated
such that the change in energy is small but the change in linear momentum is large. In
this case, we have: ∣∣∣∣d~pdτ

∣∣∣∣ = γ

∣∣∣∣d~pdt
∣∣∣∣ ≈ γωp, (6.81)

if we take p ∼ eiωt. Plugging this back into the radiated power formula gives us:

P =
2

3

q2

m2c3
γ2ω2p2. (6.82)

Then taking p = γmωr0 where r0 is the gyration/bend radius and ω = cβ/r0, we have:

P =
2

3

q2

c

(γβ)4

r2
0

. (6.83)

Let’s now ask, how much energy so we have to put in to compensate for the radiation loss
so as to keep the particle in the same orbit? Well, for this we consider:

δErad = PT, (6.84)

where T = 2π/ω. Plugging all the quantities in gives:

δErad =
4π

3

q2

r0
β3γ4 . (6.85)

This is typically a significant number especially compared to the radiative losses from linear
accelerating charges!

Remark: These losses caused technological issues for particle physicists back in the
90s when they were trying to maintain the particle orbits in LEP (large electron-
positron collider).

The down side of the Larmor formula, is that it doesn’t give us the antenna pattern and frequency
distribution of the radiation. To get these quantities, we pretty much need to go back to the
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drawing board and rederive these things in the relativistic picture (Jackson 14.3). From the
retarded Green’s function, we can derive the radiated electric field as:

~E =
q

c

 n̂×
[(
n̂− ~β

)
× ~̇β

]
R(1− ~β · n̂)3


ret

, (6.86)

where we recall that R is the distance between the observer and the retarded position. If we just
take this to compute dP/dΩ via the relation:

dP

dΩ
= R(τ0)2n̂ · ~S, (6.87)

this observed energy flux will not be the same as the rate of energy emitted by the particle! This
is due to the retardation of the radiation observed compared to that emitted by the particle for
a given time interval. It works out that if we define the power radiated as that observed in the
charge’s rest frame, this becomes:

dP

dΩ
= R2(t)n̂ · ~S dtobs

dtr
, (6.88)

where tobs = tr +R/c (derivation in Jackson 14.3). Computing this Jacobian term gives:

dtobs
dtr

=
d

dt

[
tr +

R

c

]
= 1 +

1

2Rc

d

dt
[~x− ~w(t)]

2

= 1− ~v

c
·
~R(t)

R

= 1− ~β · n̂.

(6.89)

Plugging this into the angular power distribution gives:

dP

dΩ
=

q2

4πc

[
n̂×

[(
n̂− ~β

)
× ~̇β

]]2
(

1− ~β · n̂
)5 . (6.90)

Great, now we have an angular power distribution per unit solid angle which we sought to find.
Let’s consider this in 2 specific cases.

1. Linear Motion:

The first and simplest case is when the direction of ~β and ~̇β are colinear, i.e. the particle
undergoes linear acceleration. In this scenario, the angular radiated power distribution is
given by:

dP

dΩ
=
q2a2

4πc3
sin2 θ

(1− β cos θ)5
, (6.91)
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where θ is the angle between the axis of ~β or ~̇β and the observer, and a is the proper
acceleration. This is very similar to the angular distribution from a linear nonrelativistic
dipole, but modified by the factor in the denominator. In the highly relativistic limit, the
angle θ becomes small due to the deformation of the antenna pattern. This grants the
approximation:

dP

dΩ
≈ q2a2

4πc3
γ8(γθ)2

(1 + γ2θ2)5
, (6.92)

which tells us we get a lot more radiation if we are observing along the direction of the
charge. This can be seen from a plot of the angular radiated power distribution, comparing
relativistic and non-relativistic particles experiencing linear acceleration as shown in figure
6.1 below.

Figure 6.1: dP/dΩ for relativistic and non-relativistic linear acceleration.

Circular Motion:

The other case we can consider is when the directions of ~β and ~̇β are orthogonal. This
constitutes circular motion, where acceleration is directed to the center of the circular path.
If we consider an instantaneous slice of time and define our coordinate frame such that ~β

lies along ẑ and ~̇β lies along x̂, we get:

dP

dΩ
=

q2a2

4πc3(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
, (6.93)

for which in the highly relativistic limit (γ � 1), we get:

dP

dΩ
≈ 2e2a2

πc3
γ6

(1 + γ2θ2)3

[
1− 4γ2θ2 cos2 φ

(1 + γ2θ2)2

]
. (6.94)

This once again implies that we get peak power at forward angles, similar to the in the
linear motion case.

More details on these derivations can be found in Jackson section 14.4.

§6.3.2 Frequency Distribution of Radiation

More notes to be added soon (reference: Jackson section 14.5).
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d2I

dωdΩ
=

e2

4π2c

∣∣∣∣∣∣∣
∫ ∞
−∞

n̂×
[(
n̂− ~β

)
× ~̇β

]
(

1− ~β · n̂
)2 exp

(
iω

[
t− n̂ · ~w(t)

c

])
dt

∣∣∣∣∣∣∣
2

(6.95)

§6.3.3 Bremsstrahlung Radiation

Bremsstrahlung is the German word for “breaking radiation” and pertains to the following. If
we have a collision of 2 charged particles, the collision causes a deceleration of the particles
and in turn, also radiation. In most situations, we have a low-mass particle colliding with a
highly massive particle. In such scenarios, the low-mass particle would experience most of the
acceleration, so radiation from this process is mostly due to the low-mass particle. Furthermore,
we assume that the collision occurs within the time interval [0, τ ], and the frequency ω is small
but ωτ � 1.

This results in the energy radiated per unit solid angle for unit frequency interval:

d2I(ε̂)

dωdΩ
=

e2

4π2c

∣∣∣∣∣ ε̂∗ · ~βf
1− ~βf · n̂

− ε̂∗ · ~βi
1− ~βi · n̂

∣∣∣∣∣
2

. (6.96)

Amazingly, even though this is a classical result, the quantum mechanical process of photon
emission from a collision process reduces to this result if ~ω � any other energy scale of the
system.

More notes to be added soon (classical Bremsstrahlung, infrared divergence. reference: Jackson
chapter 15).

For relativistic Bremsstrahlung radiation, there is a long way and a short way to do this. The
long way is by through considering a Lorentz boost and churning through all the math. A faster
way is to think about the system in its kinematic picture. Before we get into this, we first note
several useful facts.

1. Quanta of photons can be counted and leads to the relation dI(ω) = ~ω dN(ω).

2. The differential segment of the wave-vector is invariant, and can be rewritten as:

d3k

2k0
= d3kdk0δ(k

2 − k2
0) = d4kδ(kµk

µ), (6.97)

where k0 is the zeroth component of the 4-momentum. This leads to the following invari-
ants:

dN

d3k/k0
∝ dN

ωdωdΩγ
∝ d2I

ω2dωdΩγ

⇒ d2I

dωdΩγ
=
( ω
ω′

)2 d2I ′

dω′dΩ′γ
.

(6.98)

This tells us that energies radiated per unit solid angle/frequency are related in differ-
ent relativistic frames by relativistic Doppler shifts. Geometrically, we can work out the
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Doppler shift as:

ω

ω′
=

1

γ(1− β cos θ)
. (6.99)



Chapter 7

Quantum Electrodynamics

So far, we have been studying much about classical electrodynamics, however the world is funda-
mentally quantum mechanical, so it is appropriate to end the course drifting away from classical
mechanics and asking how quantum mechanics interacts with classical E&M fields? That is we
ask, what is the photon? What is normally done in introductory quantum mechanics is known as
semiclassical radiation theory, where matter is treated as quantum mechanical while the electro-
magetic field is treated classically. A more comprehensive and accurate theory is one that quan-
tizes the electromagnetic field itself. This is known as quantum electrodynamics (QED). We

will see that to do this, working in the Coulomb gauge (∇ · ~A = 0) is most convenient.

§7.1 Quantization

In classical mechanics, we start with a Lagrangian L(q, q̇), with conjugate variables {q, q̇}, for
which we derive equations of motion via the Euler-Lagrange equations. Furthermore, we can
derive a Hamiltonian from the Lagrangian formalism:

H =
∑
k

pkqk − L (7.1)

where pk = ∂L/∂q̇k. What we do now to quantize such a system is by promoting the conjugate
variables to quantum operators, such that their Poisson bracket relations are now commutator
relations:

[q̂k, p̂l] = i~δk,l. (7.2)

This procedure can also be done for the electromagnetic field, where we are now working with
a field, so we replace the Lagrangian with a Lagrangian density as in classical field theory. The
Lagrangian density we recall, is:

L(Aµ,∂µAµ) = − 1

16π
FµνF

µν =
1

8π
(E2 −B2). (7.3)

89
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We can immediately see that the canonical coordinate variable would be Aµ, but what is the
canonical momentum? Well, we can try (as motivated from Hamiltonian mechanics):

Πk =
∂L
∂Ȧk

= − 1

8π

[
∂Ak
∂x0

− ∂A0

∂xk

]
=
Ek
4π
, (7.4)

where k = 1, 2, 3. As for the zeroth component, it turns out that there is no momentum conjugate
toA0. So we have thatA0 = Φ is not a dynamical variable! As such, we get a Hamiltonian:

H =

3∑
k=1

ΠkȦk − L =
1

8π

[
E2 +

(
∇× ~A

)2
]
. (7.5)

Now we stop and think. In free-space, we have that ∇ · ~E = 0, which implies that the 3-
components of the electric field which is a dynamical variable, are not independent (only 2 of
them are). Counting degrees of freedom then becomes a mess. To avoid getting confused here,

let’s make a gauge choice such that the number of degrees of freedom in ~A is the same as those
in ~E. This is of course, the Coulomb gauge which asserts ∇ · ~A = 0. We note again that Φ does
not participate in any of this story (i.e. Φ has nothing to do with photons), so we only work
with 4 dynamical variables (2 A’s and 2 E’s).

§7.2 Semiclassical Radiation Theory

In semiclassical radiation theory, as mentioned, is where we treat the electromagnetic fields as
classical while everything else is quantum. As such, we take the vector potential as a classical
plane wave:

~A(~x, t) = Cε̂
[
ei(
~k·~x−ωt) + e−i(

~k·~x−ωt)
]
. (7.6)

We then plug this guy into the Hamiltonian for a charged particle in an electric field, giving
us:

H =
1

2m

[
~p− e

~A

c

]2

+ V (~x). (7.7)

What we’ll do now is expand and collect terms:

H =
p2

2m
+ V (~x)− e

mc
~A · ~p+

e2A2

2mc2

= H0 +H1 +H3

where H0 ≡
p2

2m
+ V (~x)

H1 ≡ −
e

mc
~A · ~p

H2 ≡
e2A2

2mc2
.

(7.8)
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From this, we can promote ~A and ~p to operators (noting that they commute), and look for
radiation via computing transition probabilities using Fermi’s golden rule. To apply the golden
rule, we need to treat H1 as a harmonic perturbation:

Ĥ1 = − e

mc
C
[
ei(
~k·~x−ωt) + e−i(

~k·~x−ωt)
]
ε̂ · ~̂p, (7.9)

and drop the H2 term. This gives us:

dΓi→f =
2π

~

∣∣∣〈f | Ĥ1 |i〉
∣∣∣2δ(Ef − Ei ± ~ω)

[
V d3k

(2π)3

]
, (7.10)

The term in square-brackets above is the phase-space factor to count classical modes in a volume
V . We now need to get into some details. First of, what is the factor C that normalizes the
vector potential. There are (at least) 2 choices (which turn out to be related in the end but
not in the semiclassical approximation). These 2 choices depend on the process we are studying.
These processes can be:

1. absorption or stimulated emission which gives us a transition rate that is proportional to
the intensity of the radiation source. In this case, we can define an intensity within some
frequency interval:

I(ω)dω =
1

8π
(E2 +B2)dω

=
1

8π

 1

c2

∣∣∣∣∣∂ ~A∂t
∣∣∣∣∣
2

+ (∇× ~A)2

 dω
=

1

2π
|C|2 sin2(~k · ~x− ωt)

[
ω2

c2
+ (~k× ε̂)2

]
.

(7.11)

2. using the idea of “normalizing the energy of a photon”. The electromagnetic field for a
photon has energy density approximated as:

~ω
V

=
〈E2 +B2〉

8π
=
|C|2ω2

2πc2

⇒ |C|2 =
2π~c
ωV

.

(7.12)

So this gives us:

~A(~x, t) =

√
2π~c
ωV

ε̂
[
ei(
~k·~x−ωt) + e−i(

~k·~x−ωt)
]
. (7.13)

Another little detail, is that the perturbative Hamiltonian Ĥ1 gives a matrix element:

C 〈f | e
mc

[
ei(
~k·~x−ωt) + e−i(

~k·~x−ωt)
]
ε̂ · ~̂p |i〉 , (7.14)

which is in general nasty to compute. However, what we can do is do a multipole expansion,
which turns out to the be easier to compute than in the classical case! In quantum mechanics,
the dipole approximation simply gives us:

e±i
~k·~x ≈ 1. (7.15)
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The matrix element is then just:

〈f | Ĥ1 |i〉 ≈
(
Ce

mc

)
ε̂ · 〈f | ~̂p |i〉 . (7.16)

This can in fact be further simplified by recalling the Heisenberg equation of motion:

i~
∂x̂

∂t
=
[
x̂, Ĥ

]
, (7.17)

along with the Ehrenfest’s theorem which gives:

〈f | ~̂p |i〉 = − im
~
〈f |
[
x̂, Ĥ

]
|i〉

= −imωf,i 〈f | ~̂x |i〉

⇒ 〈f | Ĥ1 |i〉 = −iC eωf,i
c

ε̂ · 〈f | ~̂x |i〉 .

(7.18)

So this gives us a transition rate:

dP
dt

=
2πe2ω2

f,i

~c2
∣∣∣〈f | Ĥ1 |i〉

∣∣∣2(2πc2

ω2

)
I(ω)∆ω δ(∆E − ~ω). (7.19)

We can then ask, how do we interpret this? Well, we can think of this as an absorption rate Γabs

by integrating over the frequency intervel ∆ω:

Γabs =
2πe2ω2

f,i

~2c2

∫
dω
∣∣∣〈f | Ĥ1 |i〉

∣∣∣2(2πc2

ω2

)
I(ω) δ(∆E − ~ω)

=
4πe2

~2

∣∣∣ε̂ · 〈f | ~̂x |i〉∣∣∣2I(∆E/~ = ωf,i).

(7.20)

The prefactor, in the result above is known as the Einstein coefficient :

Bf,i =
4πe2

~2

∣∣∣ε̂ · 〈f | ~̂x |i〉∣∣∣2 . (7.21)

These Einstein coefficients in fact give rise to selection rules for the transition. There are several
types of such transitions.

1. Forbidden transitions: 〈f | ~̂x |i〉 = 0.

Despite its name, these might not actually be completely forbidden, but just largely sup-
pressed compared to the electric dipole transition, which is the approximation we are
working with. Note that ~̂x is a vector operator and transforms under rotations like an
l = 1 object. So all these matrix elements are proportional to Clebsch-Gordan coefficients.

Let’s now change gears a little and consider the spontaneous emission of a photon in the process
i → f + γ. In this case, the decay probability rate can then be thought of by considering the
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direction of the outgoing photon and its wave number. This gives us:

dΓse =
2πe2ω2

f,i

~c2
|ε̂ · 〈f | x̂ |i〉|2

(
2πc2

ω2

)
δ(∆E − ~ω)

(
2π~c
ωV

)(
V d3k

(2π)2

)

⇒ dΓse

dΩγ
=
e2ω3

f,i

2π~c2
|ε̂ · 〈f | x̂ |i〉|2 ,

(7.22)

where we integrated over ω2dω, with the differential phase-space volume element being d3k =
ω2dωdΩγ/c

3. What we can do now is sum over all the polarizations, then integrate over all
angular space to get:

dΓse

dΩγ

∣∣∣∣
sum pol

=
e2ω3

f,i

2π~c2
|〈f | x̂ |i〉|2 sin2 θ

⇒ Γse =
4

3

e2ω3
f,i

~c3
|〈f | x̂ |i〉|2 .

(7.23)

§7.3 Quantizing the Electromagnetic Field

The quantum mechanics of an EM field is in fact just the quantum mechanics of a simple harmonic
oscillator but with lots of indices. What characterizes a harmonic oscillator is that the conjugate
variables in the Hamiltonian are quadratic:

H =
p2

2m
+

1

2
mω2q2. (7.24)

This classical Hamiltonian will give rise to the Hamilton’s equations of motion, for which by
taking the appropriate linear combination, we get:

d

dt

[
q ± ip

mω

]
= ∓iω

[
q ± ip

mω

]
. (7.25)

Then defining:

A ≡ q ± ip

mω

⇒ dA

dt
= −iωA, dA∗

dt
= iωA∗

⇒ H =
mω2

4
(A∗A+AA∗) .

(7.26)

In quantum mechanics on the other hand, this system is usually solved by constructing the
creation and annihilation operators:

â =

√
mω

2~
q̂ +

ip̂√
2mω~2

(7.27)

â† =

√
mω

2~
x̂− ip̂√

2mω~
(7.28)

⇒ Ĥ = ~ω
[
â†â+

1

2

]
=

~ω
2

[
ââ† + â†â

]
, (7.29)
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for which in the Heisenberg picutre, we indeed get analogous equations of motion for these
operators to these A objects in classical mechanics:

d

dt
â(t) = −iωâ(t) (7.30)

d

dt
â†(t) = iωâ†(t). (7.31)

These operators then act on the eigenstates as:

â |n〉 =
√
n |n− 1〉 , â† |n〉 =

√
n+ 1 |n+ 1〉 (7.32)

Ĥ |n〉 = ~ω
(
n+

1

2

)
|n〉 . (7.33)

Now in the case of multiple oscillators, we can then instead have:

Ĥ =
∑
k

(
Akp̂

2
k +Bkq̂

2
k

)
=
∑
k

~ωk
2

[
â†kâk + âkâk †̂

]
=
∑
k

~ωk
[
â†kâk +

1

2

]
,

(7.34)

where we have the commutation relations:[
âi, â

†
j

]
= δij . (7.35)

If the oscillators are uncoupled, we then have a completely separable system in terms of tensor
product states so we have:

|ψ〉 = |{nk}〉

⇒ Ĥ |{nk}〉 =
∑
k

~ωk
(
nk +

1

2

)
|{nk}〉

⇒ En = ~ωk
(
nk +

1

2

)
.

(7.36)

Let’s go back to classical E&M for awhile. In classical electrodynamics, the extension to a
quantum theory of electrodynamics starts by first writing the magnetic vector potential as a sum
over Fourier modes:

~A(~x, t) =
∑
~k

2∑
σ=1

(
2π~c
V ωk

)1/2

ε̂k,σ

[
ak,σ(t)ei

~k·~x + a∗k,σ(t)e−i
~k·~x
]

(7.37)

where σ denotes the polarization index, ak,σ(t) is the classical Fourier coefficients and we have

ˆεk,σ · ~k = 0. Also we put in a photon normalization factor with ~ in it, which will make the
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quantization of this be convenient later. Plugging this into the classical wave equation in free-
space, we get:

∇2 ~A− 1

c2
∂2 ~A

∂t2
= 0

⇒
∑
k,σ

(
2π~c
V ωk

)1/2

ε̂k,σ

[
−ω2

k +
∂2

∂t2

]
ak,σ(t) = 0

⇒ d2ak,σ(t)

dt2
+ ω2

kak,σ(t) = 0

⇒ ak,σ(t) = a
(1)
k,σe

−iωkt + a
(1)
k,σe

iωkt.

(7.38)

It turns out that one of the terms in the solution can be dismissed because of the construction
of the Fourier expansion, which gives us:

d

dt
ak,σ(t) = −iωkak,σ(t) , (7.39)

which tells us that we can formulate classical electromagnetism in terms of variables that ef-
fectively follow the harmonic oscillator equations of motion! Now considering the energy den-
sity:

u =
1

8π

∫
d3x

(
E2 +B2

)
=

1

8π

∫
d3x

(∂ ~A
∂t

)2

+
(
∇× ~A

)2

 , (7.40)

for which plugging in the Fourier series of the vector potential gives:

u =
1

2

∑
k,σ

~ωk
[
a∗k,σak,σ + ak,σa

∗
k,σ

]
. (7.41)

So what this says, is that classical electromagnetism in free-space, is a set of uncoupled harmonic
oscillators! Now to quantize this, we simply promote these Fourier coefficients to operators. In
quantum electrodynamics, the conjugate variables in our Hamiltonian will be ~A and ~E:[

~̂Ak, ~̂Ek′
]

= i~δk,k′ , (7.42)

and we also have these quantized Fourier coefficient operators following:[
âk,σ, â

†
k′,σ′

]
= δk,k′δσ,σ′ . (7.43)

From this, we then write our Hamiltonian as:

Ĥ =
∑
k,σ

~ωk
[
â†k,σâk,σ +

1

2

]
, (7.44)
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and we have the eigenstates as |ψ〉 = |{nk,σ}〉 where nk,σ = 0, 1, 2, . . ., denotes a quantized mode
excitation of the field with wave-vector k and polarization σ.

We can now ask, what actually is the quantum mechanical vector potential? This is actually
analogous to asking what is x̂ in the standard simple harmonic oscillator system since it is the
conjugate position in the Hamiltonian. The most general way to see what this is is by writing
this conjugate position operator in terms of the creation and annihilation operators (x̂ is a linear
combination of â and â†). This then tells us that Â in fact creates and annihilates photons in a
pair-like fashion.

Now let us consider a system in which we have an atom irradiated by some photons. This system
would have a Hamiltonian:

H = Hatom +Hrad +Hinteraction

=

[
p2

2m
+ V

]
+

[∑
k

~ωknk,σ +
e2

c2
A2

]
−
[ e

mc
~A · ~p

] (7.45)

where we dropped the groundstate energy in the photon excitation Hamiltonian and hats for
operators. What we can now do, is consider the interaction term as a perturbation, and drop all
constant terms in the Hamiltonian:

Ĥ = Ĥ0 + δĤ

=

[
p2

2m
+ V +

∑
k

~ωknk,σ

]
−
[ e

mc
~A · ~p

]
,

(7.46)

for which the zeroth-order Hamiltonian Ĥ0 will have separable eigenstates |a〉 ⊗ |nk,σ〉. Having
these eigenstates, we can then compute transitions in the system with usual quantum perturba-
tion theory by computing the matrix elements:

〈f | δĤ |i〉 = 〈f | e
mc

~A · ~p |i〉

= − e

mc

∑
k′,σ′

√
2π~c2
ωkV

〈nk,σ + 1| a†k′,σ′ |nk,σ〉 〈a′| ε̂k′,σ′ · ~pei~k
′·~x |a〉

= − e

mc

√
2π~c2
ωkV

√
nk,σ + 1 〈a′| ε̂k,σ · ~pei

~k·~x |a〉 .

(7.47)

We can then plug this into Fermi’s golden rule to get the transition rate:

dΓ =
2π

~

(
2π~c2

ωkV

)
(nk,σ + 1)

∣∣∣〈a′| ε̂k,σ · ~̂pei~k·~x |a〉∣∣∣2δ(Ea′ + ~ωk − Ea)
V d3k

(2π)3

⇒ Γse =
4

3

e2ω2
f,i

2π~c3
|〈a′|x |a〉|2,

(7.48)

which is the same result we got from the semi-classical approximation! What is new in the
formalism however, is that we can consider the phenomena of stimulated emission and absorp-
tion.
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§7.4 The End

In this second semester of graduate E&M at Boulder, there has been one unifying thing, that
being the physics of radiation. Classically, this really only had one formula:

~A(~x, t) =
4π

c

∫
d3x′dt′ ~J(~x ′, t)D(~x− ~x ′, t− t′). (7.49)

Getting to this of course had a long backstory, such as multipole antennas, dipole scattering,
diffraction, all of which had the assumption that J ∼ eiωt (harmonic). This all had no reference
to special relativity, and thus was rather incomplete in terms of its connection to the rest of
physics. So indeed, after this came the story about special relativity. This taught us the use
of 4-vector, tensors and the rigid structures that bake in special relativity to the theory. The
crux of all this was the formalism of Lagrangians for E&M, from which we saw how symmetries
constrained Lagrangians. But aside from physics...

The real point of a graduate physics class is often not the physics, but the process to which we
learn to function as physicists. We learned many methods of approximations, for which none of
that stuff is useful (practical) unless one or two expansion terms are important. This story of
approximations is especially true this semester, with things like partial wave expansions. Making
approximations is what we do as physicist, and the job is to ask where these approximations come
from. This is hard to teach, and perhaps comes only from some sort of experience/intuition.
Nonetheless, this is what a class on Jackson may help us to uncover.

“Learning how to do approximations is what Jackson is all about.”
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