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Chapter 1

Introduction

§1.1 Units and Notation

Before diving in to the meat of the subject, it is necessary to establish the system of units adopted
and some important notation that will follow us through the course. The unit system used in
the class is referred to natural units, in which c = ~ = kB = 1. This mean that, the only effective
unit left is energy, for which all other units can be expressed in units of energy.

Since this course contains a treatment of relativistic quantum mechanics, it is necessary to distin-
guish between 3-vectors (with spatial components) and 4-vectors (with spacetime components).
To do so, Latin indices (i, j, k, . . .) are used to denote 3-vectors while Greek indices (µ, ν, ρ, . . .)
are used for 4-vectors. Furthermore, Einstein sum notation is employed in which a sum over
repeated indices is applied. For instance,

AµAµ = AµgµνA
ν = A0A

0 +A1A
1 +A2A

2 +A3A
3, (1.1)

where the gµν is the metric tensor. As for derivatives, we use the shorthand notation

∇2 = ∂i∂i

where ∂i =
∂

∂xi
,

(1.2)

which translates similarly for derivatives with Greek indices. We will mostly be using the metric
tensor for Minkowski (flat) spacetime in this course, in which the mostly positive sign convention
is adopted,

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3)

Note that this is not the same convention as adopted in the recommended text. Finally if
integrals and sums are written without any limits, they are taken to be integrals/sums over the

1



CHAPTER 1. INTRODUCTION 2

entire domain ∫
dx =

∫ ∞
−∞

dx,
∑

=

∞∑
j=−∞

. (1.4)

§1.2 The Quantum Partition Function

This section provides a brief discussion of the partition function in the context of quantum
mechanics by analogy of the time evolution operator and the density operator. A good reference
for this section is provided in Chp. 1 of “Basics of Thermal Field Theory” by Laine and Vuorinen.
To start off, we begin with the non-relativistic, 1-dimensional Schrödinger’s equation

i~
∂ψ(x, t)

∂t
=

[
− ∂2

x

2m
+ V̂ (x)

]
ψ(x, t). (1.5)

By utilizing a separation of variables, we get the energy eigen equation

Ĥψ(x) = Eψ(x), (1.6)

which when solved, can be used to construct the separable solution

ψ(x, t) = e−iĤtψ(x). (1.7)

In thermodynamics, an important quantity is the partition function Z(T ). Having this allows
us to compute other quantities of interest such as the free energy F , and entropy S, by the
relations

F = −T lnZ, S = −∂F
∂T

. (1.8)

In statistical mechanics, it is customary to define β = 1/T , which then grants the definition of
the partition function as

Z(T ) = Tr
[
e−βĤ

]
, (1.9)

where in quantum mechanics, the trace is over the entire Hilbert space. In quantum mechanics,
given that we have solved for the basis the energy eigenstates |n〉 (s.t. Ĥ |n〉 = En |n〉), we can
use the completeness of this basis to compute the partition function

Z(T ) =

∞∑
n=0

〈n| e−βĤ |n〉

⇒ Z(T ) =

∞∑
n=0

e−βEn .

(1.10)

These exponents in the sum are known as Boltzmann factors. Let us now consider a simple
example.

https://arxiv.org/pdf/1701.01554.pdf
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Example:
Consider the quantum harmonic oscillator, in which the Hamiltonian is given by

Ĥ = − ∂2
x

2m
+
mω2x̂2

2
, (1.11)

and has energy eigenvalues

En = ω

(
n+

1

2

)
. (1.12)

This results in the partition function

Z(T ) = e−βω/2
∞∑
n=0

e−βωn

=
e−βω/2

1− e−βω

=
1

2 sinh
(
βω
2

) .
(1.13)

§1.3 The Path Integral

In this section, we are going to see how the quantum partition function leads to a derivation
of the path integral formulation of quantum mechanics. The more common Schrödinger picture
answers the question of the possible positions and their probabilities for a particle to end up,
starting off in some position. The path integral formulation on the other hand, tells us the
probability of transitioning from one position to another by consider all possible intermediate
paths between these 2 points. Since the partition function serves to scope out and in some sense,
collate the entire state space, it seems the appropriate tool to develop such a formulation.

To start off, let us consider the partition function in the position basis. The position basis is
going to be an infinite dimensional Hilbert space, and so will have integrals replacing sums of
the basis states. As such, we have that the partition function can be written as

Z(T ) =

∫
dx 〈x| e−βĤ |x〉 . (1.14)

At this point, we realize that since β is simply a constant (not an operator), it will always
commute with Ĥ. Furthermore, any factorization of β will also commute with Ĥ and so one can
write

e−βĤ = e−εĤe−εĤe−εĤ . . . e−εĤ , (1.15)

where ε = β/N for some positive integer N . This splitting of the Boltzmann factor allows us to
insert unities between these different products, which by the theorem of completeness, can take
different basis forms

1 =

∫
dx |x〉 〈x| =

∫
dp

2π
|p〉 〈p| = . . . (1.16)
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Notice that there is a difference of 2π that arises between these position and momentum basis,
which comes from normalization (〈x|p〉 = eipx). To keep track of these inserted unities, we can
simply index the variables, starting from the rightmost splitting of the Boltzmann factor. That
is consider the insertion of 3 unities, 2 of which are position bases and the other a momentum
basis. These are inserted sequentially as follows.

Z(T ) =

∫
dx 〈x| e−εĤ . . . e−εĤ |x〉

=

∫
dxdx1 〈x| e−εĤ . . . e−εĤ |x1〉 〈x1|x〉

=
1

2π

∫
dxdx1dp1 〈x| e−εĤ . . . e−εĤ |p1〉 〈p1| e−εĤ |x1〉 〈x1|x〉

=
1

2π

∫
dxdx1dp1dx2 〈x| e−εĤ . . . e−εĤ |x2〉 〈x2|p1〉 〈p1| e−εĤ |x1〉 〈x1|x〉 .

(1.17)

If this process of inserting identities is continued recursively for N position and momentum bases,
we end up with 2N + 1 integrals with differential element

dx (dx1dx2 . . . dxN ) (dp1dp2 . . . dpN )

(2π)N
. (1.18)

The integrand would be constituted by matrix elements of the type

〈xj+1|pj〉 〈pj | e−εĤ |xj〉 = eipjxj+1 〈pj | e−εĤ |xj〉 (1.19)

= eipjxj+1 〈pj | e
−ε
[
p2j
2m+V (xj)

]
+O(ε2)

|xj〉 (1.20)

≈ eipjxj+1e
−ε
[
p2j
2m+V (xj)

]
〈pj |xj〉 (1.21)

= eipjxj+1e
−ε
[
p2j
2m+V (xj)

]
e−ipjxj , (1.22)

if N � 1, so that higher-order corrections due to non-commutation of the momentum and po-
tential operators can be dropped. As such, we are left with the integrand matrix elements

〈xj+1|pj〉 〈pj | e−εĤ |xj〉 ≈ e
−ε
[
p2j
2m+V (xj)−pj

xj+1−xj
ε

]
(1.23)

⇒ Z(T ) = lim
N→∞

∫
dx

[
N∏
k=1

dxkdpk
2π

]
e
−ε

N∑
j=0

[
p2j
2m+V (xj)−pj

xj+1−xj
ε

]
〈x1|x〉 , (1.24)

where the 〈x| on the very left of the integrand is identified as 〈xN+1|. This implies that we have
asserted a periodic boundary condition of xN+1 = x1. Since eigenstates are orthonormal, this
implies that 〈x1|x〉 = δ(x1 − x), which simplifies the partition function to

Z(T ) = lim
N→∞

∫ [ N∏
k=1

dxkdpk
2π

]
e
−ε

N∑
j=0

[
p2j
2m+V (xj)−pj

xj+1−xj
ε

]
. (1.25)
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§1.3.1 Imaginary Time

It is useful to think of the N discretized spatial points as points on a line, separated by ε = β/N
segments. To this end, we define a new discrete variable τ ≡ jε = jβ/N . The periodic boundary
condition on space then imposes that the line forms a closed loop, which we call the thermal
circle of circumference β (x(τ = β) = x(τ = 0)) as visualized in Fig. 1.1.

1β
N

2β
N

3β
N

4β
N

. . .

jβ
N

(j+1)β
N

(j−1)β
N

β

(N−1)β
N

. . .

Figure 1.1: Thermal circle with spacings β/N .

Of course in the limit as N → ∞, τ serves as a continuous variable which we will refer to
as imaginary time (a.k.a Euclidean time) for which the names will become apparent soon. In
this continuous variable limit, the partition function in Eq. (1.25) will be modified by replacing

lim
N→∞

xj+1 − xj
ε

→ dx(τ)

dτ
, (1.26a)

lim
N→∞

ε

N∑
j=0

→
∫ β

0

dτ, (1.26b)

lim
N→∞

[
N∏
k=1

dxkdpk
2π

]
→ DxDp

2π
, (1.26c)

rendering the partition function to be written as

Z(T ) =

∫
DxDp

2π
exp

[
−
∫ β

0

dτ

(
p2(τ)

2m
+ V (x(τ))− p(τ)

dx(τ)

dτ

)]
. (1.27)

Eq. (1.27) above is referred to as the continuum path integral, which is a path integral over the
2 functions x(τ) and p(τ). We can in fact simplify this expression by noticing that V (x) is only
a function of x(τ) and not p(τ). So we can first “integrate out” all the p(τ) variables by going
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back to discrete space and evaluating∫
dpj
2π

e
−ε
[
p2j
2m−pj

xj+1−xj
ε

]
=

√
m

2πε
e−

m(xj+1−xj)
2

2ε

⇒ Z(T ) = lim
N→∞

∫ [ N∏
k=1

dxk√
2πε/m

]
e
−ε

N∑
j=0

[
m
2

(
xj+1−xj

ε

)2
+V (xj)

]
.

(1.28)

This can then be expressed in the continuum limit as

Z(β) = C

∫
x(0)=x(β)

Dx exp

[
−
∫ β

0

dτ

(
m

2

(
dx(τ)

dτ

)2

+ V (x(τ))

)]
,

where C =
(m

2π
ε
)N/2

.

(1.29)

The factor C appears to diverge in the limit of N →∞, however since it seems to play no role in
the actual dynamics of the system, we will do the physicists trick of sweeping weird mathematical
anomalies under the rug. And that was all she wrote. At least for the time being.

The integrand in the exponent however should look familiar to a physicist’s eye, for which (despite
a sign discrepancy) we term it the Euclidean Lagrangian (since it is parameterized by Euclidean
time):

LE =
m

2

(
dx(τ)

dτ

)2

+ V (x(τ)). (1.30)

It is only natural then that the integral be referred to as the Euclidean action

SE =

∫ β

0

LE . (1.31)

The sign discrepancy alluded to earlier can be somewhat fixed if we made the transformation
τ = it referred to as a Wick rotation (a π/2 rotation in the complex plane), so that we instead
have

LE = −m
2

(
dx(t)

dt

)2

+ V (x). (1.32)

This then grants us that LE = −L(t = −iτ), where L is the Lagrangian we are familiar to from
classical mechanics. This transformation is the reason why τ is also referred to as Euclidean
time in the context of relativistic QFTs, since in the Minkowski metric we have the invariant
spacetime interval written as

ds2 = dx2 − dt2, (1.33)

the Wick rotation would grant us the invariant interval in terms of imaginary time as

ds2 = dx2 + dτ2, (1.34)
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which is just a length in ordinary Euclidean space! Correspondingly, we have that for the
action,

e−SE = eiS , (1.35)

where S is the classical action. It is not surprising that we see imaginary numbers cropping up,
since we are indeed dealing with the quantum mechanical partition function.

§1.3.2 Solving the Path Integral

Having now this new means of computing the quantum mechanics partition function, it is
only useful if we know how to solve it. To do so, we first consider again the example of the
quantum harmonic oscillator. This will allows us to compare our result with that obtained in
Eq. (1.13).

The first step would be to write down the Euclidean action for this system

SE =

∫ β

0

dτ

[
m

2

(
dx(τ)

dτ

)2

+
mω2x(τ)2

2

]
. (1.36)

The quadratic form of the integrand in the action makes moving to Fourier space an appealing
next step, for which we shall oblige. The discrete Fourier transform (due to the periodic boundary
condition on x(τ)) is written as

x(τ) = T
∑
n

eiωnτxn (1.37)

where ωn = 2πnT are known as the Matsubara frequencies and xn are the Fourier coefficients.
The temperature prefactor T , here is inserted for convenience and is purely a convention. We
know that x(τ) is a real position coordinate, so it must be that x∗n = x−n, for which we can
expand these coefficients as xn = an + ibn. The general quadratic form in an integral can be
evaluated using the Fourier transform as

∫ β

0

dτx(τ)y(τ) = T 2
∑
n,m

xnym

∫ β

0

dτeiτ(ωn+ωm)

= T 2β
∑
n,m

xnymδn,−m

= T
∑
n

xny−n = T
∑
n

xny
∗
n.

(1.38)
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Using this identity, the action for the harmonic oscillator can then be evaluated as

SE =

∫ β

0

dτ

[
m

2

(
dx(τ)

dτ

)2

+
mω2x(τ)2

2

]

=
mT

2

∑
n

xn
[
iωniω−n + ω2

]
x−n

=
mT

2

∑
n

[
ω2 − ωnω−n

]
(a2
n + b2n)

=
mT

2

∑
n

[
ω2 + ω2

n

]
(a2
n + b2n)

=
mTω2

2
a2

0 +mT
∑
n

∞∑
n=1

[
ω2 + ω2

n

]
(a2
n + b2n),

(1.39)

where we used the fact that ωn is linear in n, b0 = 0 and the sum over n without the n = 0 is
perfectly symmetric. Since we are now in Fourier space, the path integral must also be evaluated
in Fourier space for which the Jacobian between x(τ) and the xn (and thus an, bn) coefficient
must be employed. This is given by

CDx = C

∣∣∣∣det

[
δx(τ)

δxn

]∣∣∣∣da0

∞∏
n=1

dandbn. (1.40)

We simplify this notation by absorbing the jacobian into the constant C such that

C ′ = C

∣∣∣∣det

[
δx(τ)

δxn

]∣∣∣∣. (1.41)

As such, we get the path integral

Z = C ′
∫
da0

∫ [ ∞∏
n=1

dandbn

]
exp

[
−mTω

2

2
a2

0 −mT
∑
n

∞∑
n=1

[
ω2 + ω2

n

]
(a2
n + b2n)

]

= C ′
√

2π

mTω2

∞∏
n=1

π

mT (ω2
n + ω2)

.

(1.42)

However, the constant C ′ still needs to be evaluated, for which one can employ the effective field
theory matching method which leads to the result

C ′ =
T

2π

√
2πmT

∞∏
n=1

mTω2
n

π
. (1.43)

Plugging this back into the path integral formula, we get

Z(T ) =
T

ω

∞∏
n=1

ω2
n

ω2 + ω2
n

=
T

ω

∞∏
n=1

1

1 + ω2

(2πnT )2

=
1

2 sinh
(
ω
2T

) , (1.44)
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which indeed matches the result in Eq. (1.13). The final expression arose from the use of the
identity

sinh(x)

x
=

∞∏
n=1

(
1 +

x2

π2n2

)
. (1.45)

§1.3.3 Path Integral Formulation of Quantum Mechanics

We shall look more into the interpretation of quantum mechanics in terms of the path integral
we have just derived. In this path integral formulation, we no longer work with operators,
eigenvalues and wavefunctions. Instead, all the elements required to set-up the observables are
purely classical, while the heavy lifting is provided by the infinite number of path integrals in
this representation. So far, the path integral we have seen seems to have a lot more to do with
statistical physics rather than quantum field theory. This section will draw a clear link between
quantum field theory and the path integral.

To begin, we consider again the transition matrix element from position x′ at time t′, to position
x′′ at time t′′

〈x′′, t′′|x, t〉 = 〈x′′| e−iĤ(t′′−t′) |x′〉 . (1.46)

From here, we perform a similar derivation of the path integral, but instead using the integral

i
∫ t′′
t′

instead of
∫ β

0
dτ (i.e. by transforming τ → it) and positions taken to be x(β)→ x′′ = x(t′′),

x(0)→ x′ = x(t′). This leads to the path integral

〈x′′| e−iĤ(t′′−t′) |x′〉 = C

∫
Dxei

∫ t′′
t′ dtL , (1.47)

where L is the classical Lagrangian of a point particle. This brings us to the conclusion that the
quantum mechanical transition amplitude and the quantum mechanical partition function are
analogous, which are compared below:

Transition Amplitude Partition Function
Provides probability information Provides thermodynamic equilibrium information

Uses real-time, t Uses temperature parameter, τ
Formulated in Minkowski space Formulated in Euclidean space
Path integral is ill-defined (eiS) Path integral is well-defined (e−SE )

Table 1.1: Analogies between the quantum mechanical transition amplitude and the quantum mechan-
ical partition function.

It is useful to note that since the partition function consists of a well-defined integral, it can
be evaluated via numerical Monte Carlo methods which opens the door to numerical solu-
tions.

At this point however, the path integral formulated in Eq. (1.47) still only addresses traditional
quantum mechanics which quantizes classical point particles. How then do we transition from
quantum mechanics to quantum field theory? Well, we will have to trade-in the classical La-
grangian L(x) for point particles into the Lagrangian density, L(φ) for classical fields φ. As such,
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the action would now be S =
∫
dtd3xL, and so the path integral become

Z =

∫
Dxe−

∫
dτLE(x) → Z =

∫
Dφe−

∫
dτd3LE(φ), (1.48)

where the path integral now runs over all field configurations. It is now time to get into field
theory.



Chapter 2

Introductory Field Theory

This chapter will first touch on classical field theory, which we will then quantize to grant us a
quantum field theory. This will eventually allow us to construct a relativistic theory of quantum
mechanics, i.e. a formalism that combines special relativity and quantum mechanics into a single
theory. However, before we get started, it would be useful to have a review of classical Lagrangian
mechanics for point particles, before we get into the field theoretic descriptions.

§2.1 Review of Lagrangian Mechanics

Starting with the classical action for a one-degree of freedom system,

S =

∫ tf

ti

dtL (q, q̇) , (2.1)

we consider the derivative of the action with respect to q(t), written as

δS[q(t)]

δq(t′)
= lim
ε→0

∫ tf
ti
dtL

(
q(t) + εδ(t− t′), q̇(t) + εδ̇(t− t′)

)
−
∫ tf
ti
dtL (q(t), q̇(t))

ε

= lim
ε→0

∫ tf
ti
dt
[
∂L
∂q(t)εδ(t− t

′) + ∂L
∂q̇(t)εδ̇(t− t

′)
]

ε

=
∂L

∂q(t′)
+

∂L

∂q̇(t)
δ(t− t′)

∣∣∣∣tf
ti

−
∫ tf

ti

dt
d

dt

∂L

∂q̇(t)
δ(t− t′)

=
∂L

∂q(t′)
− d

dt′
∂L

∂q̇(t′)
.

(2.2)

To extremize S then, we set the first derivative to zero which grants us the Euler-Lagrange
equation

∂L

∂q(t)
− d

dt

∂L

∂q̇(t)
= 0. (2.3)

11
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It is then easy to generalize this result to a system with multiple degrees of freedom by adding
indices to the generalized coordinates, which gives us

∂L

∂qj(t)
− d

dt

∂L

∂q̇j(t)
= 0. (2.4)

This mechanics for point particles tell us about the dynamics of localized objects in space. On
the other hand, classical field theory tells us about the dynamics of fields which are objects
that extend over all space (e.g. temperature scalar field T (x, t), wind vector field v(x, t)).
Additionally, we are going to explore relativistic field theories, which must conform to the
specific symmetries in special relativity (i.e. Lorentz invariance).

§2.2 Classical Field Theory

More specifically, a relativistic field theory is on in which its classical action is invariant under
the group of Lorentz transformations. Recall that in special relativity, space and time are no long
independent, and are together known as spacetime. As such, our classical definition of the action
S =

∫
dtL, will no longer allow the preservation of Lorentz symmetries, and must be modified

such that it does. To do so, we introduce a new object known as the Lagrangian density, L, such
that

S =

∫
d4xL, (2.5)

where d4x = dtd3x is the spacetime volume element. The next question we should answer is,
what kind of field should our theory consist of. Arguably, the simplest case would be to start
with a scalar field which denote by φ(x), corresponding to a single degree of freedom at every
spacetime point xµ. From this, the Lagranian density can then be constructed in terms of the
field and its derivatives, only limited by the fact that the Lagrangian density itself must be a
scalar (and consequently Lorentz invariant).

However for the time being, we will consider Lagrangian densities of the form

L = −1

2
∂µφ(x)∂µφ(x)− V (φ), (2.6)

where V (φ) is an arbitrary well-behaved function of φ. The resulting action is then

S = −
∫
d4x

[
1

2
∂µφ(x)∂µφ(x) + V (φ)

]
, (2.7)

which when extremized produces the equation of motion

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 . (2.8)

We can also derive a Euclidean Lagrangian density by making the change of variable t → −iτ ,
which gives

LE =
1

2
∂τφ∂τφ+

1

2
∂jφ∂jφ+ V (φ) (2.9)

⇒ SE =

∫
d4xE

[
1

2
∂aφ∂aφ+ V (φ)

]
, (2.10)
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where d4xE = dτd3x and a = 1, 2, 3, 4 is the 4-dimensional Euclidean index.

Note: Often, the subscript “E” on xE will be dropped for lighter notation when the
fact that we are working in Euclidean coordinates is unambiguous. Furthermore, we will
simply use x to denote the 4-vector of coordinates, while boldfaced x is reserved for the
3-space coordinate vector.

The geometry of this 4-dimensional Euclidean volume is called a thermal cylinder since τ forms
a thermal circle (φ(τ = 0) = φ(τ = β)), from which the other spatial elements dimensions extend
this circle into a cylinder.

Note: Henceforth, the terms “Lagrangian” and “Lagrangian density” will be used inter-
changeably unless a need arises to differentiate the 2 is necessary. Otherwise, the Lorentz
invariant object in assumed.

§2.3 Relativistic Quantum Field Theory

As in the path integral for point particles, quantum nature of the path integral for quantum fields
would be encoded in the infinite-dimensional path integral measure Dφ. As such, knowledge of
the classical action allows us full access to the quantum field theoretic partition function. We
shall refer to every physical system comprised of a unique Lagrangian, a quantum field theory
(QFT). Unfortunately, not all classical actions give rise to sensible QFTs and neither can all
QFTs be solved. There nonetheless do exist solvable QFTs, so we shall focus on those.

§2.3.1 Free Scalar Field Theory

The first solvable quantum field theory we shall study is known as the free scalar field theory. In
this theory, the Lagrangian

L = −1

2
∂µφ∂

µφ− m2φ2

2
, (2.11)

is constructed by considering the continuum limit of an infinite number of coupled harmonic
oscillators, where the potential is quadratic in φ. With such a Lagrangian, we can derive the
equations of motion by means of the Euler-Lagrange equations which for scalar fields was given
in Eq. (2.8). Plugging in the Lagrangian then gives the equation of motion(

�−m2
)
φ = 0, (2.12)

where � = ∇2 − ∂2
0 is the d’Alembert operator and the equation of motion above is known as

the Klein-Gordon equation.

Alternatively, since the potential is quadratic, we can employ the use of Fourier transforms to
solve for the partition function, similar to what we did for the point particle quantum harmonic
oscillator, but now also having to Fourier transform all spatial dimensions. To do so, we first
work in generality and take that there are D spatial dimensions (instead of assuming 3). We will
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also first work in a box of edge length xj ∈ [−L/2, L/2], then later take the limit as L→∞.With
this, we take the Fourier transform as

φ(τ,x) =
T

LD

∑
n

∑
k1,k2,...,kD

φ̃ (ωn,k) eiωnτ+iK·x, (2.13)

where again ωn = 2πnT are the Matsubara frequencies and kj is discretized with steps ∆k =
2π/L. Plugging this into the Euclidean action gives as

SE =
T

2LD

∑
ωn,k

(
ω2
n + k2 +m2

) ∣∣∣φ̃(ωn,k)
∣∣∣2, (2.14)

⇒ e−SE =
∏
k

exp

[
− T

2LD

∑
ωn

(
ω2
n + k2 +m2

) ∣∣∣φ̃(ωn,k)
∣∣∣2] . (2.15)

Notice that the exponent in each product term above is exactly the same as that for the point
particle quantum harmonic oscillator in Eq. (1.39), just with different coefficients. To restate
the harmonic oscillator’s action, it was

S
(HO)
E =

m(HO)T

2

∑
n

[
ω2

(HO) + ω2
n

]
|xn|2. (2.16)

But for the free scalar field, we instead have the replacements

m(HO) →
1

LD
(2.17a)

ω2
(HO) → k2 +m2 ≡ E2

k, (2.17b)

which gives the result

Zfree =
∏
k

1

2 sinh
(
Ekβ

2

) = exp

[
−
∑
k

Ekβ

2
+ ln

(
1− e−βEk

)]
. (2.18)

Now, we take the limit as L→∞, which changes the sums to integrals

lim
L→∞

1

LD

∑
k

→
∫

dDk

(2π)D

⇒ lnZfree = −V
T

∫
dDk

(2π)D

[
Ek
2

+ T ln
(
1− e−βEk

)]
,

(2.19)

where V = LD is the volume of D-dimensional space. The problem however, is that although
we have a nice analytic form, the integral above is badly divergent (singular) for any finite
temperature. This will actually be a recurring issue in all of QFT, for which useful physics can
actually still be extracted, but is usually “hidden” under these divergences. The procedure to
extract such physics consist regularization (identifying and subtracting away divergences) and
renormalization (modification of the theory on physical grounds). These will appear to be rather
adhoc in their construction, but are necessary for a consistent theory.
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§2.3.2 Regularization

Broadly speaking, regularization is a procedure in which quantities which have singularities are
modified so as to make them finite. This is usually done by introducing suitable parameters
known as regulators. It is best to understand this through an application, for which we will
consider the free scalar field partition function.

Going back to the free scalar field, we first notice that in the zero temperature limit, the free
energy function, F = −T lnZ, becomes just a sum over all zero-point harmonic oscillator ener-
gies.

F =
∑
k

Ek
2
. (2.20)

Since in the continuum limit, there is an infinite number of oscillators with finite zero-point
energy, the result is divergent. Zero-point energies are not new to us, so we are going to attempt
regularizing this (i.e. subtracting out this divergent term from the finite-temperature free energy
function) to see if there is any remaining new physics to uncover. There are 2 common ways in
which this can be done:

1. the first of which (being rather crude since Lorentz invariance is lost) is by asserting a
cutoff value of k (cutoff regularization);

2. a more elegant solution is to exploit the fact that the dimension of the system D, has been
taken as arbitrary through the derivations above. This will allow us to work in non-integer
dimensions which as we will see, lead to a quelling of these divergences. This method is
known as dimensional regularization.

Note: Although more mathematically elegant, it is often difficult to extract physical
insight using dimensional regularization as opposed to cutoff regularization.

Cutoff Regularization

To deal with the free scalar field divergence, we will first utilize the cutoff regularization technique.
From Eq. (2.19), we consider a more physically intuitive observable p(T ), which represents the
pressure. This, from thermodynamics, is known to follow the relation

p(T ) =
T

V
lnZ

⇒ pfree(T ) = −
∫

dDk

(2π)D

[
Ek
2

+ T ln
(
1− e−βEk

)]
.

(2.21)

This quantity, is of course still divergent, even in the zero temperature limit which take the
form

p(0) = −1

2

∫
dDk

(2π)D
Ek = −1

2

∫
dDk

(2π)D

√
k2 +m2. (2.22)

Motivated by the pressure, we now consider instead a more generalized version of it in the zero
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temperature limit, by introducing a parameter A. We define this quantity as

Φ(m,D,A) ≡
∫

dDk

(2π)D
(
k2 +m2

)−A
(2.23)

⇒ p(0) = −1

2
Φ

(
m,D,−1

2

)
. (2.24)

Notice that the integral in Φ(m,D,A) can be evaluated rather simply, by noticing that the
integrand is isotropic. As such, moving to hyperspherical coordinates grants

Φ(m,D,A) =
ΩD

(2π)D

∫ ∞
0

(
k2 +m2

)−A
kD−1dk, (2.25)

where ΩD = 2π(D/2)/Γ(D/2) is the solid angle in D dimensions (e.g. Ω3 = 4π). Notice that so
long as m is nonzero, the integrand remains well-behaved, while the integral only divergence for
large wave-number (k →∞). This (as analogous to the ultraviolet catastrophe) is known as UV
divergence (the converse case of divergences for low wave-numbers are known as IR divergences).
To deal with the UV divergence, we cutoff the k at some value Λ� 1, which grants∫ Λ

0

(
k2 +m2

)−A
kD−1dk ∼

∫
k−2AkD−1dk

∣∣∣∣
k=Λ

∼ ΛD−2A

D − 2A
. (2.26)

In the case where {D,A} = {3,−1/2}, this grants p(0) ∼ Λ4. As such, we say that this divergence
“goes as degree 4”. Without assuming that Λ is large, we can in fact solve for p(0) analytically
which gives

p(0) = − m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

2
ln

(
2Λ

m

)]
, (2.27)

showing that there is in fact a sub-divergence of degree 2, and a sub-sub logarithmic diver-
gence.

Dimensional Regularization

Let us instead now utilize dimensional regularization for this same problem and see what emerges
(hint, renormalization will take a leading role here for things to work out). The integral for Φ
for arbitrary D can in fact be solved analytically here, to give the form

Φ(m,D,A) =
ΩD

(2π)D
Γ
(
A− D

2

)
Γ
(
1 + D

2

)
DΓ(A)

(
m2
)−A+D

2

=
1

(4π)
D
2

Γ
(
A− D

2

)
Γ(A)

(
m2
)−A+D

2 .

(2.28)

A problem arises however for {D,A} = {3,−1/2}, since this would render the argument of the
gamma function a negative integer −2, and is thus divergent. One possible way to assess this is
to instead consider the case where D is not an integer (almost but not quite 3 dimensions), but
defined by

D = 3− 2ε, (2.29)
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which we can then take the limit as ε → 0 at the end of the computation. Using this, Φ
becomes

Φ

(
m, 3− 2ε,−1

2

)
=

1

(4π)3/2−ε
Γ(−2 + ε)

Γ(−1/2)
(m2)2−ε, (2.30)

which will remain finite for any ε ∈ (0, 1). Using the Gamma function property xΓ(x) = Γ(1+x)
and Taylor expanding in ε, we end up with

p(0) =
m4

64π2

[
1

ε
− ln

(
m2
)

+ ln(4π)− γE +
3

2
+O(ε)

]
, (2.31)

where γE ≈ 0.577 is the Euler’s constant. A distinct peculiarity arises in this derivation, as
we see that there is a non-unit free argument in one of the logarithmic terms, ln

(
m2
)
. The

appearance of this term can be traced back to the integral measure (differential element) being
non-integer. To fix this, we can add a scaling parameter µ, (with units of mass) raised to the
appropriate power that fixes this problem of dimensionality

Φ(m, 3− 2ε,A) ≡ µ2ε

∫
d3−2εk

(2π)3−2ε

(
k2 +m2

)−A
. (2.32)

This added factor µ, is referred to as the renormalization scale parameter, which modifies the
zero temperature pressure as

p(0) =
m4

64π2

[
1

ε
− ln

(
µ2

m2

)
+ ln(4π)− γE +

3

2
+O(ε)

]
. (2.33)

More conveniently, we can absorb several factors into the renormalization scale parameter using
the logarithmic laws such that

µ2 = 4πµ2e−γE (2.34)

⇒ p(0) =
m4

64π2

[
1

ε
− ln

(
µ2

m2

)
+

3

2
+O(ε)

]
. (2.35)

The introduction of this scale parameter in this way is referred to as the “MS (minimal subtrac-
tion) scheme”.

§2.3.3 Renormalization

We have now derived the zero temperature pressure under both regularization schemes (Eqs. 2.27,
2.35) and although both divergent, seem to take on very different forms. In fact the only thing
that is identical between these 2 expressions (which we present again below for clarity), is the
prefactor m4/(64π2).

cutoff regularization : p(0) = − m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

2
ln

(
2Λ

m

)]
, (2.36)

dimensional regularization : p(0) =
m4

64π2

[
1

ε
− ln

(
µ2

m2

)
+

3

2
+O(ε)

]
. (2.37)
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This is not looking good, since our value for the pressure cannot be regularization scheme depen-
dent! Before we scrap our work and lose all hope, let us first go back to the finite temperature
case. At finite temperatures, we can write the pressure in terms of the zero temperature pressure
and a finite temperature correction

p(T ) = p(0)− JB(T,m),

where JB(T,m) ≡ T
∫

d3k

(2π)3
ln
(
1− e−βEk

)
.

(2.38)

The integral JB is in fact non-divergent, and can even be calculated analytically in the zero mass
limit as JB(T,m = 0) = −π2T 4/90. So if one were to just look for the difference p(T ) − p(0),
this would give a perfectly reasonable solution. However even in this case, there is ambiguity as
to how p(0) is defined since it a divergent, leaving room for p(T )− p(0) to be well defined up to
a constant. So we ask, is there a more systematic fashion to deal with these divergences?

Well the answer would have to be yes (otherwise there really wouldn’t be much else to talk
about), for which we call this procedure renormalization. For this, we turn our eyes all the way
back to the Lagrangian. Recall that a Lagrangian preserves the physics up to a constant (which
is of course Lorentz invariant), so we can write our Lagrangian as

L = −1

2
∂µφ(x)∂µφ(x)− V (φ)−K, (2.39)

where K is a constant known as a counterterm. The action for the free scalar field Lagrangian
including this added factor of K would then become

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+

m2

2
φ2 +K

]
, (2.40)

⇒ prenorm(T ) = −K −
∫

dDk

(2π)D

[
Ek
2

+ T ln
(
1− e−βEk

)]
= −K + p(0)− JB(T,m).

(2.41)

It is now apparent, that we can simply choose K to negate divergent terms in p(0), which would
leave

prenorm(T ) = −JB(T,m) +
m4

64π2
ln

(
µ2e3/2

m2

)
, (2.42)

a finite-valued quantity up to renormalization scale parameter µ. The result above was obtained
by negating terms from the dimensionally regularized function, but can also be done to the cutoff
regularized function to give an equivalent result.



Chapter 3

Interacting QFT

Thus far, we have worked with a quantum field theory in the absence of interactions (free). In
this section, we aim to develop an interacting quantum field theory by means of perturbation
theory. Interacting field theories can be constructed by generalizing the free scalar field theory
above, but to potentials with higher powers of φ.

§3.1 Introduction

To start our discussion of interaction QFTs, we want a way to categorize the terms in the
Lagrangian in various powers of φ. To do so, we first classify the different orders of φ by their
mass dimension (which is the only dimension left after setting c = ~ = kB = 1). Recall that the
Euclidean action is given as

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+ V (φ)

]
. (3.1)

The action is a dimensionless quantity with the integral measure having a mass dimension of −4,
which implies that all terms in the integrand must have mass dimension 4, i.e.

[∂aφ∂aφ]m = [V (φ)]m = 4 (3.2)

⇒ [φ]m = 1. (3.3)

Note: Although φ is a classical field, once it is used in the path integral, it is promoted
into a quantum operator. The mass dimension of a quantum operator may differ from its
classical field, for which we call the classical field mass dimension “naive”.

There is a standard nomenclature associated to the mass dimension of terms (operators) in the
potential. Firstly, the coefficients to these oprators (polynomic field terms) are known as coupling
constants. If the mass dimension of the operator is less than the number of spactime dimensions
n (e.g. φ0, . . . , φ3 for n = 4), then this operator is known as relevant. If however the mass
dimension is equal to n, these operators are known as marginal. Lastly, if operators have mass
dimension exceeding n, these are known as irrelevant operators.

19
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A good starting point for constructing an interacting QFT is by adding a marginal operator into
the potential

V (φ) =
1

2
m2φ2 + λφ4, (3.4)

where λ ≥ 0 is a unit-free coupling constant. This potential will be the “poster child” of sorts,
for interacting QFTs. We then write the Euclidean action as consisting of 2 terms

S0 =

∫
d4xE

[
1

2
∂aφ∂aφ+

1

2
m2φ2

]
, (3.5a)

SI = λ

∫
d4xEφ

4. (3.5b)

This renders the partition function as

Z =

∫
Dφe−S0−SI . (3.6)

Recall that to solve these path integrals, we first consider the discretized version with path
integral measure

Dφ →
N∏
j=1

dφj , (3.7)

then take the limit as N → ∞ after evaluation of the integrals. Unfortunately, the lack of
quadratic dependence in SI disallows the method of Fourier transforms to nicely evaluate these
integrals as we did before. So, we turn to perturbation theory to solve these integrals approxi-
mately. Expanding the exponent into powers of λ, gives a perturbative series

Z =

∫
Dφe−S0

(
1− SI +

1

2
S2
I −

1

3!
S3
I + . . .

)
= Zfree

(
1− 〈SI〉+

1

2
〈S2
I 〉 −

1

3!
〈S3
I 〉+ . . .

)
,

(3.8)

where

Zfree =

∫
Dφe−S0 , (3.9)

〈. . .〉 ≡ 1

Zfree

∫
Dφ (. . .) e−S0 . (3.10)

The second identity above is the quantum mechanical path integral expectation value taken over
an observable. It is not guaranteed that this perturbative series converges, but it is often the
case that it will at least be asymptotic which will allow an approximation by truncation of the
series so long as λ as small.
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§3.1.1 First-Order QFT and Wick’s Theorem

Let’s consider the perturbative series just to first-order. In this case, we have

Z ≈ Z1

= Zfree

(
1− λ

∫
d4xE〈φ4(x)〉

)
.

(3.11)

We see now that we will have to compute the quantity 〈φ4(x)〉, and eventually 〈φ4(x1) . . . φ4(xm)〉
for higher order terms where m is the order of the term. To evaluate this, we are going utilize
Wick’s theorem.

Theorem 3.1.1. Wick’s theorem: The expectation value of a product of operators taken
over a Gaussian action can be decomposed as a sum over all combinations of operator
pair expectation values (two-point functions)

〈φ(x1)φ(x2) . . . φ(xn)〉 =
∑

combinations

〈φ(x1)φ(x2)〉 . . . 〈φ(xn−1)φ(xn)〉. (3.12)

A simple example of this theorem would be the φ to the fourth operator, which then can be
written as quadratic two-point functions

〈φ4(x)〉 =
∑
〈φ2(x)〉〈φ2(x)〉

= 3〈φ2(x)〉2.
(3.13)

We now present the proof of this theorem.

Proof. Consider a Gaussian integral over a vector field vi∫
exp

(
−1

2
viAijvj + bivi

)
dv, (3.14)

where Aij is a positive-definite matrix so that the integral converges, and bi is an arbitrary
vector. We then define some function W [b], such that

eW [b] ≡
∫

exp

(
−1

2
viAijvj + bivi

)
dv, (3.15)

and call eW [b] the generating function. We can then evaluate the integral through variable
substitution

ui ≡ vi +A−1
ij bj (3.16)

⇒ eW [b] = e−
1
2 biA

−1
ij bj

∫
exp

(
−1

2
uiAijuj

)
du

= e−
1
2 biA

−1
ij bjeW [0].

(3.17)

We can now use the Feynman trick and take the derivative of the generating function
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with respect to bi, which will give

∂

∂bi
eW [b] =

∫
dv

∂

∂bi
exp

(
−1

2
viAijvj + bivi

)
=

∫
exp

(
−1

2
viAijvj + bivi

)
vidv,

(3.18)

⇒ ∂

∂bi
eW [b]

∣∣∣∣
b=0

= 〈vi〉eW [0] (3.19)

⇒ ∂

∂bi∂bj . . . ∂bn
eW [b]

∣∣∣∣
b=0

= 〈vivj . . . vn〉eW [0] (3.20)

⇒ 〈vivj . . . vn〉 =
∂

∂bi∂bj . . . ∂bn
e−

1
2 biA

−1
ij bj

∣∣∣∣
b=0

. (3.21)

From this, we see several useful properties of these expecation values:
1. 〈1〉 = 1;
2. the expectation of an odd number of operators is zero

〈vi〉 = 〈vivjvk〉 = . . . = 0;

From the second property, we will only need to consider the even numbered operator
products, which we compute as

〈vivj〉 = A−1
ij (3.22)

〈vivjvmvn〉 = A−1
ij A

−1
mn +A−1

imA
−1
jn +A−1

in A
−1
jm

= 〈vivj〉 〈vmvn〉+ 〈vivm〉 〈vjvn〉+ 〈vivn〉 〈vjvm〉
(3.23)

...

〈vivj . . . vn〉 =
∑

combinations

〈v1v2〉 . . . 〈vn−1vn〉. (3.24)

Now taking the limit as the vectors vi have dimensions that tend to infinity, this becomes
a continuous scalar field vi → φ(x), which produces the result in Wick’s theorem

〈φ(x1)φ(x2) . . . φ(xn)〉 =
∑

combinations

〈φ(x1)φ(x2)〉 . . . 〈φ(xn−1)φ(xn)〉. (3.25)

§3.2 Feynman Diagrams (A First Look)

Going back to the perturbative series for interacting quantum field theories, we see that the terms
quickly get messy, making it hard to keep track of terms while considering the physics behind
such processes. In this section, we will develop a graphical method of book keeping such terms in
the perturbative series known as Feynman diagrams. The goal of these diagrams are to encode
all the relevant information that would otherwise have to be written out as tedious integrals. To
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begin with, we consider the pressure, which can be derived from the partition function as

p =
1

βV
lnZ

=
1

βV
ln

[
Zfree

(
1− 〈SI〉+

1

2
〈S2
I 〉 −

1

3!
〈S3
I 〉+ . . .

)]
≈ 1

βV
lnZfree +

1

βV

[
−〈S1〉+

1

2

(〈
S2

1

〉
− 〈S1〉2

)
− 1

3!

(〈
S3

1

〉
− 3

〈
S2

1

〉
〈S1〉+ 2 〈S1〉3

)]
≡ pfree + p(1) + p(2) + p(3) + . . . .,

(3.26)

where to be explicit, we defined

pfree ≡
1

βV
lnZfree (3.27a)

p(1) ≡ −
1

βV
〈S1〉 (3.27b)

p(2) ≡
1

2βV

(〈
S2

1

〉
− 〈S1〉2

)
(3.27c)

p(3) ≡ −
1

3!βV

(〈
S3

1

〉
− 3

〈
S2

1

〉
〈S1〉+ 2 〈S1〉3

)
(3.27d)

...

Considering just the first-order perturbative term, we have from Wick’s theorem that

p(1) = − 3λ

βV

∫
d4x 〈φ(x)φ(x)〉2 . (3.28)

The integrand in general (〈φ(x)φ(y)〉), is a measure of how information is passed through the
field from point x to point y. This is often referred to as the (free) propagator (a.k.a. (free
two-point function)) and graphically denoted simply as a line (from x to y)

〈φ(x)φ(y)〉 =
x y

Figure 3.1: Feynman diagram for the free propagator 〈φ(x)φ(y)〉.

For the first-order pressure term, we see that the free propagator takes information from x back
to the same position, hence it will be a closed-loop. It also has 2 of such propagators (since it is
squared), so it is denoted as

〈φ(x)φ(x)〉2 ∼

Figure 3.2: Feynman diagram for the free propagator 〈φ(x)φ(x)〉2 with coupling λ.

where the solid dot denotes the coupling λ. The solid dot will always denote a coupling and so
must always be at a vertex:



CHAPTER 3. INTERACTING QFT 24

−λ =

Figure 3.3: Feynman diagram a coupling λ.

§3.2.1 Combinatorial Factor

For the coupling vertex illustrated in Fig. 3.3, there are in fact several ways in which such vertices
could come about. As such, these permutations must be considered and gives to a combinatorial
factor. To better understand this, we consider the following example.

Example:

Starting with the coupling vertex, we see that if we were to take one of the “legs” and
connect it to another leg, there are 3 possible ways to do so. So in fact, we have that

= −3λ〈φ(x)φ(x)〉

Figure 3.4: Single coupling vertex with 2 connected legs.

However, if we not pick another leg and attempt to connect it, there is only one way in
which we can do so. As such, connecting the remaining legs does not add any additional
combinatorial factors, but does add another propagator such that

= −3λ〈φ(x)φ(x)〉〈φ(x)φ(x)〉

Figure 3.5: Single coupling vertex with 4 connected legs.

So we see that with the vertex and propagator rules, the 2 loop single vertex diagram
above does indeed retrieve the first-order pressure correction term (up to relevant factors
of βV ).

Note: The Feynman rules for drawing Feynman diagrams can be formulated in both
position and momentum space. They are very helpful in dealing with perturbative series
(λ � 1), but are difficult (although not impossible) to construct for non-perturbative
results.

To better appreciate the utility of Feynman diagrams, let us try construct the Feynman diagram
for the second-order term in the pressure perturbative series. We have that

p(2) ≡
1

2βV

(〈
S2
l

〉
− 〈S1〉2

)
. (3.29)

For these terms, there are going to be 2 vertices and hence, we can draw all the Feynman
diagrams, first for 〈S2

I 〉 as
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Figure 3.6: Feynman diagram for 〈S2
I 〉.

The second diagram above (with the multiplication sign) denotes a disconnected diagram, in
which no propagator connects the 2 vertices. The converse of this is then a connected diagram.
A result of this is that the corresponding integral factorizes. The term disconnected diagram is
used for all diagrams with at least one vertex that is not connected to the rest of the diagram.
We can then see that the Feynman diagram for 〈SI〉2 would just be the disconnected diagram in
Fig. 3.6. The resulting Feynman diagram for p(2) would thus be:

Figure 3.7: Feynman diagram for 〈S2
I 〉.

since the disconnected diagrams cancel out.

Note: This cancelling out is in fact not a coincidence, as it can be shown that all physical
observables do not have disconnected diagrams. This leads to major simplifications in
higher-order perturbative series calculations.

§3.3 The Free-Scalar Field Propagator

Recall that the free propagator was constructed as

〈φ(x)φ(y)〉 =

∫
Dφe−S0φ(x)φ(y)

Zfree
(3.30)

where S0 =
1

2

∫
d4xE

[
∂aφ∂aφ+m2φ2

]
, (3.31)

Zfree =

∫
Dφe−S0 . (3.32)

Since the action is quadratic in the field, the integral is Gaussian, which result involves the inverse
of the operator ∂a∂a +m2. This turns out to be more easily expressed in momentum space, for
which we once again employ the Fourier transform trick involving Matsubara frequencies, giving
us

φ(x) =
T

V

∑
ωn,k

eiωnτ+ik·xφ̃(ωn,k), (3.33)

where the Fourier components are denoted as φ̃. For lighter notation, we will define K = (ωn,k)
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as the Euclidean 4-momentum. Plugging this back into the free propagator gives

〈φ(x)φ(y)〉 =
1

β2V 2

∑
P ,K

∫
Dφ̃e−S0 φ̃(P )φ̃(K)eiP ·x+iK·y

Zfree
. (3.34)

Note that additional Jacobian factors drop out when divided by the free partition function.
Recall that the action in Fourier space is written as

S0 =
1

2βV

∑
K

(K2 +m2)
∣∣∣φ̃(K)

∣∣∣2. (3.35)

From the eveness of a Gaussian function, we have that
∫
dve−

1
2viAijvjvmvn is only non-vanishing

when m = n, which implies that the propagator is non-trivial only when φ̃(p)φ̃(K) =
∣∣∣φ̃(K)

∣∣∣2.

Periodic boundary conditions also dictate that φ̃(P ) = φ̃∗(−P ), which when combined with the
previous condition, implies P +K = 0 for non-trivial propagators. As such, we have that∫

Dφ̃ exp

− 1

2βV

∑
Q

(Q2 +m2)
∣∣∣φ̃(Q)

∣∣∣2
 φ̃(P )φ̃(K) = Zfree ×

(
βV

K2 +m2

)
δP ,−K , (3.36)

where δi,j is the Kronecker delta function. This therefore simplifies the free propagator to

〈φ(x)φ(y)〉 =
1

βV

∑
K

eiK·(y−x)

K2 +m2
=

1

βV

∑
K

eiK·(x−y)

K2 +m2
, (3.37)

where the equality follows from
∑
K =

∑
−K .

Note: The free propagator only depends on the difference in position x − y, which is
expected to emerge from the translational invariance of the operator � +m2.

In the large volume limit (V →∞), the sum over wavevectors k, becomes an integral

〈φ(x)φ(y)〉 = T
∑
ωn

∫
dDk

(2π)D
eiK·(x−y)

K2 +m2
. (3.38)

Propagators are also sometimes referred to as Green’s functions, denoted as G(x,y). In the case
of the free propagator, it is the Green’s function of the Klein-Gordon equation, for which it is
written as

Gfree(x− y) = 〈φ(x)φ(y)〉 = T
∑
ωn

∫
dDk

(2π)D
eiK·(x−y)

K2 +m2
. (3.39)

In the zero-temperature limit, the sum over Matsubara frequencies also tends to an integral,
granting us

lim
T→0

Gfree(x− y) =

∫
dD+1k

(2π)D+1

eiK·(x−y)

K2 +m2
. (3.40)
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With this, we now have the means to compute the perturbative pressure for an interacting
QFT. For 〈φ(x)φ(x)〉 = Gfree(0), we utilize a trick to evaluate this integral which relies on the
identity

1

K2 +m2
=

∂

∂(m2)
ln
(
K2 +m2

)
⇒ Gfree(0) =

∂

∂(m2)
T
∑
ωn

∫
dDk

(2π)D
ln
(
ω2
n + k2 +m2

)
.

(3.41)

Recalling from Eq. (1.44) that the free partition function can be written as

Zfree =
∏
k

T

Ek

∞∏
n=1

ω2
n

ω2
n + E2

k

⇒ lnZfree = −1

2

∑
k

∑
n

ln
(
ω2
n + k2 +m2

)
+m+ . . . ,

(3.42)

where the other terms (denoted “. . .”) are independent of m and not relevant to this calculation.
Comparing this with the Green’s function, we get that

Gfree(0) = −2
∂pfree

∂(m2)
, (3.43)

where we have already evaluated the free pressure via dimensional regularization in Eq. (2.35).
Writing this out explicitly, we have

Gfree (0) = − m2

16π2

[
1

ε
+ ln

(
µ̄2e

1
2

m2

)]
+ IB(T,m) , (3.44)

where IB(T,m) ≡ 2
∂

∂(m2)
JB(T,m) =

∫
dDk

(2π)D
1

Ek(eβEk − 1)
. (3.45)

It is clear that this result is again divergent, saying that the free propagator diverges when x→ 0
(which is a UV-divergence since small distances correspond to high frequencies). However, this
divergence is surpressed when we set m = 0 at D = 3, which gives

lim
m→0

Gfree (0) = IB(T, 0)

=

∫
d3k

(2π)3

1

k(eβk − 1)

=
T 2ζ(2)

2π2
.

(3.46)

As such, we have the first order correction to the pressure in (3 + 1)-dimensions with a φ4

interaction being

p(1) = pfree − 3λG2
free(0) . (3.47)

For a massless scalar field (m = 0), this result takes the succinct form

p(1) =
π2T 4

90
− λT

4

18
. (3.48)
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§3.3.1 Zero Temperature Free Propagator

In this section, we will be taking a closer look at the free propagator in the zero-temperature
limit to understand and interpret it. As presented earlier, this is written as

lim
T→0

Gfree(x) =

∫
dD+1k

(2π)D+1

eiK·x

K2 +m2
. (3.49)

We can see that the integral is in the form of a Fourier transform, so the T = 0 free propagator
in momentum space is simply written as

lim
T→0

G̃free(x) =
1

K2 +m2
, (3.50)

where again, K2 = ω2
n+k2 with ωn = 2πnT being the Matsubara frequencies (n = 0,±1,±2, . . .).

We can write K2 in a Lorentz invariant form by appending an i to ωn, which reads

K2 = −(iωn)2 + k2. (3.51)

In Minkowski space, the 4-momentum is given as kµ = (k0,k), so we can attempt to utilize
analytic continuation and extend

iωn → k0 + iε+, (3.52)

where ε+ is a small positive value which is later taken to 0. For the T = 0 free propagator in
momentum space, analytic continuation as done above leads to the retarded Green’s function in
Minkowski space

G̃R, free(k0,k) = G̃R, free(−ik0 + ε+,k)

=
1

−(k0 + iε+)2 + k2 +m2

=
1

kµkµ +m2 − iε+sign(k0)
.

(3.53)

Further separating out the real and imaginary parts gives us

G̃R, free(k0,k) = P
[

1

kµkµ +m2

]
+ i

[
ε+sign(k0)

(kµkµ +m2)2 + (ε+)2
,

]
(3.54)

where P indicates the Cauchy principle value. We can now take the limit in which the small
positive regulator is taken to zero, and use the identity

lim
ε+→0

ε+

x2 + ε+
= πδ(x) (3.55)

⇒ G̃R, free(k0,k) = P
[

1

kµkµ +m2

]
+ i

π

2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
, (3.56)

where Ek = k2 + m2. The real and imaginary parts of this function are not unrelated, but for
now we shall just focus on the imaginary part which is referred to as the spectral function:

ρ̃free(k0,k) = Im G̃R, free(k0,k) =
π

2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
, (3.57)



29 3.4. APPLICATION: THERMAL PHASE TRANSITIONS

which we see is sharply peaked at energies ±Ek. This sort of peaked behavior not only appears
in QFT, but also in classical systems for which the energy behavior is localized at (or around)
some Ek, forming what is known as a quasiparticle. The localization at −Ek on the other hand
can for now be taken at face value and labeled an anti-quasiparticle. Anti-particles as we will
see, natural emerge in QFT.

The structure of this spectral function suggest that the relevant excitations in a free QFT are
particle-like, which the quasiparticles and anti-quasiparticles satisfy the dispersion relation

(k0)2 = k2 +m2, (3.58)

that implies that quasiparticles have mass, m. In other words, the poles of the analytically
continued free propagator corresponds to the quasiparticle mass. Dispersion relations can in
general be measured and used to infer the properties of quasiparticles, especially in more complex
interacting systems. Dispersion relations can also have imaginary parts, which pertain to the
lifetime of the quasiparticle. In this case (free QFT), the quasiparticle would thus have an infinite
lifetime (unconditionally stable).

§3.4 Application: Thermal Phase Transitions

In this section, we shall be looking at an application of the quantum field theory formalism we
have developed thus far. In particular, will will be looking at the problem of thermal phase tran-
sitions which occur for instance, in QCD studies of the early universe and the Higgs mechanism.
Unfortunately, a rigorous treatment of what we are about to discuss requires additional tools
(e.g. gauge fields, fermions, etc) that we have yet to discuss, but we do have the necessary tools
for a qualitative understanding. To start, we consider again a φ4 potential but now with the sign
on the φ2 term flipped:

V (φ) = −1

2
m2φ2 + λφ4. (3.59)

For λ > 0, we will have that the φ4 term will still allow for convergent integrals and stabilize the
QFT despite the imaginary mass.

Note: Any Lagrangian with an imaginary mass terms signals an instability in the system.

This potential plotted against φ will then look (as a function of φ) like a cross section of the
famed “Mexican hat”. In this case, since the λ = 0 scenario causes the system to be completely
unstable, perturbation will no longer work since we would be simply expanding around the wrong
groundstate. So instead, we need to expand around the stable minimum of the system. To do
so, we can decompose the quantum field into a constant plus fluctuations

φ(x) = φ+ φ′(x), (3.60)

where we will refer to the constant φ, as the mean field term. This renders the path integral
as

Z =

∫
dφ

∫
Dφ′e−S[φ]−S′[φ,φ′], (3.61)
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where S[φ + φ′] = S[φ] + S′[φ, φ′]. The convenience that the mean field term brings, is that it
is no longer a path integral but now simply a regular integral over φ. If we perform the path
integral, we are left with an effective potential term Ueff(φ), such that

Z =

∫
dφe−βV Ueff(φ), (3.62)

where V is the volume of the Euclidean thermal cylinder. In the large volume (or low temper-
ature) limit, the partition function to lowest order is just the minimum of the effective poten-
tial

Z ≈ e−βV Ueff(φmin)+O(ln(βV )), (3.63)

such that dUeff(φ)/dφ|φmin
= 0. If we ignore all fluctuations (which is a drastic but useful

approximation for extracting the physics), we have

Z =

∫
dφe−S[φ], (3.64a)

where S[φ] =

∫
dτ

∫
d3xV (φ) = βV × V (φ), (3.64b)

V (φ) being just the classical potential. Minimizing the classical potential with respect to φ will
give us that

φmin = ± m

2
√
λ

(3.65)

⇒ Zmf = βV

(
m4

16λ

)
. (3.66)

Note: The expectation value of the field in the mean field approximation is simply the
mean field itself, i.e.

〈φ(x)〉mf = φ. (3.67)

Recall that in the high temperature limit we will have T � m, for which we can ignore the
mass scale which grants that φ ≈ 0. So we conclude that between the zero temperature and
high temperature cases (where m goes from non zero to effectively zero), there will indeed be a
(thermal) phase transition in which the expectation of the field (computed with the full action)
is an order parameter.

§3.4.1 Beyond Mean Field

To do better than the lowest order approximation, we will have to go back and systematically
add the fluctuation terms φ′(x), to the scalar field. By construction of the fluctuation term, we
have that its integral over x will evaluate to zero (i.e.

∫
x
φ′(x) = 0). Plugging in φ(x) = φ+φ′(x)

into the potential grants us

V (φ+ φ′(x)) = V (φ) +
(
−m2φ+ 4λφ

3
)
φ′ +

1

2

(
−m2 + 12λφ

2
)
φ′2 +

(
4λφ

)
φ′3 + (λ)φ′4.

(3.68)
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When used to compute the action, we see that the term linear in φ′ would vanish, leaving us
with

Z =

∫
dφe−βV V (φ)

∫
Dφ′e−S

′
0[φ]−S′I [φ]; (3.69a)

where S′0[φ] ≡ 1

2

∫
x

[
∂aφ∂aφ+

(
−m2 + 12λφ

2
)
φ′2
]
, (3.69b)

S′I [φ] =

∫
x

[(
4λφ

)
φ′3 + (λ)φ′4

]
. (3.69c)

We notice that S′0 looks like the action for a non-interacting QFT with an effective mass

m2
eff(φ) = −m2 + 12λφ

2
. (3.70)

So as per what we have done before, we can just use perturbation theory to compute the effect
of adding the S′I contribution into the path integral (it turns out that this will not be necessary
to extract the necessary physics). There are 2 scenarios we now consider:

1. symmetric phase (φ = 0): in this case, the calculations for the fluctuations revert to stan-
dard perturbation theory;

2. symmetry broken phase (φ 6= 0): in this case, the calculations are modified from the pres-
ence of a non-zero field expectation value;

Now we get to actually computing the terms in the perturbative series. The leading order term
would of course just yield the result from a free field theory but replacing m with meff:∫
Dφ′e−S

′
0[φ] = exp

(
−βV

2

∫
dDk

(2π)D

[√
k2 +m2

eff + 2T ln
(
1− e−βEk

)])
= eβV pfree(T ). (3.71)

The renormalized free pressure from the MS scheme has already been computed which grants us
that

U ren
eff,0(φ) = V (φ) + JB(T,meff(φ))− m4

eff(φ)

64π2
ln

(
µ2e3/2∣∣m2

eff(φ)
∣∣
)
. (3.72)

To simplify the discussion, we consider the zero-temperature case which causes JB to vanish and
choose µ̄ = m, leaving us with

U ren
eff,0(φ) = V (φ)− m4

eff(φ)

64π2
ln

(
m2e3/2∣∣m2

eff(φ)
∣∣
)
. (3.73)

We then compare this corrected potential to the zeroth-order mean field approximation by setting
λ = 1 (for illustrative purposes), which gives us the plots in Fig. 3.8.
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Figure 3.8: Low temperature effective potential curves to zero and first order in perturbation theory.

We can see there is no qualitative change in the potential, and only a very small quantitative
change in the curve. If we now consider the high temperature limit (T � m), we can consider
an expansion of JB in powers of m, which can be gleaned from Eq. (3.45) to give (up to second-
order):

JB(T,m) ≈ −π
2T 4

90
+
T 2

24
m2. (3.74)

This results in the effective renormalized temperature at high temperatures:

U ren
eff,0(φ) =

1

2

(
−m2 + λT 2

)
φ

2
+ λφ

4 − m4
eff(φ)

64π2
ln

(
µ̄2e3/2∣∣m2

eff(φ)
∣∣
)
. (3.75)

Once again setting µ̄ = m and λ = 1 gives the plot in Fig. 3.9.

Figure 3.9: High temperature effective potential curves to zero and first order in perturbation theory.

This in fact produces a qualitative change in the behavior, which restores symmetry due to the
change in sign of the quadratic term at high temperatures. Even better than showing there
is indeed a phase transition, we can also estimate the location at which this phase transition
occurs (the transition value of T ). To do see, we find the minimum of the potential with respect
to φ using the first derivation necessary condition. We know that in the symmetric phase, the
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minimum must occur at φ = 0, so we have

dU ren
eff,0(φ)

dφ

∣∣∣∣∣
φ=0

= m2

(
−1 +

3λ

4π2

)
+ λT 2 = 0 (3.76)

⇒ T 2
c = m2

(
1

λ
− 3

4π2

)
, (3.77)

where the subscript “c” stands for critical temperature of the phase transition. Since we are
doing perturbation theory and treating λ � 1, we are then left with the approximation of the
critical temperature being

Tc ≈
m√
λ
. (3.78)

§3.5 The Full Propagator

We have seen how to compute the propagator (two-point function, 〈φ(x)φ(y)〉) for a free scalar
field in Sec. 3.3. Now, we want to tackle the issue of computing the full propagator of a system
of interacting QFTs. The full propagator is given as

G(x) =

∫
Dφe−S0−SIφ(x)φ(0)

Z

≈
∫
Dφe−S0−SIφ(x)φ(0)

Zfree

=

∞∑
n=0

1

n!

∫
Dφe−S0φ(x)φ(0) (−SI)n

Zfree
.

(3.79)

In this case, the infinite perturbative series for the propagator in terms of (connected) Feynman
diagrams will have two external (not closed loops) legs, which in some cases all of the terms can be
computed (with diagrams of a simple enough structure). This summing up of an infinite number
of terms is known as resummation and can in some cases be quite successful an approximation.
Let’s look at just the first-order correction to the full propagator,

G(1)(x) = Gfree(x)− 〈φ(x)φ(0)SI〉. (3.80)

Similar, we can also compute the first-order correction to the partition function which will
be

Z(1) = Zfree − 〈SI〉. (3.81)

For to evaluate the first-order corrected propagator, we will first need to evaluate the correction
term

〈φ(x)φ(0)SI〉 = λ

∫
d4y〈φ(x)φ(0)φ4(y)〉

= 12λ

∫
d4y〈φ(x)φ(y)〉〈φ(y)φ(0)〉〈φ(y)φ(y)〉

= 12λ

∫
d4yGfree(x− y)Gfree(y)Gfree(0),

(3.82)
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where we used the Wick’s theorem above. Now using the delta-function identity

δ(P −K) =

∫
d4yei(P−K)y, (3.83)

we can assert the zero-temperature limit and compute the first-order correction to get

lim
T→0
〈φ(x)φ(0)SI〉 = 12λGfree(0)

∫
d4K

eiK·x

(K2 +m2)2
, (3.84)

⇒ lim
T→0

G(1)(x) =

∫
d4K

eiK·x

K2 +m2
− 12λGfree(0)

∫
d4K

eiK·x

(K2 +m2)2
, (3.85)

⇒ G̃(1)(K) =
1

K2 +m2
− 12λGfree(0)

(K2 +m2)2
. (3.86)

The explicit form of Gfree(0) has been computed in Eq. (3.44), and we notice that the result of
G̃(1)(K) looks much like the start of a geometric series (which it turns out to be if we compute
the higher order corrections explicitly). As such, one finds that the full (resummed) propagator
in momentum space is given by

G̃(K) =
1

K2 +m2 + 12λGfree(0)
+O(λ2), (3.87)

which is valid up to second-order in perturbation theory. We can fix this result to be exact if we
replace 12λGfree(0) in the denominator with the appropriate function of K we call Π̃(K), such
that

G̃(K) =
1

K2 +m2 + Π̃(K)
. (3.88)

The function Π in real-space is referred to as the self-energy of the scalar field φ, which is a central
object in QFT (contains a lot of information) and something we will return to in generality later
in the course. For now, let’s just look at the lowest order term of Π̃(K), which we can get by
simply plugging in Eq. (3.44) to give

Π̃(1) = 12λGfree(0)

= −3m2λ

4π2

[
1

ε
+ ln

(
µ̄2e

1
2

m2

)]
+ 12λIB(T,m).

(3.89)

Unfortunately, this result is divergent when ε → 0. However, since Π̃(1)(K) always appears in
conjunction with m2 (as seen in Eq. 3.88), we can use m which is a parameter of the Lagrangian
to renormalize this (i.e. add a counter term) by taking

m2 → m2
phys + δm2, (3.90)

with δm2 ≡
2m2

physλ

4π2ε
+O(λ2). (3.91)
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Note: The subscript “phys” does not imply that the quantity is physically measurable,
but rather associated to the renormalization scheme to renormalize the mass parameter to
something physical. This notation will be adopted for other such renormalization counter
terms in future.

As a result, we are left with a finite result

m2 + Π̃(1) = m2
phys −

3m2
physλ

4π2
ln

(
µ̄2e

1
2

m2
phys

)
+ 12λIB(T,mphys)

= m2
phys + Π̃ren

(1) +O(λ2).

(3.92)

Recall that in Sec. 3.3.1, we found that the poles of the analytically continued free propagator cor-
respond to quasiparticle masses. As such, we can apply this same exercise to the full propagator,
which when we replace the Euclidean 4-momentum with the Minkowski one (K2 → −k2

0 + k2),
we get a propagator pole at

k2
0 = k2 +m2

phys + Π̃ren
(1) . (3.93)

This means that the quasiparticle mass meff , is then given by

meff(T ) = mphys −
3λmphys

8π2
ln

(
µ̄2e

1
2

m2
phys

)
+

6λ

mphys
IB (T,mphys) , (3.94)

which seems to be renormalization scale and temperature dependent. However since it is a
measurable quantity, this cannot be the case. The only way out is if

µ̄
∂m2

eff

∂µ̄
= 0. (3.95)

For this to hold, it must then be that mphys is dependent on the scale µ̄ for which we say that
the mass parameter “runs”. Plugging this into the condition above and taking the T = 0 limit
gives

µ̄
∂m2

phys(µ̄)

∂µ̄

[
1− 3λ

4π2
ln

(
µ̄2e−

1
2

m2
phys(µ̄)

)]
−

3λm2
phys(µ̄)

2π2
= 0, (3.96)

for which asserting perturbation theory and dropping all λ2 terms and higher gives

µ̄
∂m2

phys(µ̄)

∂µ̄
=

3λm2
phys(µ̄)

2π2
. (3.97)

A special case would be when mphys = 0, which would result in the effective mass (with non-zero
temperature) to take the form

meff(T ) =
√

12λIB(T, 0) = T
√
λ. (3.98)
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This turns out to be an actual physically realizable scenario known as the in-medium mass,
where massless quasiparticles acquire an effective mass through interactions with the thermal
medium.

Note: The in-medium mass is generically unavoidable for any value of mphys, just that
is takes the particularly simple form for the mphys = 0 case.

§3.6 Four-Point Functions

So far we have been studying the formalism of two-point functions (propagators), and so the
natural progression from this is to look at four-point functions (FPF):

Γ4(x1,x2,x3,x4) =

∫
Dφe−S0−SIφ(x1)φ(x2)φ(x3)φ(x4)

Z
, (3.99)

which are the next order correction terms that appear in the perturbative series. As with the
propagator, we only care about connected four-point functions since all the disconnected terms
will cancel out. The minimum number of vertices to connect 4 fields would be 1 vertex, so the
leading order perturbative term would be

Γ
(1)
4,conn. =

∫
Dφe−S0(−SI)φ(x1)φ(x2)φ(x3)φ(x4)

Z(1)

= −4!λ

∫
d4xGfree(x− x1)Gfree(x− x2)Gfree(x− x3)Gfree(x− x4)

= −4!λ

∫
P1,P2,P3,P4

G̃free (P 1) G̃free (P 2) G̃free (P 3) G̃free (P 4)

× (2π)4δ (P 1 + P 2 + P 3 + P 4) eiP 1·x1+iP 2·x2+iP 3·x3+iP 4·x4 ,

(3.100)

where we once again used Wick’s theorem. The Dirac-delta function simply ensures that 4-
momentum is conserved. We can then also denote this as an “amputated” FPF by dropping the
4 Greens functions since they are a trivial consequence of having 4 external legs, and the delta
function with its normalization, which results in the Fourier transformed amputated FPF

Γ̃
(1)
4

∣∣∣
conn., amp.

(P 1 + P 2 + P 3 + P 4) = −4!λ. (3.101)

Note: The “amputated” function is purely a notational device (so we can be lazy and
write less terms) which does not actually consider the differently defined function.

We can now also consider the next-to-leading order (NLO) term in the perturbation series which
is written as

Γ
(2)
4,conn. = Γ

(1)
4,conn. +

1

2

∫
Dφe−S0

∫
x,y

φ4(x)φ4(y)φ(x1)φ(x2)φ(x3)φ(x4)

Z(2)
(3.102)
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The overall multiplicative factor from this term is given by (excluding the factor of 1/2 out
front)

(2× 4)× 3× (4× 3)× 2 = 576, (3.103)

which comes from the following connections:

1. First consider φ(x1): there are (2× 4) legs in S2
I ∼ φ4(x)φ4(y) to attach to, for which we

choose φ(x);

2. Next, consider φ(x2): there are 3 remaining φ(x) legs to attach to if we want φ(x2) con-
nected to the same vertex as φ(x1);

3. Next, consider one of the remaining φ(x): attach this to one of the 4 φ(y) legs, and then
pick the last φ(x) and attach to the 3 φ(y);

4. Finally: attach φ(x3) to one of the 2 remaining φ(y) and φ(x4) to the last φ(y).

We can now once again define the amputated FPF in momentum space after performing all
contractions (connections of legs) to get

Γ̃
(2)
4,conn., amp. = Γ̃

(1)
4,conn., amp. +

(4!λ)2

2

∫
K

1

K2 +m2

1

(P1 + P2 −K)
2

+m2
+ two others, (3.104)

where the two other terms arise from the other options of attaching φ(x2), which give rise to the
same amputated four-point function but with variables x1, x2, x3, x4 exchanged. Unlike the the
first order term, we have that the amputated function now depends on the momentum of the
incoming particles. However, we can consider the special case where all of these momenta are
set to zero (zero-temperature limit), which gives

Γ̃
(2)
4,conn., amp.(P = 0) = (−4!λ) +

3(4!λ)2

2

∫
K

1

(K2 +m2)2
. (3.105)

We have evaluated this integral before in Eq. (2.28), which gives us that∫
K

1

(K2 +m2)2
=

1

(4π)
4
2

Γ(2− 4
2 )

Γ(2)
(m2)−2+ 4

2

=
1

(4π)2

Γ(0)

Γ(2)
.

(3.106)

This gives a divergent result, so we need to use dimensional regularization and consider D =
4− 2ε, such that we instead are left with

Γ̃
(2)
4,conn., amp.(P = 0) = (−4!λ) +

3(4!λ)2

2

1

(4π)2−εΓ(ε)

(
µ2

m2

)ε
. (3.107)

Expanding in powers of ε to lowest order gives

Γ̃
(2)
4,conn., amp.(P = 0) = (−4!λ) +

3(4!λ)2

32π2

[
1

ε
+ ln

(
µ2

m2

)]
+O(ε). (3.108)
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To now renormalize the theory, we use the coupling constant as the renormalization parameter,
completely analogous to a renormalization of the mass parameter in Eq. (3.90), such that

λ → λphys + δλ, (3.109)

where δλ = O(λ2
phys). In the MS scheme, we would then choose

δλ =
9λ2

phys

4π2ε
(3.110)

⇒ Γ̃
(2)
4,conn., amp., ren.(P = 0) = (−4!λphys) +

9λ2
phys

4π2
ln

(
µ2

m2

)
. (3.111)

We are left with one loose end to tie still, and that is since Γ̃
(2)
4,conn., amp. is in principle a measurable

quantity, it should not be µ scale dependent. We fix this by asserting a condition similar to
Eq. (3.95), which translates to this context as

µ
∂Γ̃

(2)
4,conn., amp., ren.(P = 0)

∂µ
= 0. (3.112)

This condition can only be met if λphys is itself µ dependent, which grants the differential
equation

µ̄
∂λphys(µ̄)

∂µ̄

[
1− 3λphys

16π2
ln

(
µ̄2

m2

)]
−

3λ2
phys

16π2
= 0, (3.113)

which to leading order in perturbation theory (powers of λphys) simplifies to

µ̄
∂λphys(µ̄)

∂µ̄
=

3λ2
phys

16π2
+O(λ3

phys) . (3.114)

As per the “lingo” we used earlier, we say that the coupling constant “runs”.

§3.7 Renormalization Group

We have seen that in at several instances in perturbative QFT, we have come up against physical
observables in the theory that somehow depend on a scale parameter µ, after renormalization.
This should not be the case for an actual theory, although the Lagrangian can depend on µ.
Specifically, we saw this arise when attempting to compute the four-point function which would
be necessary as a second-order correction to the path integral. Independence of the quasiparticle
mass led to Eq. (3.97):

µ̄
∂m2

phys(µ̄)

∂µ̄
≈

3λm2
phys(µ̄)

2π2
, (3.115)

while independence of the physical vertex led to Eq. (3.114):

µ̄
∂λphys(µ̄)

∂µ̄
≈

3λ2
phys

16π2
. (3.116)
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This implied a scale dependence of mphys and λphys known as the running mass and coupling
constant respectively. Before proceeding, it is customary to introduce the notation

γm(λ) ≡ µ̄
∂ ln

[
m2(µ̄)

]
∂µ̄

, (3.117a)

β(λ) ≡ µ̄∂λ(µ̄)

∂µ̄
. (3.117b)

To handle this issue with a formal scheme, Richard Feynman, Julian Schwinger and Shinichiro
Tomonaga came up with the renormalization group formalism (the group of scale transforma-
tions). To best way to learn about this concept is by first considering a physically measurable
object such as the pressure. We have seen that calculating pressures in QFT typically require
renormalization and thus a dependence on Lagrangian parameters, i.e.:

pren = pren (µ, λphys(µ),mphys(µ)) . (3.118)

We consider physical observables because we know for certain that these quantities must be
scale invariant (i.e. pren(µ) = pren(µ′)), which is referred to as “renormalization group (RG)
invariance”. For pressure, this condition can be written as

µ
d

dµ
pren (µ, λphys(µ),mphys(µ)) = 0 (3.119)

⇒

[
µ̄
∂

∂µ̄
+ β

∂

∂λphys
+ γmm

2
phys

∂

∂m2
phys

]
pren (µ̄, λphys ,mphys ) = 0. (3.120)

It turns out that calculations are easier for another related physical quantity, the entropy density
s = ∂p/∂T as it will avoid having to deal with issues regarding the cosmological constant. Now
using Eq. (2.42) and Eq. (3.47) which read,

prenorm(T ) = −JB(T,m) +
m4

64π2
ln

(
µ2e3/2

m2

)
, (3.121)

p(1) = pfree − 3λG2
free(0), (3.122)

where Gfree(0) is given by Eq. (3.44), we can compute the entropy density up to first-order in
perturbation theory as

s(1) = − ∂

∂T
JB(T,m)− 6λGfree(0)

∂

∂T
IB(T,m), (3.123)

where IB(T,m) is defined in Eq. (3.45). Since JB and IB are not functions of µ but Gfree(0) is,
we get

µ
∂

∂µ
s(1) = −6λµ

∂Gfree(0)

∂µ

∂IB(T,m)

∂T
(3.124)

⇒ 6λ
∂IB(T,m)

∂T

m2

8π2
= −

[
β

∂

∂λphys
+ γmm

2
phys

∂

∂m2
phys

]
s(1), (3.125)
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where we plugged in the explicit form of Gfree(0) and used the RG invariance criteria

[
µ̄
∂

∂µ̄
+ β

∂

∂λphys
+ γmm

2
phys

∂

∂m2
phys

]
s(1) = 0,

⇒ µ̄
∂

∂µ̄
s(1) = −

[
β

∂

∂λphys
+ γmm

2
phys

∂

∂m2
phys

]
s(1).

(3.126)

To lowest order in perturbation theory, we have that m = mphys and λ = λphys. Also, β by
definition is of O(λ2), which leaves

∂IB
∂T

3λm2

4π2
≈ −γmm2

phys

∂

∂m2
phys

s(1)

= γmm
2
phys

∂

∂m2
phys

∂JB
∂T

= γm
m2

phys

2

∂IB
∂T

=

(
3λphys

2π2

)
m2

phys

2

∂IB
∂T

.

(3.127)

So indeed, we see that to lowest order the RG invariance criteria is met.

We see from this example that RG is useful for consistency checks in perturbation theory, but
more importantly imply evolution equations (such as those in Eq. (3.97) and Eq. (3.114)) which
can be used to solve for Lagrangian parameters. For illustration, we shall solve for the form of
the running coupling λphys, in φ4 theory to leading order in perturbation theory from Eq. (3.114)
as follows:

µ̄
∂λphys(µ̄)

∂µ̄
≈

3λ2
phys

16π2
,

⇒ 1

λ2
phys

∂λphys(µ̄)

∂µ̄
≈ 3µ̄

16π2

⇒ −
∂λ−1

phys(µ)

∂ lnµ
≈ 3

16π2

⇒ λphys(µ) =
16π2/3

ln(µ0/µ)
,

(3.128)

where µ0 is an integration constant with mass dimension 1. This can be plot as shown in
Fig. 3.10
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Figure 3.10: Plot of λ(µ) vs µ/µ0 for first-order φ4 theory.

So we see that λ(µ) is small for small energy scales (shorted distance scales) µ, and grows
monotonically as a function of µ (running). This implies that the coupling get stronger at short
distances which would cause problems to arise in the continuum limit of the field theory.

Note: The monotonic increase is due to the positive sign associated to the β function
defined earlier. If it were instead negative, the trend would be decreasing with µ, implying
weaker and weaker coupling at shorter distances which are referred to asymptotically free
theories.

A perculiar result for φ4 theories is that when µ = µ0, the coupling diverges. this value of
µ0 = µ is called the Landau pole. Although this result is questionable since our result derives
from perturbation theory in which the coupling is assumed to be small. However in more general
cases where Landau poles do certainly exist, it implies a minimum length scale ∝ µ−1

0 below
which the theory fails (i.e. the theory is a cut-off dependent effective field theory).

§3.8 Complex Scalar Fields

Thus far, we have been working under the assumption of a real valued scalar field which due to
Lorentz invarinace, requires the Euclidean action of the form

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+ V (φ)

]
. (3.129)

We are now going to extend our theories to encompass complex scalar fields (these are not
observed in nature). To make sure that this still results in physically acceptable QFTs, we
must ensure that physical observables remain real and we expect the partition function Z ∈ R.
The simplest way to ensure Z ∈ R is to work with a real-valued action. Real actions can be
constructed out of complex scalar fields by using quadratic form terms such as φφ∗. Once again
asserting Lorentz invariance, we can write down the action

SE =

∫
d4xE

[
∂aφ∂aφ

∗ + V (
√
φφ∗)

]
, (3.130)

which satisfies all the necessary conditions so far. For starters, it is instructive to consider a
complex scalar field QFT which is close to those we have studied for real scalar fields. As such,
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we write the following action:

SE =

∫
d4xE

[
∂aφ∂aφ

∗ +m2φφ∗ + 4λ(φφ∗)2
]
. (3.131)

With the introduction of complex fields, we note that the action (apart from Lorentz invariance)
has an additional symmetry:

φ(x) → eiαφ(x) or φ∗(x) → e−iαφ∗(x), (3.132)

where α ∈ R is a constant. In group theory, this is known as a U(1) transformation. We will
come back to the implications of this symmetry soon, but for now we shall work at computing
the resulting partition function for this theory. Since φ is complex, we can separate it into =real
and imaginary components written as

φ(x) =
φ1(x) + iφ2(x)√

2
, (3.133)

⇒ SE =

∫
d4xE

[
1

2
∂aφ1∂aφ1 +

1

2
∂aφ2∂aφ2 +

m2

2

(
φ2

1 + φ2
2

)
+ λ

(
φ2

1 + φ2
2

)2]
. (3.134)

The partition function is then a path integral over both φ1 and φ2 written as

Z =

∫
Dφ1Dφ2e

−SE , (3.135)

which looks very much like 2 copies of the partition function for a real scalar field. There is
however one term which mediates the 2 copies which is the cross term 2λφ2

1φ
2
2. To simplify our

discussion, we shall consider the case where we drop the coupling (λ = 0) for the time being. In
this case, we just have the free complex scalar field which we can decompose as

SE
∣∣
λ=0

= S0[φ1] + S1[φ2], (3.136a)

where S0[φ] =

∫
d4xE

[
1

2
∂aφR∂aφR +

m2

2
φ2
R

]
, (3.136b)

with φR is a real scalar field. So the free partition function for the complex scalar field is now
just

Zfree =

∫
Dφ1Dφ2e

−S0[φ1]−S1[φ2]

=

∫
Dφ1

e−S0[φ1]

∫
Dφ2

e−S1[φ2]

= [Zfree(φR)]
2
.

(3.137)

The free pressure for a complex scalar field would then be

pCfree =
lnZC

βV

=
ln(ZR)

2

βV
=

2 lnZR

βV
.

(3.138)
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In the zero mass limit (m = 0), we can use the result from before and compute that zero-mass
free pressure for a complex scalar field as

lim
m→0

pCfree =
π2T 4

45
. (3.139)

The physics behind this is rather simple here since as we already saw, the pressure for a complex
scalar field just corresponds to the pressure due to two real scalar fields. Generalizing this, we
see that the pressure due to N free scalar fields would just be

p
(N)
free =

Nπ2T 4

90
. (3.140)

We call every term of π2T 4/90 as a bosonic degree of freedom (bosonic in reference to the field
being scalar). This generalization in fact allows one to count the number of bosonic degrees of
freedom in the system via the formula

DoF =
90p(T )

π2T 4
. (3.141)

The DoF defined in this way does not need to be an integer, and works as an effective number of
degrees of freedom. This concept of effective DoF is relevant for areas such as cosmology where
the DoF in fact changes in time, which is a means for cosmologist to characterize the history of
the universe.

§3.8.1 Noether’s Theorem: Symmetries and Conserved Quantities

Symmetries are an integral part of physics in general, for which is connection to conservation
laws was made precise by the groundbreaking work of Emmy Noether in 1915. In this section,
we will explore a particular symmetry alluded earlier where a complex scalar field picks up an
arbitrary phase eiα. First a general treatment, taking φ and φ∗ as independent fields we can
compute the variation of the action as

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂φ∗

δφ∗ +
∂L

∂(∂µφ∗)
δ(∂µφ

∗)

]
. (3.142)

To compute this, we first consider the chain rule (i.e. integration by parts) which gives∫
d4x

∂L
∂(∂µφ)

δ(∂µφ) =

∫
d4x ∂µ

[
∂L

∂(∂µφ)δφ

]
−
∫
d4xδφ ∂µ

[
∂L

∂(∂µφ)

]
, (3.143)

and similarly for φ∗. This results in the equations of motion for φ and φ∗ as

(�−m2)φ+ 8λ (φφ∗)φ, (3.144a)

(�−m2)φ∗ + 8λ (φφ∗)φ∗, (3.144b)

where � is the d’Alembertian. Using these equations of motion and applying them back to the
variation in the action gives

δS =

∫
d4x∂µ

[
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗
]
, (3.145)
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which vanishes if the function in the total derivative is well behaved at infinity (δS = 0) for any
small variation δφ. If we now consider the system placed in a box of finite volume such that,
assuming the variation δφ is an actual symmetry of the system, we will still retain that

δSbox =

∫
box

d4x∂µ

[
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗
]

= 0. (3.146)

Now going back to our symmetry of interest, if we consider the variation

δφ = φ− φ′

= φ− eiαφ ≈ iαφ,
(3.147)

this will leads to

α

∫
box

d4x∂µ

[
i

∂L
∂(∂µφ)

φ− i ∂L
∂(∂µφ∗)

φ∗
]

= 0

⇒ ∂µ

[
i

∂L
∂(∂µφ)

φ− i ∂L
∂(∂µφ∗)

φ∗
]

= 0,

(3.148)

where the integrand must vanish if the integral does since the box is an arbitrary volume. We
denote the contravariant term in brackets as

jµ(x) = i
∂L

∂(∂µφ)
φ− i ∂L

∂(∂µφ∗)
φ∗ ,

⇒ jµ(x) = 2 Im {φ∂µφ∗} ,
(3.149)

where the second line comes from plugging in the explicit form of the Lagrangian into the
expression for jµ(x). This object is referred to as the Noether current density, which we see is
conserved if δφ is indeed a symmetry of the system:

∂µj
µ(x) = 0 . (3.150)

Separating out the space and time components, we get the relation

∂µj
µ(x) = ∂0ρ+ ∇ · j = 0, (3.151)

which if integrated over an infinite spatial volume (
∫
d3x), grants the relation

∂0

∫
d3xρ = 0, (3.152)

as long as j is well behaved and falls off sufficiently fast at infinity. We call the integral
∫
d3xρ

the Noether charge Q, which is conserved in time ∂0Q = 0. These results constitute what is
known as Noether’s theorem, which reads:

Theorem 3.8.1. Every continuous symmetry corresponds to a conserved quantity.

This of course extends to all symmetries (e.g. time translation symmetry leading to energy
conservation) and not just the symmetry we are studying in this section, making it one of the
most important results in modern physics.
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§3.8.2 Noether’s Theorem: Quantum Mechanics

In the previous section, we saw how conserved quantities arise in classical fields in the presence of
continuous symmetries. In this section, we will extend this concept to tackle quantum mechanical
systems. This will require us to ensure that the symmetries we saw in the action extend also
to the path integral (elevating the classical action to a full quantum theory). It turns out that
working in terms of the Minkowski action (by performing the Wick rotation) is easier for this
task, so we write the partition function written as

Z =

∫
DφeiS , (3.153)

where S = −
∫
d4x

[
∂µφ∂

µφ∗ +m2|φ|2 + 4λ|φ|4
]
. (3.154)

The path integral for complex scalar fields will then have to be

Z =

∫
DφDφ∗eiS[φ,φ∗]. (3.155)

In order to see if the symmetry of φ→ φ′ = eiαφ is indeed a symmetry of the QFT, we will have
to check if ∫

DφDφ∗eiS[φ,φ∗] =

∫
Dφ′Dφ′∗eiS[φ′,φ′∗]. (3.156)

Before doing so, we will make another generalization to the transformation we had earlier. That
is, we will now make α = α(x), such that the transformation now become locally defined :

φ(x) → eiα(x)φ(x). (3.157)

Since the result of Noether’s theorem holds for any small variation δφ(x) at least to linear order,
it stands to reason that the transformation above would also hold granted that α(x) is small
such that the variation is instead

δφ(x) = iα(x)φ(x) (3.158)

⇒ δS =

∫
d4x∂µ

[
α(x)

(
i

∂L
∂(∂µφ)

φ− i ∂L
∂(∂µφ∗)

φ∗
)]

=

∫
d4x ∂µ [α(x)jµ(x)]

=

∫
d4x α(x)∂µj

µ(x) +

∫
d4x jµ(x)∂µα(x)

=

∫
d4x jµ(x)∂µα(x),

(3.159)

since we know that ∂µj
µ(x) = 0. With this, we can write the path amplitude as

eiS[φ′,φ′∗] = eiS[φ,φ∗]eiδS

= eiS[φ,φ∗]

(
1 + i

∫
d4xjµ∂µα

)
.

(3.160)
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The path integral measure under the transformation becomes

Dφ → Dφeiα(x), (3.161a)

Dφ∗ → Dφ∗e−iα(x), (3.161b)

which implies that DφDφ∗ = Dφ′Dφ′∗ . As such, we have that to linear order in the parameter
α(x): ∫

d4x∂µα(x)

∫
DφDφ∗eiSjµ(x) = 0,

⇒
∫
d4x∂µα(x)× 〈jµ(x)〉full = 0,

⇒
∫
d4xα(x)∂µ〈jµ(x)〉full = 0,

⇒ ∂µ〈jµ(x)〉full = 0 ,

(3.162)

where we noted that the integrand must vanish along with the integral since α(x) although small,
is an arbitrary function of x. So we see that in the full QFT, the expectation value of the
Noether current is conserved.

§3.8.3 Ward-Takahashi Identity

In QFT, alongside the Noether conservation laws is an additional constraint on correlation func-
tions which arise from local transformation invariance. This additional constraint is known as
the Ward-Takahashi identity, and are powerful because they provide an exact (nonperturbative)
relation in QFT. To start off, we consider the two-point function for a complex scalar field

〈φ(x)φ∗(y)〉full =

∫
DφDφ∗eiSφ(x)φ∗(y)

Z
. (3.163)

Considering once again the local transformation, we see that since it leaves the action invariant
(to first-order in α), along with the path integral measure and quadratic field terms invariant,
we have that ∫

DφDφ∗eiSφ(x)φ∗(y) =

∫
Dφ′Dφ′∗eiS

′
φ′(x)φ′∗(y). (3.164)

However, if we expand the quadratic field term and path amplitude (done in the previous section)
in the integral up to linear order in α, we get

φ′(x)φ′∗(y) = φ(x)φ∗(y) [1 + iα(x)− iα(y)] , (3.165)

eiS[φ′,φ′∗] = eiS[φ,φ∗]

(
1 + i

∫
d4xjµ∂µα

)
. (3.166)

Plugging this back into the propagator gives that the variation δφ(x)φ∗(y) takes the form〈
φ(x)φ∗(y)

[(
1 + i

∫
d4xjµ∂µα

)
[1 + iα(x)− iα(y)]− 1

]〉
full

= 0. (3.167)
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Keeping only linear terms in α(x) gives

0 =

∫
d4z〈φ(x)φ∗(y)jµ(z)∂µα(z)〉full + 〈φ(x)φ(y)α(x)〉full − 〈φ(x)φ(y)α(y)〉full (3.168)

=

∫
d4zα(z) [−∂µ 〈φ(x)φ∗(y)jµ(z)〉full + 〈φ(x)φ∗(y)〉full δ(x− z)− 〈φ(x)φ∗(y)〉full δ(y − z)] .

Once again, since α is an arbitrary function, the integrand must vanish along with the integral
so we are left with

∂µ 〈φ(x)φ∗(y)jµ(z)〉full = 〈φ(x)φ∗(y)〉full δ(x− z)− 〈φ(x)φ∗(y)〉full δ(y − z) . (3.169)

where ∂µ only acts on the z coordinates. This is the Ward-Takahashi identity. Looking rather
complex, the Ward-Takahashi identity simplifies greatly in momentum space by Fourier trans-
forms (derivation not included here) to give

Γ3,full = G̃full(P +K)− G̃full(P ) , (3.170)

where Γ3,full denotes the full 3-vertex of the theory, Gfull(x − y) = 〈φ(x)φ∗(y)〉full and tildes
denote Fourier transforms. So we see that for the complex scalar field, the Ward identity grants
us a relation between the full propagator (RHS) and the full 3-vertex (LHS) which are exact
relations in QFT.

§3.9 The O(N)-Vector Model

In the previous section, we have been dealing with complex scalar fields which are effectively
a 2-component scalar fields consisting of components φ1(x) and φ2(x). In this section, we are
going to generalize this notion to scalar fields with N -components. For a 2-component scalar
field, recall that the U(1) transformation was a symmetry of the action. This transformation can
instead be written as a matrix-vector operation on the components of the scalar field as follows

φ′(x) = eiαφ(x), (3.171a)

⇒
[
φ′1(x)
φ′2(x)

]
=

[
cosα sinα
− sinα cosα

] [
φ1(x)
φ2(x)

]
. (3.171b)

Written in this way, the transformation is now instead an element of SO(2) or simply a rotation
matrix in 2-dimensions. To generalize to an N -component scalar field, we then consider trans-
formations which are elements of SO(N), which then render the φ4 theory Euclidean action (in
3+1 coordinate dimensions) as

SE =

∫
d4xE

[
1

2
∂aφ · ∂aφ+

1

2
m2φ · φ+

2λ

N
(φ · φ)2

]
, (3.172)

where bolded symbols indicate vectors (i.e. φ = ~φ). The QFT that arises from this generalization
is known as the O(N)-vector model, with partition function given as

Z =

∫
Dφe−SE , (3.173)
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where of course in the cases where N = 2 and N = 1, we return to the complex and real scalar
field QFTs respectively.

Note: A benefit of the O(N)-vector model is that the QFT can in fact be solved exactly
in the limit of large N (N � 1). This is a rare case in which perturbation theory is not
required to study the QFT. A useful reference for this topic can be found here.

To solve the O(N) vector model in the large N limit, we insert the identity as a path integral
over a δ-function into the partition function

Z =

∫
Dφe−SE × I

=

∫
Dφe−SE

∫
Dσδ (σ − φ · φ/N)

=

∫
Dφe−SE

∫
Dσ
∫
Dξ exp

(
i

∫
d4x ξ · (σ − φ · φ/N)

)
=

∫
DφDσDξ exp

(
−1

2

∫
d4xφ ·

[
−∂2

a +m2 +
2iξ

N

]
φ− 2λN

∫
d4xσ2 + i

∫
d4xξσ

)
=

∫
DφDξ exp

(
−1

2

∫
d4xφ ·

[
−∂2

a +m2 +
2iξ

N

]
φ− 1

8λN

∫
d4xξ2

)
.

(3.174)

If we then rescale the auxiliary field ξ we introduced to ξ → Nξ, we get

Z =

∫
DφDξ exp

(
−1

2

∫
d4xφ ·

[
−∂2

a +m2 + 2iξ
]
φ− N

8λ

∫
d4xξ2

)
. (3.175)

Further decomposing the this auxiliary field into mean-field and fluctuation terms ξ(x) = ξ +
δξ(x), we get

Z =

∫
dξ

∫
DφDδξ exp

(
−1

2

∫
d4xφ ·

[
−∂2

a +m2 + 2iξ
]
φ− NβV

8λ
ξ

2 − N

8λ

∫
d4xδξ2

)
.

(3.176)

So far, everything we have done has been exact for all N . It is now time to consider the large N
limit where we note that the fluctuation term only contributes a order lnN term in the exponent
(due to the path integral), whereas the mean-field term contributed a term of order N . As such,
we are left with

lim
N�1

Z =

∫
dξ

∫
DφDδξ exp

(
−1

2

∫
d4xφ ·

[
−∂2

a +m2 + 2iξ
]
φ− NβV

8λ
ξ

2
)

=

∫
dξ exp

(
N lnZfree(T,

√
m2 + 2iξ)− NβV

8λ
ξ

2
)
,

(3.177)

where the “mass” of the real scalar field is then
√
m2 + 2iξ. The remaining integral can be

evaluated with the saddle point approximation (which becomes exact when N → ∞) which

https://arxiv.org/pdf/1905.09290.pdf
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gives

lim
N�1

Z = exp

(
N lnZfree(T,

√
m2 + 2iξ̃)− NβV

8λ
ξ̃2

)
, (3.178)

where ξ = ξ̃ is the saddle point. From the partition function, we can then derive the pressure
(recalling p = T lnZ/V ) as

p(T,m, λ) = N

[
pfree(T,

√
m2 + 2iξ̃)− ξ̃2

8λ

]
. (3.179)

We stress again that this result is exact for the large N limit on the O(N)-vector model, where
the result depends on the coupling λ, both explicitly and implicitly through the saddle point
condition:

∂

∂ξ̃
pfree

(
T,

√
m2 + 2iξ̃

)
− ξ̃

4λ
= 0. (3.180)

§3.9.1 Non-perturbative Renormalization

The exact result we have above is unfortunately, still divergent due to the divergence in the free
pressure. For this, we will require a non-perturbative renormalization scheme. For a simplifcation
of the technicalities of this procedure, we will set the mass parameter tom = 0. In the MS scheme,
we obtained that the regularized pressure can be read off from Eq. (2.35), which reads

pfree(T,m) =
m4

64π2

[
1

ε
+ ln

(
µ2e3/2

m2

)]
− JB(T,m). (3.181)

Plugging in the new effective mass from the O(N)-vector model and setting m = 0 gives the
saddle point condition

x

8π2

[
1

ε
+

2π2

λ
+ ln

(
µ2e1/2

2x

)]
− IB(T,

√
2x) = 0, (3.182)

where we defined x ≡ iξ̃ for lighter notation. At this point, perturbative renormalization is not
an option since the value of the saddle was determined non-perturbatively. In this case, it is
possible to non-perturbatively renormalize the pressure by setting

2π2

λphys
=

1

ε
+

2π2

λ
,

⇒ x

8π2

[
2π2

λphys
+ ln

(
µ2√e

2x

)]
− IB(T,

√
2x) = 0,

⇒ prenorm(T, λ) = N

[
x2

16π2
ln

(
µ̄2e

3
2

2x

)
− JB(T,

√
2x) +

x2

8λphys

]
.

(3.183)

So we find that in the large N limit, the O(N)-vector model is renormalizable, for which in the
m = 0 (dimensional regularization) case, the theory only requires coupling constant renormal-
ization and in particular, no cosmological constant counter term.
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Let us now consider properties of this solution. Because a physical observable cannot be scale
dependent, we must enforce the condition we did in Eq. (3.95), which for pressure reads

µ
dp(T, λphys)

dµ
= Nx2

[
1

8π2
+

d

d lnµ

1

8λphys

]
= 0. (3.184)

Once again using the definition of β is Sec. (3.7), we have that

β = µ̄
∂λphys(µ̄)

∂µ̄
=
λ2

phys

π2
, (3.185)

⇒ λphys(µ̄) =
2π2

ln
(
µ2

0/µ
2
) , (3.186)

where the two expressions above are exact in the large N limit. Here, µ0 is the Landau pole of
the theory which we defined earlier (i.e. the value of µ such that λphys(µ̄)→∞).

Note: The O(N)-vector model does not have a good high energy (µ → ∞) continuum
limit since the theory becomes infinitely coupled at µ = µ0. So the O(N)-vector model
is an “effective theory” valid for µ� µ0.

Unlike other theories, the O(N)-vector model has a finite cosmological constant, which is defined
as the energy density of free space (vacuum pressure). This is computed as the zero temperature
(T = 0) pressure

prenorm(T = 0, λ) =
Nx2

16π2

[
ln

(
µ̄2e

3
2

2x

)
+

2π2

λphys

]

=
Nx2

16π2
ln

(
µ2

0e
3
2

2x

)
.

(3.187)

where we plugged in the explicitly form of λphys. The saddle point solution is then

x2

8π2
ln

(
µ2

0e
1
2

2x

)
= 0,

⇒ x = 0 or x =
µ2

0e
1
2

2
,

⇒ prenorm(T = 0, λ) = 0 ,

(3.188)

where we discarded the x 6= 0 solution since it is proportional to the Landau pole which is where
the theory fails (is unreliable). This result, albeit appealing may be misleading since we recall
that in dimensional regularization, only logarithmic divergences are registered. By contrast,
cut-off regularization would contain cut-off terms such proportional to Λ2,Λ4, etc., which would
require additional counter term. As such, the result of the cosmological constant obtained
from dimensional regularization need to be interpreted with great care!
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§3.9.2 Finite Temperature Pressure

Let’s go back to looking at the pressure at finite temperatures. To do so, we will first adopt the
notation where we write the temperature as

T = µ0e
−χ, (3.189)

which indicates that the temperature is exponentially suppressed from µ0 by virtue of χ � 1.
With this, we have that the pressure and saddle point conditions can be written as

prenorm(T ) = N

[
x2

16π2
ln

(
T 2e

3
2 +2χ

2x

)
− JB(T,

√
2x)

]
, (3.190a)

x

8π2
ln

(
T 2e

1
2 +2χ

2x

)
− IB(T,

√
2x) = 0. (3.190b)

We also note that the functions JB and IB can be written as sums over modified Bessel functions

JB(T,m) = −m
2T 2

2π2

∞∑
n=1

1

n2
K2(nmβ), (3.191a)

IB(T,m) =
mT

2π2

∞∑
n=1

1

n
K1(nmβ). (3.191b)

Since x has to be proportional to T 2 have mass-dimension 2, we can write x = m2
B(χ)T 2, where

mB(χ) is some generalized coupling. The saddle point condition on x now becomes a condition
on mB(χ), which can be solved numerically. Plugging this back into the pressure gives the plot
shown in Fig. 3.11.

Figure 3.11: Plot of the renormalized finite temperature pressure (normalized by the free pressure)
against the temperature parameter χ.



Chapter 4

Fermions

Thus far, we have dealt with scalar field theories which are commonly referred to as spin-0 fields
(a.k.a. bosonic fields). However, most of the fundamental fields that arise in nature are not
scalar fields (with the exception of the Higgs field). As such, wed want to understand how to
set-up systems with fields that have non-zero spin. In this chapter, we will be moving into a
study of fermionic quantum field theories by considering the path integral for fermionic (spin- 1

2)
quantum fields.

§4.1 From Bosons to Fermions

As a first step, it would be useful to review some of the steps taken to construct bosonic quantum
field theories. For bosons, we started by taking the harmonic oscillator Hamiltonian

Ĥ = − 1

2m
∂2
x +

1

2
mω2x̂2

=
ω

2

(
−∂2

q + q̂2
)

= ω

(
â†â+

1

2

)
,

(4.1)

where q̂ = x̂
√
mω and

â =
∂q + q̂√

2
, (4.2a)

â† =
−∂q + q̂√

2
, (4.2b)

known as the ladder operators. These ladder operators have specific commutation relations which
are written as [

â, â†
]

= 1, (4.3a)

[â, â] =
[
â†, â†

]
= 0, (4.3b)

52
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which allow us to write the Hamiltonian as

Ĥ =
ω

2

{
â†, â

}
, (4.4)

where {. . . , . . .} denotes the anti-commutator. The ladder operators can of course raise and lower
the state of the system via the relations

â |n〉 =
√
n |n− 1〉 , (4.5a)

â† =
√
n+ 1 |n+ 1〉 . (4.5b)

The partition function for this system is computed as

Z =

∞∑
n=0

〈n| e−βĤ |n〉

=

∞∑
n=0

e−βω(n+ 1
2 )

=
1

sinh(βω/2)
.

(4.6)

Fermions on the other hand, are defined by different commutation relations from those of bosons.
They instead follow the analogous anti-commutation relations{

âf , â
†
f

}
= 1, (4.7a)

{âf , âf} =
{
â†f , â

†
f

}
= 0, (4.7b)

which will allow us to write the fermionic Hamiltonian as

Ĥf =
ω

2

[
â†f , âf

]
= ω

(
â†f âf −

1

2

)
. (4.8)

The anti-commutator relations for fermions imply that there are only two energy eigenstates in
the Hilbert space since

â†f |1〉 = â†f â
†
f |0〉

=
1

2

{
â†f , â

†
f

}
|0〉 = 0.

(4.9)

So only the states |0〉 and |1〉 are permissible. The fermionic partition function is then computed
as a sum over just these two states

Zf = 〈0| e
βω
2 |0〉+ 〈1| e

βω
2 −βωâ

†
f âf |1〉

= e
βω
2 + e−

βω
2

= 2 cosh

(
βω

2

)
.

(4.10)
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For fermions, we can also define specific bra and ket states built from the fermionic ladder
operators through the use of Grassmann variables (see App. A) c and c∗:

|c〉 ≡ e−câ
†
|0〉 =

(
1− câ†

)
|0〉 , (4.11a)

〈c| ≡ 〈0| e−c
∗â = 〈0| (1− c∗â) , (4.11b)

such that

â |c〉 = c |0〉 , (4.12a)

〈c| â† = 〈0| c∗. (4.12b)

Such states have transition amplitudes

〈c′|c〉 = 〈0| (1− c∗â)
(
1− câ†

)
|0〉

= 1 + 〈0| âc′∗câ† |0〉
= 1 + 〈0| c′∗c |0〉

= 1 + c′∗c = ec
′∗c,

(4.13)

where we demanded that the fermionic ladder operators also anti-commute with the grassmann
variables. With these definitions and using the properties of Grassmann variables, we have the
identity ∫

dc∗dc e−c
∗c |c〉 〈c| = I , (4.14)

implying that this relation above generalizes the completeness relation for commuting systems
to anti-commuting system. Another useful identity involving bosonic operators and Grassmann
integrals is ∫

dc∗dc e−c
∗c 〈−c| Â |c〉 = Tr

{
Â
}
, (4.15)

which defines the trace of a bosonic operator in a fermionic system. With this, we have all the
necessary tools to construct the path integral for fermions.

§4.1.1 Fermionic Path Integrals

We start with the partition function for fermions written in terms of the trace as

Zf = Tr
{
e−βĤ

}
=

∫
dc∗dc e−c

∗c 〈−c| e−βĤ |c〉 . (4.16)

Next, we follow the scheme in Sec. 1.3 and split the Boltzmann factor into a product of N � 1
pieces ε ≡ β/N , such that

e−βĤ = e−εĤe−εĤe−εĤ . . . e−εĤ , (4.17)
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for which we then insert the fermionic completeness relation of Eq. (4.14), which gives ob-
jects

e−c
∗
j cj 〈cj | e−εĤ |cj−1〉 = e−c

∗
j cje−εH(c∗j ,cj−1) 〈cj |cj−1〉

= exp

[
−ε
(
c∗j (cj − cj−1)

ε
+H(c∗j , cj−1)

)]
,

(4.18)

where H(c∗j , cj−1) is no longer an operator but a function evaluated at the associated values of
c∗j and cj . The resulting partition function can be written as

Zf =

∫
dc∗NdcN

∫
dc∗N−1dcN−1 . . .

∫
dc∗1dc1e

−SE , (4.19a)

where SE = ε

N∑
j=1

[
c∗j+1

cj+1 − cj
ε

+H(c∗j+1, cj)

]
. (4.19b)

For fermions, we then enforce anti-periodic boundary conditions which mean that we identify
cN+1 = −c1 and c∗N+1 = −c∗1. As before, we can think of this discretization of β with N points
as points on a thermal circle, which in the limit N →∞ renders these c Grassmann variables a
function of the imaginary time parameter τ ∈ [0, β], such that c(β) = −c(0) and c∗(β) = −c∗(0).
So the partition function in this continuum limit becomes

Zf =

∫
Dc∗Dc exp

[∫ β

0

dτ

(
c∗
dc

dτ
+H(c∗, c)

)]
. (4.20)

§4.1.2 The Dirac Equation

Recall that in Sec. 2.3.1, we introduced the equation of motion for free scalar fields known as the
Klein-Gordon equation (

�−m2
)
φ = 0, (4.21)

which was derived from the Euler-Lagrange equation given in Eq. (2.8). In this section, we
want to once again derive an equation of motion (wave-equation) but this time, for fermionic
fields. For non-relativistic particles, the wave equation for fermions is simply the Schrödinger’s
equation, written for free particles as

i∂tψ = − 1

2m
∇2ψ. (4.22)

Unfortunately, the time and space derivatives in this equation appear asymmetrically and hence
is clearly not Lorentz invariant (unable to be used for a relativistic QFT). To try and fix this,
we note that the usual right hand side of the Schrödinger equation is the Hamiltonian acting on
ψ, so we attempt to replace it with the relativistic free-particle energy

E =
√
m2 + p2 (4.23)

⇒ i∂tψ =
√
m2 + p̂2ψ. (4.24)
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This equation still has some issues as it is non-local and still not Lorentz invariant. If however,
we apply the operators on both sides twice, we get the expression(

−∂2
t − p̂2 −m2

)
ψ =

(
�−m2

)
= 0, (4.25)

which is once again the Klein-Gordon equation! But what about fermions? Dirac proposed that
perhaps the wrong square root of the Klein-Gordon equation was taken in the earlier step, and
perhaps we just have to take the “correct” square root (to get an equation that was linear in
derivatives). To do so, he used the ansatz

i∂tψ = Ĥψ = (−iα ·∇ + βm)ψ, (4.26)

where α and β are constants of the ansatz. In order to ensure that this ansatz was consistent,
applying the operators twice as before must yield the Klein-Gordon equation, so we try

−∂2
t ψ = (−iαj∂j + βm) (−iαk∂k + βm)ψ

=
[
αjαk∂j∂k − i (αjβ + βαj) ∂j + β2m2

]
ψ.

(4.27)

Clearly for ordinary numbers αj and β, the cross term will not vanish and we will not retrieve
the Klein-Gordon equation. But Dirac realized that consistency could be acheived if these were
in fact not numbers, but matrices which satisfied

{αj , αk} = 2δjkI, (4.28a)

{αj , β} = 0, (4.28b)

β2 = I. (4.28c)

In modern notation, we can define what are known as the Dirac matrices via γν = [β, βα]. Dirac
matrices fullfill the following anti-commutation relation:

{γµ, γν} = −2gµνI, (4.29)

which constitutes what is known as a Clifford algebra (gµν being the metric tensor). We note
that the timelike γ-matrices are Hermitian, while the spacelike γ-matrices are anti-Hermitian:

(γ0)† = γ0, (4.30a)

(γj)† = γj , (4.30b)

⇒ (γµ)† = γ0γµγ0 . (4.30c)

With the Dirac matrices, the Dirac equation from taking the “correct” square root is

(i∂µγ
µ −m)ψ = 0 , (4.31)

which fulfills the property

(i∂µγ
µ +m) (i∂µγ

µ −m)ψ =
(
−∂µ∂νγµγν −m2

)
ψ

=

(
−1

2
∂µ∂ν {γµ, γν} −m2

)
ψ

=
(
∂µ∂νg

µνI−m2
)
ψ

=
(
�−m2

)
ψ.

(4.32)
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Note that although this appears as the Klein-Gordon equation, the object in question here ψ
must have multiple components unlike φ. We thus call ψ the spinor field, which is a relativistic
extension of the quantum wave function. There are in fact different ways to construct γµ such
that it satisfies the Clifford algebra, but the matrix representation of these in 3 + 1 dimensions
is given by

γ0 =

[
I2 0
0 I2

]
, γj =

[
0 σ̂j
−σ̂j 0

]
, (4.33)

where σ̂j are the Pauli matrices. Since each component of γµ is a 4× 4 matrix, the spinor field
will be represented as a 4-component vector which we often denote with index α:

ψα =


ψ1

ψ2

ψ3

ψ4

 . (4.34)

Also for lighter notation, since the combination ∂µγ
µ appears so often, we often denote this

as

∂µγ
µ ≡ /∂, (4.35)

read as the Dirac-slash. For complex conjugation, we define the Dirac adjoint of ψ as

ψ ≡ ψ†γ0. (4.36)

Strangely enough, the route we have taken to deriving the Dirac equation has led us to attaining
an equation of motion of ψ without knowing the Lagrangian density. As such, we can reverse
engineer the equation, treating ψ and ψ as independent variables which each satisfy the Euler-
Lagrange equations such that

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0, (4.37)

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0, (4.38)

⇒ L = ψ
(
i/∂ −m

)
ψ. (4.39)

From this, we can also construct the Hamiltonian density as

H = Π∂0ψ − L,

= iψ
†
∂0ψ − ψ

(
i/∂ −m

)
ψ

= ψ
(
−iγj∂j +m

)
ψ.

(4.40)

where Π = ∂L/∂(∂0ψ) = ψiγ0 = iψ
†

is the conjugate momentum. Integrating this over all
coordinates gives the Hamiltonian

H =

∫
d3xH =

∫
d3x ψ

(
−iγj∂j +m

)
ψ. (4.41)
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For all intends and purposes, ψ and ψ† here are taken as classical (but anti-commuting) fields.
Only when we quantize the theory do these become operators which play the role of the fermionic
ladder operators (as in canonical second quantization). To then get an expression for the path
integral, we identify ψ,ψ† with c, c∗ to get

Zf =

∫
Dψ†Dψ e−SE , (4.42a)

where SE =

∫ β

0

∫
d3x ψ†

[
∂τ − iγ0γj∂j + γ0m

]
ψ, (4.42b)

with SE known as the Euclidean action for Dirac fermions.

Note: To reiterate the anti-periodic boundary conditions, we once again state the iden-
tification on the thermal circle ψ(0,x) = ψ(β,x).

In the Euclidean picture (converting to imaginary time via a Wick rotation), we can define the
Euclidean Dirac matrices as

γE0 = γ0, (4.43a)

γEj = −iγj , (4.43b)

which obey the anti-commutation and Hermiticity relations{
γEa , γ

E
b

}
= 2δabI, (4.44a)

(γEa )† = γEa . (4.44b)

Finally, we can write the partition function in terms of the Dirac adjoint as

Zf ∝
∫
DψDψ exp

[
−
∫
d4xE ψ

(
γEa ∂a +m

)
ψ

]
, (4.45)

where proportionality is due to the fact that we did not include a constant matrix out front
which arises from the Jacobian. Now, we look to evaluating this path integral. To do so, we first
write the fermionic field as a Fourier series

ψ(τ,x) =
T

V

∑
n

∑
k

eiω̃nτ+iK·xψ̃(ωn,k), (4.46)

where V is the volume of space and the fermionic Matsubara frequencies are given as

ω̃n = (2n+ 1)πT, (4.47)

due to anti-periodicity. We can also define a fermionic Euclidean momentum by taking the
boundary conditions in space as periodic (although those in time are anti-periodic) as

P̃ a ≡ (ωn,p) . (4.48)
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With this, we can write the Fourier expansion as

ψ(x) =
1

βV

∑
K̃

eiK̃·xψ̃(K̃). (4.49)

The Dirac adjoint of this is then

ψ(x) =
1

βV

∑
K̃

e−iK̃·xψ̃(K̃), (4.50)

which gives the Euclidean action

SE =
1

β2V 2

∫
d4x

∑
K̃,P̃

eix·(P̃−K̃)ψ̃(K̃)
[
iγEa P̃a +m

]
ψ̃(P̃ )

=
1

βV

∑
P̃

ψ̃(P̃ )
[
iγEa P̃a +m

]
ψ̃(P̃ )

=
1

βV

∑
P̃

ψ̃(P̃ )
[
i /̃P +m

]
ψ̃(P̃ ).

(4.51)

Putting this back into the partition function and dropping all the tildes on the Fourier trans-
formed field terms, we are left with

Zf ∝
∫
DψDψ exp

− 1

βV

∑
P̃

ψ̃(P̃ )
(
i /̃P +m

)
ψ(P̃ )

 , (4.52)

which is a Gaussian-type integral and can be evaluated using the multidimensional Grassmann
integration rules for Gaussians in App. A to give

Zf = C̃
∏
P̃

det
[
i /̃P +m

]
, (4.53)

where the determinant is over spinor space (spanned by the Dirac matrices γEa ) and C̃ is an
overall constant. Since Zf is real, we have that

det
[
i /̃P +m

]
= det

√[
−i /̃P +m

] [
i /̃P +m

]
= det

√
/̃P

2
+m2

= det

√(
P̃ 2 +m2

)
I4

=
(
P̃ 2 +m2

)2

.

(4.54)
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So finally, we have

Zf = C̃
∏
P̃

(
P̃ 2 +m2

)2

= C̃

∞∏
n=−∞

∏
p

(
ω̃2
n + E2

p

)2
,

⇒ Zf = C̃
∏
p

[
2 cosh

(
βEp

2

)]4

= exp

(
4
∑
p

[
βEp

2
+ ln

(
1 + e−βEp

)])
,

(4.55)

where Ep =
√
p2 +m2. With this, we can derive the fermionic free pressure

pffree =
4

V

∑
p

[
Ep
2

+ T ln
(
1 + e−βEp

)]
, (4.56)

which in the large volume limit, becomes

pffree = 4

∫
d3p

(2π)3

[
Ep
2

+ T ln
(
1 + e−βEp

)]
. (4.57)

Notice the resemblence of these result with that for bosons in Eqs. (2.19) and (2.21). Most
noticeable are the factor 4 and change in sign of the exponent in the logarithm of the integrand.
Because of this, the bosonic and fermionic pressures are related in the zero-temperature limit
(T = 0) by

pffree(T = 0) = −4pbfree(T = 0). (4.58)

Therefore, one fermionic degree of freedom (see Sec. 3.8) is one-quarter the free fermionic pressure
and the negative of a bosonic degree of freedom. Hence, a theory of an equal number of bosons
and fermions is said to have vanishing pressure (cosmological constant).



Chapter 5

Gauge Fields

Thus far, we have dealt with quantum field theories for scalar fields and fermions. To extend our
discuss of QFT, we will need to now address an important class of fields known as gauge fields.
Gauge fields are in fact found in nature and give rise to important theories such as quantum
electrodynamics.

§5.1 Introduction

To begin, we recall that the Euclidean action for a complex field was given as

SE =

∫
d4xE

[
∂aφ∂aφ

∗ + V (
√
φφ∗)

]
, (5.1)

for which it was Lorentz and U(1) invariant. In the U(1) symmetries we considered, the trans-
formation φ(x)→ eiαφ(x) was not x dependent (α is x independent), so we refer this as a global
U(1) transformation or a gauge transformation (because we are “re-gauging” what it means to
have a certain value of φ). If α was instead dependent on x (i.e. φ(x)→ eiα(x)φ(x)), this trans-
formation would be known as a local gauge transformation. The action for the complex scalar
field above is however not local gauge invariant, so it would be prudent for us to look for an
action that is. First, we consider the result of a local gauge transformation on ∂aφ:

∂aφ → ∂a

(
eiα(x)φ

)
= eiα(x) [φ∂aiα(x) + ∂aφ] . (5.2)

We call this the local U(1) gauge field. We see that in this case, there is an extra term of φ∂aiα(x)
which arises unlike in global U(1) transformations. The question now is then, how do we modify
the action such that these terms disappear? One such possibility is adding a new field Aa,
appropriately to the action:

SE =

∫
d4x

[
(∂a + iAa)φ (∂a − iAa)φ∗ + V (

√
φφ∗)

]
, (5.3)

in which this new field must transform under local gauge transformations as

Aa(x) → Aa(x)− ∂aα(x). (5.4)

61



CHAPTER 5. GAUGE FIELDS 62

We now introduce a new operator associated to this new field:

Da ≡ ∂a − iAa, (5.5)

which we call the gauge-covariant derivative. This shortens the notation of the action to

SE =

∫
d4x

[
Daφ (Daφ)

∗
+ V (

√
φφ∗)

]
. (5.6)

This action is now manifestly real, Lorentz invariant and local gauge invariant. Extending this
idea, we can now ask what other terms could be allowed in the action associated to Aa(x)? For
one, we can consider an anti-symmetric tensor

Fab = ∂aAb − ∂bAa, (5.7)

which is local gauge and Lorentz invariant. We term this tensor as the field strength tensor,
which is conventionally added to the action with a factor 1/4 to give

SE =

∫
d4xE

[
Daφ (Daφ)

∗
+ V (

√
φφ∗) +

1

4
FabFab

]
. (5.8)

Alternatively, we could also consider the addition of this tensor along with the 4-dimensional
Levi-Civita tensor, FabεabcdFcd. This however would violate an additional symmetry known as
parity, which we will cater to a later time for further discussion. For now, we shall simply disallow
the addition of this term to our action. The action in Eq. (5.8) constitutes a theory known as
scalar electrodynamics. This is so because it turns out that the resulting equations of motion for
the gauge field Aa(x) work out to be exactly Maxwell’s equations for classical electrodynamics.
The gauge field is coupled to the complex scalar field via the gauge-covariant coupling, which
renders the complex scalar field as the “matter content” in the theory (i.e. the equivalent of
electrons in electromagnetism).

Note: Since electrons are fermions, this scalar-gauge theory is not “real”, and simply a
toy model which is simpler to analyze.

To now promote this theory to a QFT, we will have to plug the action into a path integral

Z =

∫
Dφ∗DφDAe−SE . (5.9)

However, difficulties arise that were not present for scalar fields and fermions when we try to use
the same methods for gauge fields.

§5.2 Quantum Electrodynamics

Quantum electrodynamics (QED) is a relativistic quantum theory of light and matter interaction
(i.e. the quantum mechanical extension of classical electrodynamics). Since the scalar field is
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in fact not completely representative of the actual theory of QED (where fermionic fields are
necessary), we will just concentrate on the gauge field term so that

SE =
1

4

∫
d4xEFabFab, (5.10)

where as defined earlier, Fab = ∂aAb − ∂bAa.

Note: Including the actual matter associated spinor field into the theory does not change
at all the procedure to which the path integral for the gauge field is solved.

It is only natural then that the extension of this theory to a QFT would be to write

Z =

∫
DAe−SE , (5.11)

for which since the gauge field term is quadratic, we consider its Fourier transform

Aa(x) =
1

βV

∑
K

eiK·xÃa(x). (5.12)

The Euclidean action then becomes

SE =
1

2βV

∑
K

Ãa(K)
[
K2δa,b −KaKb

]
Ãb(−K). (5.13)

Neglecting the Jacobian from the Fourier transform (since it is just a constant) leaves us with

Z =
∏
K

det
{
K2δa,b −KaKb

}− 1
2 . (5.14)

This result seems fine except for the fact that the matrix K2δa,b − KaKb, has a vanishing
eigenvalue associated to eigenvector Ka:[

K2δa,b −KaKb

]
Ka = 0. (5.15)

This means that the matrix is not invertible and det
{
K2δa,b −KaKb

}
= 0, which leads to a

divergence in Z. The reason why this happens, is in fact because of the invariance of the action
under the local gauge transformation, implying essentially that there is an infinite class of gauge
fields which the integral goes over, i.e.:

Z ∼
∫ ∞
−∞

dα econstant →∞, (5.16)

so Z indeed converges. There are of course ways to better understand this theory such as
regularization of the integral by inserting cutoffs, which in this case is referred to compactifying
the range of the gauge parameter leading to a compact U(1) gauge theory. Such methods result
in interesting properties such as self-interacting photons, which unfortunately does not occur in
nature and so is not a very accurate means of dedaling with this divergence.
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§5.2.1 The Fadeev-Popov Trick

Since the partition function diverges as a result of the gauge invariance, there is an easy (albeit
not very elegant) way to break this gauge symmetry which fixes a gauge. Examples of these
gauge conditions are:

Coulomb gauge : ∂iAi = 0, (5.17a)

Landau gauge : ∂aAa = 0. (5.17b)

In general, we can denote an arbitrary gauge condition as G[A] = f . By adding such conditions,
the path integral would not only run over inequivalent gauge fields (gf) which we denote
A:

Zgf =

∫
DAe

−SE [A]. (5.18)

From here, we insert the gauge condition into the expression by writing

Zgf =

∫
DADGδ(G[A]− f)e−SE [A]

=

∫
DADαDfδ(G[A]− f) det

{
∂G[A]

∂α

}
e−SE [A]

=

∫
DADfδ(G[A]− f) det

{
∂G[A]

∂α

}
e−

1
2ξ

∫
d4xEf

2(x)e−SE [A]

=

∫
DA det

{
∂G[A]

∂α

}
e−

1
2ξ

∫
d4xEG

2[A]e−SE [A],

(5.19)

where ξ is an arbitrary parameter that should not show up in the result. This path integral now
looks similar to those we had for scalars/fermions, but with the added determinant which com-
plicates things. To deal with this complication, we utilize the property of Grassmann variables
and add an integral over the Grassmann fields c and c such that

Zgf =

∫
DADcDc exp

(
− 1

2ξ

∫
d4xEG

2[A]− SE [A]−
∫
d4xEc

∂G[A]

∂α
c

)
. (5.20)

We call these auxiliary Grassmann fields Faddeev-Popov ghosts, and are merely incorporated as
a mathematical trick to compute the path integral (not physical fields). These auxiliary fields
must fulfil periodic boundary conditions like scalar fields do (though unlike fermions), which
renders the full Euclidean action of QED in practice as

SE = Smatter + Sgauge + Sgf + Sghosts, (5.21)

where Smatter constitutes the matter terms (associated to the fermionic fields),

Sgauge =
1

2

∫
d4xEFabFab, (5.22a)

Sgf =
1

2ξ

∫
d4xEG

2[A], (5.22b)

Sghosts =

∫
d4xE c

∂G[A]

∂α
c. (5.22c)
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§5.2.2 Solving the U(1) Path Integral

At this point, we now have the tools to solve the path integral over gauge fields in QED. Explicitly,
this U(1) path integral is written as

Z =

∫
DADcDce−Sgauge−Sgf−Sghosts . (5.23)

To start with, we need to choose a particular gauge condition to evaluate this, perferebly one
which makes our lives the easiest. The canonical choice is the Landau gauge:

G[A] = ∂aAa, (5.24)

⇒ Aa → Aa − ∂aα, (5.25)

which then gives us that

Sghosts =

∫
d4xE c

∂G[A]

∂α
c

=

∫
d4xE c∂a

∂A

∂α
c

=

∫
d4xE ∂ac∂ac.

(5.26)

In this gauge, Sghosts no longer depends on the gauge field so the partition function is separable
into

Z = ZA × Zghost, (5.27a)

where ZA =

∫
DAe−Sgauge−Sgf , Zghost =

∫
DcDce−Sghosts . (5.27b)

The gauge transformation function α(x) must be periodic such that α(τ = 0,x) = α(τ = β,x),
by construction of the gauge invariant Lagrangian. As such, the gauge fields are also periodic in
the timelike direction which implies that they have associated Matsubara frequencies K0 = 2πnT
in Fourier space. The gauge field term in the partition function is then

ZA =

∫
DÃ exp

(
− 1

2βV

∑
K

Ãa(K)

[
K2δab −KaKb +

1

ξ
KaKb

]
Ãb(−K)

)

=
∏
K

det

{
K2δab −KaKb +

1

ξ
KaKb

}− 1
2

.

(5.28)

To further simplify this expression, we will need to compute the determinant, for which we define
the matrix

Mab ≡ K2δab −KaKb +
1

ξ
KaKb. (5.29)

We decompose this matrix into 2 projectors

P
(T )
ab = δab −

KaKb

K2
, (5.30a)

P
(L)
ab =

KaKb

K2
, (5.30b)
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which obey the identities

P
(T )
ab P

(L)
bc = 0, (5.31a)

P
(T )
ab P

(T )
bc = P (T )

ac , (5.31b)

P
(L)
ab P

(L)
bc = P (L)

ac . (5.31c)

The trace values of these projectors can then be computed as

Tr
{
P

(T )
ab

}
= 4− 1 = 3, (5.32a)

Tr
{
P

(T )
ab

}
= 1, (5.32b)

which tells us that the K2 eigenvalue as multiplicity 3, whereas K2/ξ has multiplicity 1. The
result is that

det{Mab} = (K2)3

(
K2

ξ

)1

. (5.33)

Plugging this into the partition function gives

ZA = exp

(
−1

2

∑
K

[
4 ln
(
K2
)

+ ln(ξ)
])
. (5.34)

Now for the ghost fields, we can also utilize the Fourier transform to get

Zghost =

∫
DcDc exp

(
− 1

βV

∑
K

c(K)K2c(K)

)
=
∏
K

K2

= exp

(∑
K

lnK2

)
.

(5.35)

The total partition function of the U(1) gauge theory is then

Z = exp

(
−1

2

∑
K

[
4 ln
(
K2
)

+ ln(ξ)
]

+
∑
K

lnK2

)
, (5.36)

for which in the large volume limit, we convert the sum over K to an integral and dimension-
ally regularize the ξ constant term away (because it poses no logarithmic divergence) which
gives

Z = exp

[
−
∑
K

ln
(
K2
)]

, (5.37)
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which is exactly equal to the partition function of two free, real and massless scalar fields! As
such, the U(1) gauge field pressure is just

p(T ) = 2pfree(m = 0, T ) =
2π2T 2

90
, (5.38)

which is in fact the pressure for perfect blackbody radiation. We also see that the U(1) gauge
field has two physical degrees of freedom.

§5.2.3 The Temporal-Axial Gauge

In this lecture, we will be looking at solving the path integral in the temporal-axis gauge
(TAG).

Note: Remember that performing the path integral in a different gauge does not change
any of the physics since the theory is gauge invariant. However, it does give us different
insights into the interpretations of the results and sometimes more intuitive equations to
help with understanding.

We do this for the U(1) gauge field, which we will see leads to a phenomenon known as the
Casimir effect. First recall that our action (ignoring the matter associated fields) consists of the
terms:

Sgauge =
1

2

∫
d4xEFabFab, (5.39a)

Sgf =
1

2ξ

∫
d4xEG

2[A], (5.39b)

Sghosts =

∫
d4xE c

∂G[A]

∂α
c. (5.39c)

The TAG condition is then written as

Gj [A] = −A0, (5.40)

with the sign is simply convention. In the TAG, since the gauge field transforms under gauge
transformations as Aa → Aa − ∂aα, we have that

Sghost =

∫
d4xE c∂0c. (5.41)

We once again have that Sghost does not depend on the gauge field, so the partition function is
separable into a gauge field dependent term and the ghost term:

Z = ZA × Zghost, (5.42a)

where ZA =

∫
DAe−Sgauge−Sgf , Zghost =

∫
DcDce−Sghosts . (5.42b)
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The path integral over temporal gauge fields A0 can be performed for arbitrary gauge parameter
ξ, for which we can send ξ → 0 such that the gauge fixing partition function term becomes

lim
ξ→0

e−Sgf = lim
ξ→0

e−
1
2ξ

∫
d4xEA

2
0 →

∏
x

δ[A0(x)]. (5.43)

As for the gauge (field-strength tensor) term, we first consider a decomposition of the quadratic
field-strength tensor term into spatial and temporal components

1

2
FabFab = F0jF0j +

1

2
FjkFjk

= ∂0Aj∂0Aj +
1

2
FjkFjk − 2∂jA0∂0Aj + (∂jA0)

2
.

(5.44)

Integrating this with the gauge fixing term forces all A0 terms to vanish (by the delta-function),
which leaves

ZA =

∫
DAj exp

(
−1

2

∫
d4xE

[
∂0Aj∂0Aj +

1

2
FijFij

])
, (5.45)

where the measure DAj indicates that the path integral only considers the spatial components
of the gauge field. Since we have quadratic terms again, we take the Fourier transform of the
spatial gauge field terms

Aj(x) =
1

βV

∑
K

eiK·xÃj(K), (5.46)

where K is still the full 4-dimensional wave-vector K = (ωn,k), containing the Matsubara
frequencies. Plugging this into the partition function gives

ZA =

∫
DÃi exp

[
−1

2

∑
K

Ãi(−K)
[
ω2
nδjk + k2δij − kikj

]
Ãi(K)

]
. (5.47)

Recall that in the Landau gauge, we arrived at a similar expression in Eq. (5.13) which was
divergent since it had a zero eigenvalue with vector Ka. In the current case however, we see that
the partition is now

ZA =
∏
K

det
{
K2δij − kikj

}− 1
2 , (5.48)

for which we introduce two projectors onto orthogonal spaces

Tij = δij −
kikj
k2

, (5.49a)

Lij =
kikj
k2

, (5.49b)

we refer to as the transverse and longitudinal projectors in reference to their spatial orientations.
Written in terms of these projectors, the matrix elements are then

K2δij − kikj = K2Tij + ω2
nLij , (5.50)
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making it clear that this matrix has no zero eigenvalues. So ZA in the TAG is well-defined.
Note that Tr{Tij} = 2 and Tr{Lij} = 1, so we have that the matrix has eigenvalue K2 with
multiplicity 2, and eigenvalue ω2

n with multiplicity 1. The result is:

ZA = exp

[
−1

2

∑
K

2 ln
(
K2
)
− 1

2

∑
K

ln
(
ω2
n

)]
. (5.51)

The ghost partition function just has a single temporal derivative, so it results in

Zghost = e
∑

K ln(ωn), (5.52)

which results in the total partition function

Z = ZA × Zghost = exp

[
−
∑
K

ln
(
K2
)]

, (5.53)

which is exactly the result found from performing the computation in the Landau gauge. We
note that the longitudinal contributions cancel in the final result, which is indicative of only
transverse photons left as physically observed in the theory. This is of course known to be true
in electrodynamics.

§5.2.4 The Casimir Effect

The Casimir effect arises in systems that have non-trivial spatial boundary conditions where in
particular, we consider the case where 2 infinitely large parallel conducting plates experience a
force sheerly due to vacuum fluctuations predicted by QED. To see this force arise, we consider
the pressure p, and free energy Ω defined as

p =
1

β

∂ lnZ

∂V
, (5.54a)

Ω = − lnZ

βV
. (5.54b)

We set the non-trivial boundary conditions (conducting plates) at z = 0 and z = L, so that E‖
and B⊥ vanish there. This also implies that

A(t, x, y, z = 0) = A(t, x, y, z = L) = 0, (5.55)

which then grants Fourier transform

A(z) =
1

L

∑
kz

eikzzÃ(kz)

=
1

L

∑
kz

[
cos(kzz) Re

{
Ã(kz)

}
− sin(kzz) Im

{
Ã(kz)

}]
= − 1

L

∑
kz

sin
(mπz

L

)
Im
{
Ã(kz)

}
,

(5.56)
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where m ∈ Z. Recall that for free scalar field theory (without non-trivial boundary conditions),
we would have path integrals of the form∫

Dφe−
1
2

∫
d4xEm

2φ2(x) ∼
∫
Dφe−

1
2

∑
km

2φ̃∗φ̃

=

∫
DakDbke

−m2

2

∑∞
k=0[a

2
k+b2k]

=

∞∏
k=0

(√
π

m2

)2

=

∞∏
k=−∞

√
π

m2

= exp

(
−1

2

∑
k

ln
π

m2

)
.

(5.57)

However for the case of non-trivial boundary conditions, the real field components must vanish
so we are left instead with just∫

Dbke−
m2

2

∑∞
k=0 b

2
k = exp

(
−1

4

∑
k

ln
π

m2

)
, (5.58)

so the parition function must be adjusted such that

Z = exp

(
−1

4

∑
K

2 ln
(
K2
))

(5.59)

⇒ lnZ = −1

2

∑
ωn

∑
k⊥

∑
kz

ln
(
ω2
n + k2

⊥ + k2
z

)
= −

∑
k⊥

∑
kz

[
β
√
k2
⊥ + k2

z

2
+ ln

(
1− e−β

√
k2⊥+k2z

)]
,

(5.60)

where k2
⊥ = k2

x + k2
y. Considering just the low-temperature limit (β/m� 1), we have

lnZ ≈ −β
2

∑
k⊥

∑
kz

√
k2
⊥ + k2

z (5.61)

= −β
2

∑
k⊥

∑
kz

√
k2
⊥ +

(mπ
L

)2

. (5.62)

Since we have assumed that the plates are infinitely large, k⊥ becomes continuous in this limit
which renders the partition function as

lnZ = −βV⊥
2

∞∑
m=−∞

∫
d2k⊥
(2π)2

√
k2
⊥ +

(mπ
L

)2

=
βV⊥

2

∞∑
m=−∞

1

6π

(
m2π2

L2

) 3
2

= βV⊥

∞∑
m=1

1

6π

(
m2π2

L2

) 3
2

,

(5.63)
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where we utilized the identity in Eq. (2.28). To further simplify this, we employ the use of the
Riemann-zeta function to get

lnZ =
βV⊥π

2

6L3
ζ(−3)

=
βV⊥π

2

720L3
.

(5.64)

Note: The Riemann-zeta function appears here because ζ(x) when analytically continued
to negative arguments, is essentially the same as performing dimensional regularization.

The Casimir pressure of this system is then

p =
1

βV⊥

∂ lnZ

∂L
= − π2

240L4
. (5.65)

We see that the pressure is negative, which leads to an attractive force between the boundary
plates known as the Casimir effect. In SI, units this force per unit area is given as

p =
F

V⊥
= − π2~c

240L4
≈ −1.2× 10−27N m2 L−4. (5.66)

We see that this is an extremely small force, where even at nano scales (L ∼ 10−9), the force
would still only have a magnitude of ∼ 10−9 N. This is strictly a prediction of QFT and has
indeed been experimentally verified (Mohideen and Roy 1998, PRL 81 4549).

§5.2.5 The Anomalous Electron Magnetic Moment

One of the key tests that affirmed the success of QED was the precision measurement of the
anomalous magnetic moment of the electron (i.e. the quantity g− 2). In this section, we will be
computing the g-factor, g from the QED formalism we have developed. Recall that our action
for this theory was given by

SE = Smatter + Sgauge + Sgf + Sghosts, (5.67)

where

Smatter =

∫
d4xEψ

(
/D +m

)
ψ, (5.68a)

Sgauge =
1

4e2

∫
d4xEFµνFµν , (5.68b)

Sgf =
1

2ξ

∫
d4xEG

2[A], (5.68c)

Sghosts =

∫
d4xE c

∂G[A]

∂α
c, (5.68d)

with /D = Dµγ
µ
E and Dµ = ∂µ + iAµ(x) is the covariant derivative.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.4549
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Note: In this section, we use Greek letters even for Euclidean indices (i.e. raising and
lowering the indices bears no consequence to the expressions) so that we free up Latin
letters for color indices.

This action is invariant under U(1) local gauge transformations, for which the gauge field trans-
forms as Aµ(x) → Aµ(x) − ∂µα(x). For convenience, we will scale the gauge (Aµ → eAµ) such
that

Smatter + Sgauge =

∫
d4xE

[
ψ
(
/∂ + ie /A

)
ψ +

1

4
FµνFµν

]
, (5.69)

which is conventional in QED calculations. We computed the Dirac fermion Hamiltonian in
Eq. (4.41), written as

H =

∫
d3x ψ

(
−iγj∂j +m

)
ψ, (5.70)

where γj here denotes the Minkowski gamma matrices. To instead use the Euclidean gamma
matrices, we write

H =

∫
d3x ψ

(
γjE∂j +m

)
ψ. (5.71)

This classical Hamiltonian is for a single Dirac fermion, however what we actually want in QED
is to couple the Dirac field to the gauge field. This is done in Smatter, so we can see the classical
Hamiltonian contribution to QED is given as

∆H = ie

∫
d3x ψ /Aψ = ie

∫
d3x ψγµEψAµ. (5.72)

To simplify this, we can consider a specific gauge fixing condition where A0 = 0, which simplifies
the classical contribution to

∆H = ie

∫
d3x ψγjEψAj . (5.73)

In the limit where the gauge field is small (matter dominated theory), the classical fermions will
satisfy the Dirac equation

(iγµ∂µ −m)ψ = 0, (5.74)

since any contribution that comes from the coupling from gauge fields and photons would be
an additional contribution of order Aµ, which we take as small in amplitude. Considering just
time-independent Dirac fields (ψ = ψ(x)) then leaves us with

mψ = −γjE∂jψ, (5.75a)

mψ =
(
∂jψ

)
γjE . (5.75b)



73 5.2. QUANTUM ELECTRODYNAMICS

With some algebra, we find that

ψγjEψ =
1

2m

[(
∂kψ

)
γkEγ

j
E − ψγ

j
Eγ

k
E (∂kψ)

]
, (5.76)

which is known as the Gordon identity. We can further simplify this identity by using the
relations

γjEγ
k
E =

1

2

{
γjE , γ

k
E

}
+

1

2

[
γjE , γ

k
E

]
= δjk − iσjk,

(5.77)

where σjk ≡ i
2

[
γjE , γ

k
E

]
. Plugging this in to the Gordon identity then gives

ψγjEψ =
1

2m

[(
∂jψ

)
ψ − ψ∂jψ − i∂k

(
ψσkjψ

)]
, (5.78)

which can be put back into the classical Hamiltonian to give

∆H =
ie

2m

∫
d3x

[(
∂jψ

)
ψ − ψ∂jψ

]
Aj +

e

2m

∫
d3x∂k

(
ψσkjψ

)
Aj . (5.79)

The second term in the expression above is in fact the spin-orbit (SO) coupling term in the
Hamiltonian, which can be rewritten as

∆HSO =
e

2m

∫
d3x∂k

(
ψσkjψ

)
Aj

= − e

4m

∫
d3x ψσjkψFjk.

(5.80)

Considering an constant, uni-axial external magnetic field such that the only non-trivial term in
the field-strength tensor is F12 = B3, we then have

∆HSO = −µB
∫
d3x ψσ12ψB3, (5.81)

where µB = e/(2m). The the Dirac matrix representation for the gamma matrices, we have
that

σ12 =
i

2

[
γ1
E , γ

2
E

]
= −

[
σ3 0
0 σ3

]
, (5.82)

with σ3 being the z Pauli matrix. The spin operator for fermions (spin- 1
2 particles) is given

as

S3 =
1

2

[
σ3 0
0 σ3

]
, (5.83)
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allowing us to then write the classical spin-orbit Hamiltonian as

∆HSO = 2µB

∫
d3x ψ (S ·B)ψ . (5.84)

The factor of 2 out front can be principle deviate from the value 2, for which it is then in general
referred to as the g-factor with symbol g. The treatment of the theory we have performed up
till now (albeit containing Dirac fields and being relativistic), is not yet a QFT since no path
integrals were taken. Hence, we can still consider this as a classical approximation (resulting in
g = 2). Quantizing this theory will result in g 6= 2, for which this is then (for historic reasons)
referred to as the anomalous contribution to the magnetic moment. We will see this now.

Recall that the Hamiltonian responsible for the magnetic moment of the electron is given in
Eq. (5.72), for which /A also appears in the matter term of the action

Smatter =

∫
d4xEψ

(
/∂ + ie /A

)
ψ. (5.85)

Including the QFT loop corrections will then change the effective fermion-gauge field coupling,
which we will see arise using perturbation theory where we treat e � 1. Recall that the slash
on the gauge field denotes /A = γEµ Aµ, which gives us that explicitly, the fermion-photon vertex
is simply the integrand

ieψγEµ Aµψ. (5.86)

To extend this to QFT, we would get a vertex operator (responsible for the electron and photon
interaction) which arises from the taking the expectation value

Γµ(x1, x2, x3) =

∫
DψDψDAe

−SE
[
ψ(x1)Aµ(x2)ψ(x3)

]
= 〈ψ(x1)Aµ(x2)ψ(x3)〉full. (5.87)

We can expand this into a perturbation series as in Eq. (3.8), which gives us the lowest non-trivial
order term as

Γ(1)
µ (x1, x2, x3) = −〈Smatterψ(x1)Aµ(x2)ψ(x3)〉

= −ieγEν
∫
d4xE〈ψ(x)Aν(x)ψ(x)ψ(x1)Aµ(x2)ψ(x3)〉.

(5.88)

To evaluate this, we utilize the Wick’s theorem which reduces the expression under the integral
to two free fermion propagators 〈ψψ〉 and a free photon propagator 〈AµAν〉. The integral over
xE then enforces momentum conservation. Since these terms arise repeatedly in the perturbation
series, we can once again lighten the notation by introducing the connected, amputated vertex
function, which to leading order is simply written as

Γ(1),conn,. amp.
µ = ieγEµ . (5.89)

This results in the leading order Hamiltonian as

∆H(1) =

∫
d3x ψAµΓ(1),conn,. amp.

µ ψ. (5.90)
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To get the full Hamiltonian correction, we simply replace Γ
(1),conn,. amp.
µ with Γconn,. amp.

µ . From
here, in order to compute the QED corrections to the g-factor, we will be required to calculate
the corrections to the fermion-photon vertex. It will once again be advantageous to work in
Fourier space, where we consider the Fourier transformed vertex function Γ̃µ(p1, p

′). Notice that
this vertex function is only a function of 2 external momenta, precisely because momentum is
conserved (we choose these to describe the two electron momenta). We find that in general, it is
possible to decompose the full vertex function (in Fourier space) into

Γ̃µ(p, p′) = ieγµF1(q2) +
ie

2m
σµνqνF2(q2), (5.91)

where p, p′ are the chosen 4-momenta of incoming and outgoing electrons, and q = p′ − p is the
photon 4-momentum. The functions F1(q2) and F2(q2) are known as form factors, which in the
first-order vertex function are

F1(q2) = 1, (5.92a)

F2(q2) = 0, (5.92b)

We can use the Gordon identity in Eq. (5.76) to replace the gamma matrix in the connected
vertex, which in Fourier space gives

ψ̄ (p′) γEµ ψ(q) = − 1

2m
ψ̄ (p′)

[
i
(
p′µ + pµ

)
− σµνpν

]
ψ(q). (5.93)

Plugging this back into the vertex function results in

Γ̃µ(p, p′) =
e

2m
(pµ + p′µ)F1(p2) +

ie

2m
σµνqν

[
F1(q2) + F2(q2)

]
. (5.94)

We notice that only the second term above would contribute corrections pertaining to the mag-
netic field, which still implies that there is a relation between g and the form factors. The energy
change from spin-orbit coupling is computed from the expectation value 〈∆H〉, for which since
we assume the external magnetic field is constant, we can take that the photon momentum is
zero (q = 0) which leaves us with

g = 2 [F1(0) + F2(0)] . (5.95)

As common in QFTs, it turns that that F1(0) and F2(0) are divergent but renormalizable by
the introduction of counter-terms in the Lagrangian (particularly in the electron charge, e →
ephys + δe). If we choose the on-shell (OS) renormalization scheme, it works out that F1(0) = 1,
which gives

g − 2 = 2FOS
2 (0), (5.96)

leaving us the task of computing FOS
2 (0) from the fermion-photon vertex. If we approach this

perturbatively, we saw that F2(0) = 0 in the first-order vertex function and in fact is also trivial
in the second-order vertex function (because it consists of an odd number of Aµ terms). So the
next lowest non-trivial order would be order 3. This is written explicitly as

Γ(3)
µ (x1, x2, x3) =

(−ie)3

3!

∫
d4xd4yd4z〈ψ(x) /A(x)ψ(x)ψ(y) /A(y)ψ(y)ψ(z) /A(z)ψ(z)

× ψ(x1)Aµ(x2)ψ(x3)〉.
(5.97)
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Since the expectation here is taken w.r.t the free theory, it is Gaussian and can be decomposed
via Wick’s theorem into 2-point function terms we define as

Sα,βx,y = 〈ψαxψ
β

y 〉, (5.98a)

Gµ,ρx,y = 〈Ax,µAy,ρ〉, (5.98b)

where α and β are the spinor indices we now make explicit, and we have moved the spacetime
coordinate arguments to indices (i.e. ψ(x) = ψx). Contracting all terms with the appropriate
permutation factors then leaves us with

Γ(3)
µ (x1, x2, x3) = ie3

∫
x,y,z

Gσδy,zG
µρ
2,xS3,yγσSy,xγρSx,zγδSz,1. (5.99)

We can now Fourier transform this which gives

Γ̃(3)
µ (P, P ′) = ie3

∫
K

GρσK GµρQ SP ′γσSK+P ′γρSK+P γδSP δ(Q− (P ′ − P )), (5.100)

and lighten the notation once again with the amputated vertex function

Γ̃(3),conn., amp.
µ (P, P ′) = ie3

∫
K

GρσK γσSK+P ′γµSK+P γδ, (5.101)

where we have omitted the momentum Q photon propagator GµρQ , and the external fermion
propagator SP and SP ′ .

§5.3 Non-Abelian Gauge Theories

In the previous gauge theory we studied, the symmetry was a local U(1) transformation φ(x)→
eiα(x)φ(x). We have also seen that the U(1) transformations are isomorphic to SO(2) if we
decompose the complex scalar field as φ(x) = (φ1 + iφ2)/

√
2. In this section, we are going

to generalize this to transformations of an SO(N) gauge group. To do so, we can start by
considering the SO(3) gauge group with the 3-component O(N)-vector model which has the
action

SE =

∫
d4xE

[
1

2
∂aφ · ∂aφ+

m2

2
φ · φ

]
. (5.102)

This action is invariant under the global SO(3) transformation

φj → Rjk(α1, α2)φk(x), (5.103)

where Rjk(α1, α2) is the 3-dimensional rotation matrix with 2 rotation parameters (angles) α1

and α2. We could continue the analysis in SO(3), however it would be more mathematically
convenient to continue discussions in SU(2) instead (whose Lie algebra is isomorphic). To do so,
we consider the object

Φ(x) =
1

2

3∑
j=1

φj(x)σj , (5.104)
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where σj are the Pauli matrices which are Hermitian, unitary and have Tr{σjσk} = 2δjk. As
such, we have the identity

Tr
{
∂aΦ(x)∂aΦ†(x)

}
=

1

4
∂aφj(x)∂aφk(x) Tr{σjσk}

=
1

2
∂aφj(x)∂aφj(x).

(5.105)

As such, we can rewrite the action as

SE = Tr

∫
d4xE

[
∂aΦ(x)∂aΦ†(x) +m2Φ(x)Φ†(x)

]
. (5.106)

The SU(2) transformation on this new field object is then

Φ(x) → eiαjσjΦ(x), (5.107a)

Φ†(x) → Φ†(x)e−iαjσj , (5.107b)

because

Tr
{
eiαjσjΦ(x)Φ†(x)e−iαjσj

}
= Tr

{
e−iαjσjeiαjσjΦ(x)Φ†(x)

}
= Tr

{
Φ(x)Φ†(x)

}
. (5.108)

So the action is indeed invariant under global SU(2) transformations. Now we are going to
repeat the same procedure for local SU(2) gauge transformations such that

Φ(x) → eiαj(x)σjΦ(x), (5.109a)

Φ†(x) → Φ†(x)e−iαj(x)σj . (5.109b)

It works out that the corresponding gauge-covariant derivative in the SU(2) case (analogous to
the U(1) case) is given by

Da = ∂a + iAa(x), (5.110)

such that the gauge field here transforms as

Aa(x) → U(x)Aa(x)U†(x) + i[∂aU(x)]U†(x), (5.111a)

DaΦ(x) → U(x)DaΦ(x), (5.111b)

where U(x) ≡ eiαj(x)σj , under local SU(2) gauge transformations. We can also ask what the
analog of the field-strength tensor (Fab) is in U(1) for SU(2). To do so, we first write

Fab = −i[Da, Db] = ∂aAb − ∂bAa, (5.112)

which allows us to generalize this into SU(2) such that now

Fab = −i[Da, Db] = ∂aAb − ∂bAa + i[Aa, Ab]. (5.113)

This indeed transforms appropriately as

Fab → UFabU
†, (5.114)
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and has Tr{FabFab} invariant under local SU(2) gauge transformations, for which the additional
term [Aa, Ab] in Fab is now non-vanishing since the fields no longer commute. As such, this gauge
fields are called non-abelian and the theory is then a non-abelian gauge theory. We conventionally
include this non-abelian field-strength tensor into the action by

SE = Tr

∫
d4xE

[
∂aΦ(x)∂aΦ†(x) +m2Φ(x)Φ†(x) +

1

2g2
FabFab

]
, (5.115)

where the factor 1/(2g2) is convention and g is known as the coupling constant of the non-abelian
field theory. We can also decompose the field-strength tensor into its vector components as

Fab(x) =
1

2

3∑
j=1

σjF
j
ab(x), (5.116)

so we have that

Tr

{
1

2g2
FabFab

}
=

1

4g2
F jabF

j
ab, (5.117)

with the indices running over a, b = 1, 2, 3, 4 and j = 1, 2, 3. Recall that a, b are the Euclidean
Lorentz indices whereas j is referred to as the color index. Since we have used fairly general
notation for the N = 3 case using the color index, we can easily extend this to the case for
arbitrary N such that under SU(N) transformations, the non-abelian gauge field transforms as
already written above:

Aa(x) → U(x)Aa(x)U†(x) + i [∂aU(x)]U†(x) , (5.118)

where U(x) = exp (iαj(x)λj) , (5.119)

with λj being an element of SU(N) and j ∈ [1, N2 − 1]. The general non-abelian field strength
tensor is also then decomposeable into generators of the SU(N) group tj , as

Fab =

N2−1∑
j=1

F jabtj , (5.120)

in which the generators are normalized such that Tr{tjtk} = 1
2δjk. These generators must of

course the Lie algebra associated to SU(N) which is

[tj , tk] = ifjkltl, (5.121)

where fjkl is called the structure tensor, allowing these generators to have an N × N matrix
representation. For N = 2, the structure tensor is simply the Levi-Civita tensor εjkl.

Note: The object Fab and the set of F jab carry the same information. Fab is called the
fundamental representation (usually written as an N ×N matrix), while the set of N2−1
numbers F jab, is known the adjoint representation which can be thought of as components
to the basis vectors tj . These representations are related via

F jab = 2 Tr
{
Fabt

j
}
. (5.122)
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The general SU(N) gauge theory is referred to as the Yang-Mills theory. The case where N = 3
is in fact the theory strong interactions known as quantum chromodynamics (QCD), with the
name “chromo” due to the indices being called color, whereas the case where N = 2 is a theory
for electroweak interactions known as the Salam-Glashow-Weinberg model.

To now solve the Yang-Mills theory, we once again focus on the non-abelian gauge field term
which renders the action just as

SE =
1

2g2
Tr

∫
d4xEFabFab =

1

4g2

∫
d4xEF

j
abF

j
ab, (5.123a)

where F jab = ∂aA
j
b − ∂bA

j
a − fjklAkaAlb, (5.123b)

where a, b denoting the Euclidean Lorentz indices and j, k, l denoting the color indices. The
partition function is then

Z =

∫
DA exp

(
− 1

4g2

∫
d4xEF

j
abF

j
ab

)
. (5.124)

To first consider a simpler problem, we can rescale the gauge field Aa(x) → gAa(x) such that

Z =

∫
DA exp

(
−1

4

∫
d4xEF

j
abF

j
ab

)
, (5.125a)

where F jab = ∂aA
j
b − ∂bA

j
a − gfjklAkaAlb. (5.125b)

In this new rescaled partition function, we can consider the case where g = 0 (referred to as free
Yang-Mills theory), which leaves the field-strength tensor uncoupled in the gauge fields

F jab[g = 0] = ∂aA
j
b − ∂bA

j
a, (5.126)

and thus admits a factorization of the partition function into N2 − 1 product terms

Z[g = 0] =

N2−1∏
j=1

∫
DA exp

(
−1

4

∫
d4xEF

2

)
=
(
ZU(1)

)N2−1
. (5.127)

So we see that the g = 0 non-abelian partition function is simply a product of partition functions
for an abelian gauge theory. This results in free Yang-Mills theories (and hence weak-coupling
perturbation theories) to suffer from the gauge-orbit problems found in U(1) theories. However,
we will see that the coupled Yang-Mills theory is completely well defined for g 6= 0. To solve
coupled Yang-Mills theories, we can once again employ the trick of Faddeev-Popov ghosts with a
suitable gauge Gj [A] = f j , chosen to simplify the calculations (a similar procedure to that done
for QED). This results in a very familiar path integral

Z[g] =

∫
DA δ(Gj [A]− f j) det

{
∂Gj [A]

∂αj

}
e−SE [A]

=

∫
DADcDc δ(Gj [A]− f j) exp

(
−SE [A]−

∫
d4xE c

j ∂G
j [A]

∂αj
cj
)
.

(5.128)
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Integrating over the gauge fixings with Gaussian weight leads to

Z[g] =

∫
DADcDce−SE−Sghost−Sgf , (5.129)

where

SE =
1

4g2

∫
d4xEF

j
abF

j
ab, (5.130a)

Sghost =

∫
d4xE c

j ∂G
j [A]

∂αj
cj , (5.130b)

Sgf =
1

2ξ

∫
d4xEG

j [A]Gj [A]. (5.130c)

Once again, ξ is just an arbitrary parameter and must drop out of the physical observables
derived in this theory.

Let us try solving this integral in the Landau gauge, where the gauge condition is given by
Gj [A] = ∂aA

j
a. In the fundamental representation, we still have that the gauge field transforms

as

Aa(x) → U(x)Aa(x)U†(x) + i [∂aU(x)]U†(x), (5.131)

under the local gauge transformation U(x) = eiα
j(x)tj . For small values of α, the transformation

of the gauge field in the adjoint representation is given as

Aja(x) → Aja(x)− ∂aαj(x)− f jklαk(x)Ala(x). (5.132)

Compared to the case of U(1) transformations, the gauge transformation for Aa(x) has an ad-
ditional term −f jklαk(x)Ala(x), which is itself dependent on the gauge field. As a consequence,
the ghost term in the partition function will also include a gauge field term (unlike in the case
for U(1) transformations):

Sghosts =

∫
d4xE c

∂G[A]

∂α
c

=

∫
d4xE

[
∂ac

j∂ac
j + ∂ac

jf jklAlac
k
]
.

(5.133)

Once again rescaling the gauge field Aa(x)→ gAa(x) to allow considerations of the zero-coupling
(g = 0) case, gives us the partition function

Z =

∫
DADcDc exp

−
∫
d4xE

1

4
F jabF

j
ab︸ ︷︷ ︸

Yang-Mills

+
1

2ξ
∂aA

j
a∂aA

j
a︸ ︷︷ ︸

gauge-fixing

+ ∂ac
j∂ac

j + ∂ac
jf jklAlac

k︸ ︷︷ ︸
ghost


 .

(5.134)

So unlike QED, the partition function now would have self-interaction due to the nonlinear
f jklAkaA

l
b term in the field-strength tensor. This makes computations complicated (even the

one-loop calculations), involving gauge field vertices as well as vertices that couple the ghost
field and the gauge field.
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Appendix A

Grassmann Variables

In normal arithmetic, the product of two numbers a and b following the commuting relation
ab = ba. However, we can also consider anti-commuting numbers which follow the relation

ab = −ba. (A.1)

Such anti-commuting numbers are known as Grassmann numbers. A property which follows
from anti-commutation is nilpotence, which means

a2 = a3 = a4 = . . . = 0. (A.2)

Note: Grassmann numbers can be represented in terms of 2n × 2n matrices.

Nilpotence implies that any Taylor expansion of a function of a Grassman number θ terminates
after at the second order term:

f(θ) = c0 + c1θ . (A.3)

where c0 and c1 are usual commuting coefficients (sometimes called c-numbers). Also, Grassmann
variables satisfy the Grassmann integration rule for translationally invariant integrals. That is
to say, if the integral is invariant under the transformation θ → θ + η, then we have that∫

dθf(θ) =

∫
dθ(c0 + c1θ) = c1 , (A.4)

which implies that ∫
dθ = 0,

∫
θdθ = 1. (A.5)
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Note: The integration properties in Eq. (A.5) are identical to the derivative rules for
variables of c-numbers, i.e.

∂

∂x
1 = 0,

∂

∂x
x = 1. (A.6)

The proof of the Grassmann integral identity is as follows.

Proof. Considering the integral

F (c0, c1) =

∫
dθf(θ), (A.7)

the Taylor expansion property of a function of Grassmann variables gives us that

F (c0, c1) =

∫
dθ (c0 + c1θ) . (A.8)

Furthemore, since the integrand is a linear function of the c-variables c0 and c1, we can
write the integral as

F (c0, c1) = αc0 + βc1, (A.9)

where α and β are also c-numbers. From this, we consider the consequence of translational
invariance of this integral. Translating the Grassmann variable via the transformation
θ → θ + η, we get∫

dθ (c0 + c1θ) →
∫
dθ [c0 + c1(θ + η)] = F (c0 + ηc1, c1)

= α(c0 + ηc1) + βc1.

(A.10)

Equating the above expression with the pre-translated integral gives

αc0 + βc1 = α(c0 + ηc1) + βc1,

⇒ αηc1 = 0,

⇒ α = 0,

(A.11)

since we noted that η 6= 0 and c1 6= 0. Finally, we can arbitrarily normalize the remaining
constant β to one, which result in

F (c0, c1) =

∫
dθf(θ) = c1. (A.12)

An example of the application of these Grassmann variable properties, is when the integral
function is a Gaussian of multiple Grassmann variables. We can see that∫

dθ0dθ1e
−θ0bθ1 =

∫
dθ0dθ1(1− θ0bθ1), (A.13)
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where b is a c-number. Using the integral properties, we get that∫
dθ0dθ1e

−θ0bθ1 = b

∫
θ0dθ0

∫
θ1dθ1 = b. (A.14)

This can be generalize to a Gaussian of 2N variables which gives

N∏
j=1

∫
dθjdφje

−θjBijφj = det(Bij). (A.15)
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