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This is the first in a series of 3 graduate level classes on quantum mechanics taught at the
University of Colorado Boulder. The textbook we will be using for most of this class is Modern
Quantum Mechanics by J. J. Sakurai, with other relevant texts being Quantum Mechanics by
E. Merzbacher, Principles of Quantum Mechanics by R. Shankar and The Feynman Lectures on
Physics (Vol. III) by R. P. Feynman. As an overview, the topics we will be aiming to cover this
semester are listed below.

1. Formalism of Quantum Mechanics.
2. The Schrödinger Equation and Quantum Dynamics.
3. Symmetries and Conservation Laws.
4. Spin and Angular Momentum.
5. The Hydrogen Atom Fine and Hyperfine Structure.
6. Perturbation Theory.
7. Identical Particles.

All notes were taken real-time in the class (i.e. there are bound to be typos) taught by Professor
Ethan Neil. For all useful information on this class, visit this link. 1

Instructor: Professor Ethan Neil.
Instructor office hours: Tuesday 3-5pm / Friday 11am - noon (Duane F313).
Instructor email: ethan.neil@colorado.edu.
Personal use only. Send any corrections and comments to reuben.wang@colorado.edu.

1For CU graduate students, we will be using the https://canvas.colorado.edu/ website for grading and admin-
istrative purposes.

https://www.colorado.edu/physics/ethan-neil
https://www.colorado.edu/physics/ethan-neil
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/
https://canvas.colorado.edu/
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Chapter 1

Introduction

What evidence is there for a quantum mechanical world? There have been many things that point
to the need for a quantum theory. Things such as the ultraviolet catastrphe, the electron double
slit experiment, wave-particle duality, the Stern-Gerlach experiment, the uncertainty principles,
energy quantization, entanglement and of course, the loss of determinism. This course aims
to provide some of the experimental evidence that points to the need for a quantum theory and
develops the formalisms and tools required to model such phenomena. For starters, we will be
looking at several of the aforementioned experiments starting with the double-slit experiment.
This should get our intuitions right off the classical track once more.

§1.1 Double-Slit Experiment

In 1927, Clinton Davisson and Lester Germer performed the double slit experiment with a
beam of electrons. At that time, it was believed that electrons were simply point particles with
(semi)classical behaviour (following the Bohr model). This essentially meant that electrons were
pretty much believed to be little charged hard spheres, so shooting a bunch of them through slits
would have the equivalent result as throwing bullets/billiard balls through holes.

Figure 1.1: Billiard Ball Double Slit Experiment

1



CHAPTER 1. INTRODUCTION 2

The classical expectation of throwing billiard balls through 2 slits would produce a distribution
shown in figure 1.1. In words, these are basically 2 approximately Gaussian peaks centered along
the slit axes. But electrons, as it turns out, are not just your everyday classical objects. What
was seen by Davisson and Germer was in fact an interference pattern on the screen (figure 1.2),
exactly as what Young did for light (or what one would see with any perturbed classical wave
medium). Not just that, but they also observed that if a measurement of the electrons was made
at the slits, the electrons would behave just as the billiard balls would. This led to the notion
of wave-particle duality.

Figure 1.2: Electron Double Slit Experiment

§1.2 Lifetime of Excited Atoms

Consider the following set-up. We shine a laser on a material (which we prepare to be in the
ground state) such that we excite the material’s atoms to an excited state (higher energy state).
We then have an emitter that collects the photons emitted from the material when the atom
spontaneously falls back to its initial unexcited state. We then measure the spontaneous emission
lifetime (time it takes to spontaneously emit a photon). It turns out that the lifetimes follow a
distribution (not due to experimental errors) which we call the “natural linewidth”. This tells
us that there is some inherent randomness in physical systems and the uncertainty in the decay
lifetime is a fundamental property of the atomic state.

Additionally, if we were to measure the energy E along with these spontaneous emission lifetimes
τ , we see we will always retrieve the relation:

∆E∆τ ≥ ~
2

(1.1)

That is these quantities are correlated in their uncertainties. An application of this would be for
Z-Bosons (neutral force carrier particles of the weak force) which particle physicists exploit all
the time. This relation allows us to estimate the decay lifetimes of these particles which would
be practically impossible to experimentally measure. However, with the relation, what physicist
do is measure the distribution of energies associated to the Z boson and calculate its uncertainty
to retrieve an estimate of its decay lifetime. To give an idea on how insurmountable the task
of measuring decay lifetimes would be, the measured energy uncertainty is ∼ 2.5 GeV, which
means the decay would be ∼ 2.6× 10−13 ps!
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§1.3 Stern-Gerlach Experiment

The Stern-Gerlach experiment is one where we fire silver atoms (which can be effectively thought
of as heavy electrons) through a uniform magnetic field (in the ẑ direction) and measure their
resultant positions on a detector screen. From classical electrodynamics, we know that these
“heavy electrons” will experience a Lorentz force which goes like:

Fz =
∂

∂z
(~µ · ~B) ≈ µz

∂Bz
∂z

(1.2)

where z is the axis that points upward, orthogonal to the beam axis. What we would classically
expect is a smearing (continuous distribution) of the silver atoms which land on the screen.
However of course, our world is indeed quantum mechanical and what we see is instead 2 con-
centrated regions of silver atoms on the screen with spin values ±~/2. This finite “binning” is
known as the quantization of spin. If we now think of the Stern-Gerlach experiment as a black
box such that when we send in spin 1-half particles, they emerge as either their ‘up’ or ‘down’
states, then we can have an abstracted visualization as follows.

|ψ〉s
|−〉

Sz = −~
2

|+〉
Sz = +~

2
Ẑ

Figure 1.3: Spin-Z Black Box

Stern and Gerlach continued to perform experiments by placing these black boxes in a chain,
and the results are as follows.

1. The first experimental set-up as shown in figure 1.4 showed that we can have 2 orthogonal
states for the electron. These states are with respect to the ẑ orientation and we will label
them as {|z; +〉 , |z;−〉}.

|ψ〉s

+~
2

−~
2

0%

+~
2

100%
Ẑ Ẑ

Figure 1.4: 2 ẑ-oriented Black Boxes with Blockage

2. A second experiment set up as shown in figure 1.5. These results show that basis states
of one orientation of the Stern-Gerlach experiment have overlap with the basis states of
another orientation ⇒ 〈x;±|z;±〉 6= 0.

|ψ〉s

+~
2

−~
2

50%

+~
2

50%
Ẑ X̂

Figure 1.5: ẑ/x̂-oriented Black Boxes with Blockage
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3. The third experimental set up shown in figure 1.6 shows that any ‘memory’ of a having
passed through previous filters is not retained.

|ψ〉s

Sz = +~
2

Sx = −~
2

50%
+~

2

50%
−~

2

Ẑ X̂ Ẑ

Figure 1.6: ẑ/x̂/ẑ-oriented Black Boxes with Blockages

However, these results thus far are not sufficient to dismiss classical theory, because our machin-
ery could be noisy and induce some sort of precession to the silver atoms to produce such an
output. Thus the final we require the final experiment as demonstrtated below.

4. The last experimental set up shown in figure 1.7 finally dictates that we need a theory
beyond classical mechanics.

|ψ〉s

Sz = +~
2

Sx = −~
2

Sx = +~
2

100%
+~

2

Ẑ X̂ Ẑ

Figure 1.7: ẑ/x̂/ẑ-oriented Black Boxes with Blockage

How this allows us to question classical physics is that given the assumption of classical laws,
the rules of probability tell us that the outcome of the fourth experiment should be:

p(Sz = −|Sx = + or Sx = −)

=p(Sz = −|Sx = +)p(Sx = +) + p(Sz = −|Sx = −)p(Sx = −)
(1.3)

Every term on the right-hand side of equation 1.3 should be 50%, yet the left-hand side is
experimentally zero! How can this be? The only way to resolve this is by working with probability
amplitudes. That is:

pQuantum(A or B) = |ψ(A) + ψ(B)|2 (1.4)

= p(A) + p(B) + 2 Re{ψ∗(A)ψ(B)} (1.5)

where the ψ terms are probability amplitudes (complex variables) rather than probability dis-
tributions. We require to take the absolute square of the probability amplitudes to retrieve the
probabilities. This third term is what is known as an interference effect and would not be present
in standard classical theories of a spinning charge. It turns out that this system can be modelled
as a 2-dimensional complex vector space with an orthonormal basis consisting of these up and
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down states {|+〉 , |−〉}:

|ẑ; +〉 =

[
1
0

]
, |ẑ;−〉 =

[
0
1

]
(1.6)

|x̂; +〉 =
1√
2

[
1
1

]
, |x̂;−〉 =

1√
2

[
1
−1

]
(1.7)

where passing through the different black boxes along each axes would just be a projection of these
vectors onto the other basis. However, if we try to extend this experiment into the y-direction,
we find that we must introduce complex numbers where the y-basis is written as:

|ŷ; +〉 =
1√
2

[
1
i

]
, |ŷ;−〉 =

1√
2

[
1
−i

]
(1.8)



Chapter 2

Hilbert Spaces

We’re gonna stop being hand-wavey now and get into the meat of things. This section will be
laying out a bunch of mathematics so get ready. However if you want more math, the lecture
notes by Landsman and “Analysis” by Lieb and Loss should satiate that desire. Vector spaces
(or more specifically Hilbert spaces) are the universal language of quantum mechanics. Whether
you are working with wave mechanics or in matrix mechanics, vector spaces are the embedded in
both of these methods. Why working with vector spaces is useful in quantum mechanics is because
most of the time, we will be working with finite dimensional spaces and operators. To start, let’s
begin with a definition.

Definition 2.0.1. Hilbert Spaces: A Hilbert space is a complex vector space that is complete
(all Cauchy sequences converge) with an inner product :

( , ) : H×H → C (2.1)

where H is the Hilbert space.

§2.1 Dirac Notation

The particular construction of quantum mechanics is nicely described when adopting what is
known as Dirac’s notation. In this notation, we have kets being the elements of the Hilbert
space, and hence are sometimes also referred to as vectors. These are written as:

|ψ〉 ∈ H (2.2)

where H is the Hilbert space. Some properties of kets are listed below.

1. |α〉+ |β〉 = |β〉+ |α〉
2. |α〉+ (|β〉+ |γ〉) = (|β〉+ |α〉) + |γ〉
3. (c1 + c2) |α〉 = c1 |α〉+ c2 |α〉
4. c1(c2 |α〉) = (c1c2) |α〉
5. ∃I s.t. I |α〉 = |α〉

6
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6. ∃ |〉 s.t. |α〉+ |〉 = |α〉 and 0 |α〉 = |〉
7. ∃ |−α〉 for all |α〉 s.t. |α〉+ |−α〉 = |〉

§2.2 Relevant Linear Algebra Concepts

It would prove useful now to first refresh our memory on some concepts from linear algebra.

Definition 2.2.1. Linear Independence: A set of vectors {|λj〉} are linearly independent iff∑
j cjλj = 0 has no solutions except for the trivial one cj = 0 ∀j.

Definition 2.2.2. Dual Correspondence: Every element of the Hilbert space has a dual,
which is its bra that lives in the dual Hilbert space. This correspondence map is non-linear
because: ∑

j

cj |αj〉 <→
∑
j

c∗j 〈αj | (2.3)

is a non-linear isomorphic map.

Note: Dual Hilbert spaces are not really necessary for us physicists to know but is the
mathematically rigorous way of keeping track of spaces. However, we will always just
defer to using one all-encompassing Hilbert space in this class.

We also want to list some bra-ket inner product properties.

1. (c 〈α|) |β〉 = c 〈α|β〉

2. (〈α1|+ 〈α2|) |β〉 = 〈α1|β〉+ 〈α2|β〉

3. 〈β|α〉 = 〈α|β〉∗

4. 〈α|α〉 = 〈α|α〉∗ ≥ 0

As per the standard notion of orthogonality in linear algebra, we can express this in bra-ket
notation as well.

Definition 2.2.3. Orthogonality: 2 vectors (kets) are orthogonal iff :

〈β|α〉 = 〈α|β〉 = 0 (2.4)

We denote a vector (ket) as normalized if it satisfies the relation:

|ψ〉 =
|ψ〉
‖|ψ〉‖

(2.5)

In infinite dimesional Hilbert spaces, we define the inner product as follows.



CHAPTER 2. HILBERT SPACES 8

Definition 2.2.4. The infinite dimensional Hilbert space inner product between 2 elements
|f〉 and |g〉 is given by:

〈f |g〉 =

∫
f∗(x) · g(x)dnx (2.6)

where the integral is over all space defined by the system and n is the coordinate-space
dimensionality.

An important relation is the Cauchy-Schwarz inequality which reads:

〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2 (2.7)

where we call equality “saturation”. The proof is as follows:

Proof. Consider the portion of |α〉 that is orthogonal to |β〉. This would be:

|α⊥〉 = |α〉 − 〈α|β〉
〈β|β〉

|β〉 (2.8)

Then consider the inner product of this ket with itself:

〈α⊥|α⊥〉 =

(
〈α| − 〈β|α〉

〈β|β〉
〈β|
)(
|α〉 − 〈α|β〉

〈β|β〉
|β〉
)

(2.9)

= 〈α|α〉+
〈α|α〉 〈α|β〉
〈β|β〉

− 2
〈α|α〉 〈α|β〉
〈β|β〉

(2.10)

⇒ 〈α|α〉 〈β|β〉 = |〈α|β〉|2 + 〈α⊥|α⊥〉 〈β|β〉 (2.11)

and since we know that 〈α⊥|α⊥〉 〈β|β〉 ≥ 0, the inequality is proven.

§2.3 Operators

This section is just going to be a bunch of definitions and properties to catch us up to speed on
some of the tools necessary for doing quantum mechanics in any practical sense.

Definition 2.3.1. Operators: An operator is a map from a Hilbert space to itself.

Ô : H → H (2.12)

where H is the Hilbert space.

Some properties that these satisfy are as follows.

1. Â = B̂ if Â |ψ〉 = B̂ |ψ〉 for all |ψ〉.
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2. ∃̂ such that |̂ψ〉 = |〉

3. ∃Î such that Î |ψ〉 = |ψ〉

4. Â+ B̂ = B̂ + Â

5. Â+ (B̂ + Ĉ) = (Â+ B̂) + Ĉ

6. (c+ d)Â = cÂ+ dÂ for c, d ∈ C

Definition 2.3.2. Linear Operators: A special kind of operator whereby it satisfies the
property:

Â (cα |α〉+ cβ |β〉) = cαÂ |α〉+ cβÂ |β〉 (2.13)

Definition 2.3.3. Commutator: The commutator between 2 operators Â and hatB is defined
as: [

Â, B̂
]

= ÂB̂ − B̂Â (2.14)

A list of commutator properties are listed below.

1.
[
Â, Â

]
= 0

2.
[
Â, B̂

]
= −

[
B̂, Â

]
3.
[
Â+ B̂, Ĉ

]
=
[
Â, Ĉ

]
+
[
B̂, Ĉ

]
4.
[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
5.
[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂

6. Jacobi Identity:
[
Â,
[
B̂, Ĉ

]]
+
[
B̂,
[
Ĉ, Â

]]
+
[
Ĉ,
[
Â, B̂

]]
= 0

Definition 2.3.4. Operator Inverses: Most operators Â have an inverse Â−1 such that :

ÂÂ−1 |ψ〉 = Â−1Â |ψ〉 = I |ψ〉 (2.15)

when Â exists, it is unique.

Definition 2.3.5. Adjoint Operator: Given an operator Â, the adjoint of Â is denoted Â†

as satisfies: (
|α〉 , Â |β〉

)
=
(
Â† |α〉 , |β〉

)
(2.16)
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If we exist in Cn, then Â can have a matrix representation [A]ij . It is convenient to note that
the adjoint of the this matrix would be [A†]ij = [A]∗ji. Some properties of the adjoint operator
are listed below.

1. (cÂ)† = c∗Â†

2. (Â+ B̂)† = Â† + B̂†

3. (ÂB̂)† = B̂†Â†

Some special operators largely used in quantum mechanics are Hermitian and Unitary operators.
These satisfy the properties:

1. Hermitian Operators: Â = Â†

2. Unitary Operators: Û† = Û−1

Definition 2.3.6. Eigen-Kets: An eigen-ket |a〉 of Â is a ket that is left invariant up to a
scalar when acted on by operator Â:

Â |a〉 = a |a〉 (2.17)

where a is the eigenvalue of Â associated to |a〉.

A special property of Hermitian operators and their eigen-kets are that their eigen-kets with
distinct eigenvalues are all orthogonal.

Proof. Let Â be a Hermitian operator with 2 of its eigen-kets being |a1〉 and |a2〉. Then
we know that:

〈a1| Â |a2〉 = 〈a2| Â |a1〉∗

⇒ a2 〈a1|a2〉 = a∗1 〈a1|a2〉
⇒ (a2 − a∗1) 〈a1|a2〉 = 0

(2.18)

Now we have 2 cases:
1. If a1 6= a1: a1 − a∗1 = 0, which means that the eigenvalues of Hermitian operators

must be real.
2. If a1 6= a2: 〈a1|a2〉 = 0, which concludes the proof.

The 2 results in the proof constitute what is known as the spectral theorem.

Definition 2.3.7. Basis: A set of vectors (kets) {|ej〉} which span the Hilbert space and
also has the same dimension as the Hilbert space.

An orthonormal basis is a special kind of basis whereby every one of its elements satisfies:

〈ei|ej〉 = δij (2.19)

Orthonormal bases allow us to express the coefficients of some arbitrary ket in the Hilbert space
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with projectors:

|ψ〉 =
∑
n

(|en〉 〈en|) |ψ〉 (2.20)

where we denote the |. . .〉 〈. . .| operation as an outer product.

Note: Notice the relation: ∑
n

|en〉 〈en| = I (2.21)

known as the completeness relation or“inserting a complete set of states”.



Chapter 3

Two-Level Systems

Also known as the qubit system, these have many applications that go beyond just the commonly
talked about quantum computing. An exapmle of such a system that we have already seen is
the spin system discovered by Stern and Gerlach’s experiment. 2-state systems are extremely
important in physics and have applications in lasers, atomic transitions, neutrinos, quantum
computing and many more. To set these systems up, we’re first going to need to know the
postulates of quantum mechanics.

§3.1 Postulates of Quantum Mechanics

1. Postulate 1: The state of a physical system is a normalized ket in a Hilbert space H.

2. Postulate 2: Any physical observable is a Hermitian operator (with real eigenvalues as
proven last time) acting on a Hilbert space H.

3. Postulate 3: Taking a measurement of an operator Â, we will measure some eigenvalue a
of Â and the state collapses to the corresponding eigenvector.

4. Postulate 4 (Born’s Rule): If the system is in the state |ψ〉, then the probability of
getting an outcome a from measuring Â is given as:

P(a) = |〈a|ψ〉|2 (3.1)

5. Postulate 5: The states of a quantum system evolve in time according to:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉

⇒ − i~ ∂
∂t
〈ψ(t)| = Ĥ 〈ψ(t)|

(3.2)

(will be further elaborated on in the chapter on quantum dynamics).

Note: Postulate 4 is the reason why we need our states to be unit normalized.

12
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Note: Postulate 5 is phrased in the Schrödinger picture which is where states evolve in
time instead of the operators (which is called the Heisenberg picture).

Example:

Consider the Stern-Gerlach experiment, for which we want to the measure the spin in the
z axis/basis. The corresponding observable would be the Hermitian operator Ŝz with the
matrix representation:

Ŝz =
~
2

[
1 0
0 −1

]
(3.3)

where we got this by taking the some of the outer products of the eigenstates scaled by
their corresponding eigenvalues. Equivalently, the entries of this matrix could have been
computed by the relation: [

Ŝz

]
ij

= 〈i| Ŝz |j〉 (3.4)

where |i〉 , |j〉 are eigenstates ∈ {|Sz; +〉 , |Sz;−〉}.

§3.1.1 Repeated Measurements

In experiment, we can’t talk about probability unless we repeat the experiment and attain some
statistics on the results. As such, we need to know some relevant statistics.

1. Expectation:

〈Â〉 =
∑
j

ajP(aj)

=
∑
j

aj |〈aj |ψ〉|2

=
∑
j

〈ψ|aj〉 aj 〈aj |ψ〉

=
∑
j

〈ψ| Â |aj〉 〈aj |ψ〉

= 〈ψ| Â

∑
j

|aj〉 〈aj |

 |ψ〉 = 〈ψ| Â |ψ〉

(3.5)

2. Variance:

∆Â2 = 〈Â2〉 − 〈Â〉2

= 〈ψ| Â2 |ψ〉 − 〈ψ| Â |ψ〉2
(3.6)
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§3.1.2 More on 2-Level Systems

Going back to the 2-state system, even though we are working in a complex field which would give
2 real numbers per coefficient, of which there are 2 to describe a general state, the normalization
condition and Born’s rule eliminate 2 of these:

|ψ〉 = α |+〉+ β |−〉

= cos

(
θ

2

)
|+〉+ sin

(
θ

2

)
eiφ |−〉

(3.7)

where a global phase eiζ does not affect the physics since the wavefunction (kets) are useful only
when we square them to get the probabilities. In general, the number of free real parameters
required to describe a quantum system of N states is N − 2. The reason why we choose to
parameterize the state with angular coordinates is so that we can have a geometric picture of
the state with what is called a Bloch sphere (figure 3.1 below).

Figure 3.1: Bloch Sphere

where in the figure above, the eigenstates are written as |0〉 and |1〉 because that is the convention
that quantum information theorists use. In this geometric representation, quantum states live
on the surface of the Block sphere due to the normalization condition, and they move around
via unitary operators.

The results from the Stern-Gerlach experiment are sufficient to dictate the need for complex
numbers, so that we have the eigenstates of spin observable along each axis is given by:

Ŝx : |x; +〉 =
~
2

[
1
1

]
, |x;−〉 =

~
2

[
1
−1

]
(3.8)

Ŝy : |y; +〉 =
~
2

[
1
i

]
, |y;−〉 =

~
2

[
1
−i

]
(3.9)

Ŝz : |z; +〉 =
~
2

[
1
0

]
, |z;−〉 =

~
2

[
0
1

]
(3.10)
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for which their matrix representations are:

Ŝx =
~
2

[
0 1
1 0

]
, Ŝy =

~
2

[
0 −i
i 0

]
, Ŝz =

~
2

[
1 0
0 −1

]
(3.11)

The Pauli matrices are then defined as the spin operators but with a factor 2/~. Some properties
of the Pauli matrices are listed below.

1. σ̂2
j = I

2. [σ̂i, σ̂j ] = 2iεijkσ̂k

3. {σ̂i, σ̂j} = 2δijI

§3.1.3 Compatible Observables and Uncertainty

In general, we have that observables do not commute. That is:

ÂB̂ 6= B̂Â (3.12)

So the order of measurement matters! However, there is an exception to this. That is when:

Â |χ〉 = a |χ〉 and B̂ |χ〉 = b |χ〉
⇒ ÂB̂ |χ〉 = B̂Â |χ〉 = ab |χ〉

(3.13)

In fact if the observables commute, they are said to be simultaneously diagonalizable, and share
the same set of eigenstates.

Theorem 3.1.1. If Â has non-degenerate eigenvalues, then we have a compatible B̂ that
is diagonale in the basis of eigenstates of Â.

Proof. First consider:

〈aj |
[
Â, B̂

]
|ai〉 = 〈aj | ÂB̂ − B̂Â |aj〉

=
∑
k

[
〈aj | Â |ak〉 〈ak| B̂ |ai〉

]
− aj 〈aj | B̂ |ai〉

=
∑
k

akδjk 〈ak| B̂ − aj 〈aj | B̂ |ai〉

= (aj − ai) 〈aj | B̂ |ai〉 = 0

(3.14)

This tells us that
[
Â, B̂

]
= 0 iff there exists a basis where both Â and B̂ are diagonal

(simultaneously diagonalizable).

An application of this would be for the spin observables along with the total spin operators Ŝ2

which is defined as:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

3

4
~2I (3.15)
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which turns out that
[
Ŝj , Ŝ

2
]

= 0 (check this as an exercise).

§3.1.4 Incompatible Observables

Now we think about the converse scenario. Consider 3 observables Â, B̂ and Ĉ that are incom-
patible. We send an input state into the respective operators in sequence, that is Â→ B̂ → Ĉ.
At each step, we block all the outgoing states except the top eigenstate with the exception of Ĉ
outputs. Then to compute the probability of obtaining the first eigenstate of Ĉ, |c1〉 given that
we came from the eigenstate |b1〉 of B̂ and also from the eigenstate |a1〉 before that:

P(c1|b1, a1) = |〈c1|b1〉|2|〈b1|a1〉|2 (3.16)

And if we repeat this over all the eigenstates of B̂, we get:

P(c1|B̂, a1) =
∑
b

|〈c1|b〉|2|〈b|a1〉|2 (3.17)

But now if we completely remove B̂, we have instead:

P(c1|no B̂, a1) = |〈c1|a1〉|2 =

∣∣∣∣∣∑
b

〈c1|b〉 〈b|b〉

∣∣∣∣∣
2

(3.18)

The 2 boxed equations are not equal in general, unless Â and B̂ commute! Otherwise, they are
known as incompatible observables. Now we will show that 2 incompatible observables satisfy
an uncertainty relation. An uncertainty relation means that we cannot know both a and b

simultaneously if
[
Â, B̂

]
= 6= 0. We however can know the expectation of the observables but

not arbitrarily precisely. The uncertainty is quantified by the variance (a.k.a dispersion), which
corresponds to the width of the statistical distribution of the observable measurements.

Note: The variance can be zero if we measure eigenstates of the observable.

Theorem 3.1.2. There exists an uncertainty relation between 2 non-commuting (incom-
patible) observables written as:

∆Â∆B̂ ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣ (3.19)

Proof. First let:

|α〉 = ∆Â |ψ〉 (3.20)

|β〉 = ∆B̂ |ψ〉 (3.21)
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for some arbitrary state |ψ〉, then we know from the Cauchy-Schwarz inequality that:

〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2

⇒ 〈ψ|∆Â |ψ〉 〈ψ|∆B̂ |ψ〉 ≥
∣∣∣〈ψ|∆Â∆B̂ |ψ〉

∣∣∣2 (3.22)

Now we use the identity:

∆Â∆B̂ =
1

2

[
∆Â,∆B̂

]
+

1

2

{
∆Â,∆B̂

}
where

[
∆Â,∆B̂

]
=
[
Â, B̂

] (3.23)

Also notice that
[
Â, B̂

]
is anti-Hermitian (purely imaginary eigenvalues) while

{
∆Â,∆B̂

}
is Hermitian (purely real eigenvalues). So this gives us:∣∣∣〈ψ|∆Â∆B̂ |ψ〉

∣∣∣2 =
1

4

∣∣∣[Â, B̂]∣∣∣2 +
1

4

∣∣∣{∆Â,∆B̂
}∣∣∣2 ≥ 1

4

∣∣∣[Â, B̂]∣∣∣2 (3.24)

§3.2 Change of Basis

What we wanted to move from one basis to another, we would then need to construct an operator
such that:

ÛB1→B2
=
∑
k

|k;B1〉 〈k;B2| (3.25)

This operator turn out to be unitary and satisfies;

Û†B1→B2
ÛB1→B2

= ÛB2→B1
ÛB1→B2

= I (3.26)

If we write our state in the eigenstate expansion of bases, we have:

|ψ〉 =
∑
j

|aj〉 〈aj |ψ〉

=
∑
j

|bj〉 〈bj |ψ〉
(3.27)

where we see that:

〈bj |ψ〉 =
∑
j

〈bj |aj〉 〈aj |ψ〉

=
∑
j

〈aj | Û† |aj〉 〈aj |ψ〉
(3.28)



CHAPTER 3. TWO-LEVEL SYSTEMS 18

As such, state and operator transformations from one basis to another is written as:

ψ → Û† |ψ〉
Â→ Û†ÂÛ

(3.29)

Note: The norm of a state and trace of an operator are preserved under change of basis
transformations, where the trace is defined as:

Tr
{
Â
}

=
∑
j

〈j| Â |j〉 (3.30)

Traces satisfy the properties below.
1. Cyclic triplet permutation.
2. Tr{|ai〉 〈aj |} = δij
3. Tr{|a〉 〈b|} = 〈b|a〉

We will see later that unitary operators are related to symmetries in our real physical sys-
tem.



Chapter 4

Infinite Dimensional Systems

Thus far, we have been dealing with finite dimensional Hilbert spaces due to the fact that the
systems we have seen only need a finite number of states to completely describe it. On the other
hand, for measurements where we have observables having a continuous spectrum (e.g. position),
then our Hilbert space for these system would be an infinite dimensional Hilbert space. In general,
a lot of the treatment of such systems remains analogous. For instance, the eigenvalue equation
for these observables remain the same. However, the completeness and orthonormality relations
become: ∫

dξ |ξ〉 〈ξ| = I (4.1)

〈ξ|ξ′〉 = δ(ξ − ξ′) (4.2)

Let’s take a deeper look into how we extend our intuition from finite dimensional systems into
infinite dimensional ones.

§4.1 Continuous Operators

In finite dimensional systems, we can no longer explicitly write out the matrix and vector rep-
resentations of the operators and states, however we can still think of them following the same
rules (e.g. eigendecompositions, linear combinations, etc...). To express a state in terms of some
basis then, we can write:

|ψ〉 =

∫
dξ |ξ〉 〈ξ|ψ〉 (4.3)

And the eigenstate relations of for instance the position operators is still:

x̂ |x〉 = x |x〉
⇒ 〈x′|x〉 = δ(x− x′)
⇒ 〈x′| x̂ |x〉 = xδ(x− x′)

(4.4)

19
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Now, we can construct a projection operator that asserts some form of uncertainty in position
during measurement which reads:

M̂(x,∆x) =

∫ x+∆x

x−∆x

dx′ |x′〉 〈x′|

=

∫ ∞
−infty

dx′ |x′〉 〈x′| [Θ(x′ − x+ ∆x)−Θ(x′ − x+ ∆x)]

(4.5)

With this, we then have:

〈ψ| M̂(x,∆x) |ψ〉 =

∫ x+∆x

x−∆x

dx′ 〈ψ|x′〉 〈x′|ψ〉

=

∫ x+∆x

x−∆x

dx′|ψ(x′)|2
(4.6)

So this allows us to retrieve the probability of attaining the particle within the region x ∈
[x−∆x, x+ ∆x] (where |ψ(x′)|2 is the probability density function). To get expectation values,
we perform it as follows:

〈x̂〉 = 〈ψ| x̂ |ψ〉

=

∫
dx

∫
dx′ 〈ψ|x′〉 〈x′| x̂ |x〉 〈x| 〈ψ|

=

∫
dx

∫
dx′ψ∗(x′)ψ(x)xδ(x− x′)

=

∫
dx|ψ(x)|2x

(4.7)

More generally, for any operator that is a function of x̂, we have:

〈A(x̂)〉 =

∫
dx|ψ(x)|2A(x) (4.8)

We have been working with position, but what about momentum? We, we can take it as a
definition that the momentum operator must satisfy the commutator relationship:

[x̂, p̂] = i~ (4.9)

To get the explicit form of the p̂ operator, we compare 2 equations:{
〈φ| [x̂, p̂] |ψ〉 =

∫
dx
∫
dx′ 〈φ|x′〉 〈x′| x̂p̂− p̂x̂ |x〉 〈x| 〈ψ|

=
∫
dx
∫
dx′φ∗(x′) [x′ 〈x′| p̂ |x〉 − x 〈x′| p̂ |x〉]ψ(x)

(4.10)

and

{
〈φ| [x̂, p̂] |ψ〉 = i~ 〈φ|ψ〉

= i~
∫
dxφ∗(x)ψ(x)

(4.11)

⇒ 〈x′| p̂ |x〉 = δ(x− x′)~
i

∂

∂x
(4.12)
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Now, if we wanted to change from the position to the momentum basis, we project the posi-
tion eigenstates onto the momentum eigenstates using the momentum operator and solve the
associated differential equation:

〈x| p̂ |p〉 = p 〈x|p〉 =
~
i

∂

∂x
〈x|p〉

⇒ 〈x|p〉 =
1√
2π~

exp

{
ipx

~

} (4.13)

which shows that the momentum eigenstate written in the x-basis is a planewave and is not
normalizable. In the same way, we can express the position operator in the momentum basis as
follows:

〈p| x̂ |p′〉 = δ(p− p′)i~ ∂
∂p

(4.14)

It then works out that the position and momentum basis states are simply Fourier transforms of
one another:

ψ(x) =
1√
2π~

∫
dp exp

(
ipx

~

)
ψ̃(p) (4.15)

In higher dimensions, we have the commutation relations:{
[x̂i, p̂j ] = i~δij
[x̂i, x̂j ] = [p̂i, p̂j ] = 0

(4.16)

And we generalize the differential operators with gradients.

§4.2 Wave Packets

Previously when we looked at these “measurement operators” M(x,∆x), it was not a very precise
object and was constructed mainly to invoke some notion of localization. In real systems, we
can have actual wavefunctions that a localized to a region in space (unlike planewave solutions).
These are known as wave packets and are objects which are normalizable. We will have these
take the shape of Gaussians:

〈x|ψ〉 = ψ(x) =
1

π1/4
√
d

exp

{
ikx− x2

2d2

}
(4.17)

Let’s try to compute several statistics with this function.

1. Expectation of x:

〈x̂〉 = 〈ψ| x̂ |ψ〉 =
1√
πd

∫
dxx exp

(
−x

2

d2

)
= 0 (4.18)
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2. Expectation of x2:

〈x̂2〉 =
1√
πd

∫
dxx2 exp

(
−x

2

d2

)
=
d2

2
(4.19)

3. Expectation of p:

〈p̂〉 =

∫
dx

∫
dx′ 〈ψ|x〉 〈x| p̂x̂ |x〉 〈x|ψ〉

=

∫
dx

∫
dx′ψ∗(x)

[
~
i
δ(x− x′) ∂

∂x

]
ψ(x′)

=
~

i
√
πd

∫
dxe−ikx+ x2

2d2

(
ik − x

d2

)
exp

{
ikx− x2

2d2

}
= ~k

(4.20)

4. Expectation of p2:

〈p̂2〉 =
~2

2d2
+ ~2k2 (4.21)

From these, we can also compute the uncertainty relation of position and momentum for the
Gaussian wave packet:

∆x =
√
〈x̂2〉 =

d√
2

and ∆p =
√
〈p̂〉2 − 〈p̂2〉 =

~
d
√

2
(4.22)

⇒ ∆x∆p =
~
2

(4.23)

So we see that this actually saturates the uncertainty principle! We thus call this state a minimum
uncertainty state. Now, if we want to find the wavefunction of a wave packet in momentum space,
we can use the Fourier transform (change of basis) as follow:

ψ̃(p) = 〈p|ψ〉

=

∫
dx 〈p|x〉 〈x|ψ〉

=
1

π1/4
√
~/d

exp

{
− (p− ~k)2

2(~/d)2

} (4.24)

which we see that we could have actually just written these down knowing the expectation value
and uncertainty in p, given that we knew it is also a Gaussian.

§4.3 Hamiltonians

In quantum mechanics, we define the Hamiltonian as a Hermitian operator where its eigenstates
are energy eigenstates. We can extend the definition from the classical Hamiltonian by just
“putting hats on everything”:

Ĥ =
p̂2

2m
+ V (x̂) (4.25)



23 4.3. HAMILTONIANS

In the position basis, we get the explicit form of the Hamiltonian as:

〈x| Ĥ |ψ〉 =

∫
dx′ 〈x| Ĥ |x′〉 〈x′|ψ〉

=

∫
dx′δ(x− x′)

[
− ~2

2m

∂2

∂x′2
+ V (x′)

]
ψ(x′)

=

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x)

(4.26)

If |ψ〉 is an energy eigenstate |E〉, then we retrieve the time-independent Schrödinger’s equa-
tion: [

− ~2

2m

∂2

∂x2
+ V (x)

]
ψE(x) = EψE(x) (4.27)

Note: For a free particles, since there is no potential energy term, the Hamiltonian
commutes with the momentum operators and thus, energy eigenstates are also momentum
eigenstates.

§4.3.1 Quantum Harmonic Oscillators

Consider the Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
mω2x2 (4.28)

This is arguably the most relevant Hamiltonian since it would be the leading order term in the
Taylor expansion of any attractive potential (potential well) around the equilibrium position. To
solve this, we will be using the operator (algebraic) approach. First, notice that if the operators
were simply numbers:

H =
1

2
mω2

(
x+ i

p

mω

)(
x− i p

mω

)
(4.29)

However, operators do not commute and the above expression is not exactly true. But we
construct the following operators anyway:

â ≡
√
mω

2~

(
x̂+ i

p̂

mω

)
(4.30)

⇒ â† ≡
√
mω

2~

(
x̂− i p̂

mω

)
(4.31)

Notice that these are not Hermitian operators so they are not observables. Writing their product,
this grants us:

â†â =
mω

2~

(
x̂2 +

p̂2

m2ω2
+

i

mω
[x̂, p̂]

)
=

1

~ω
Ĥ − 1

2
I

(4.32)
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This operator is important enough that we give it a name, the number operator, where we write
its definition as:

N̂ ≡ â†â (4.33)

for which its name will become apparent soon. Not that the number operator and the Hamilto-
nian commute, so they share the same eigenstates which allow us to retrieve:[

N̂ , Ĥ
]

= 0

⇒ N̂ |n〉 = n |n〉

⇒ Ĥ |n〉 = ~ω
(
n+

1

2

)
|n〉

(4.34)

Some other useful commutations with these a operators we’ve constructed are listed below.

1.
[
N̂ , â

]
= −â

2.
[
N̂ , â†

]
= â†

Now consider: [
N̂ , â

]
|n〉 = N̂ â |n〉 − âN̂ |n〉

= â |n〉
(4.35)

⇒ N̂ (â |n〉) = (n− 1)â |n〉 (4.36)

And we can also similarly show that:

N̂
(
â† |n〉

)
= (n)â |n+ 1〉 (4.37)

These results give us that:

â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 (4.38)

So they are given the names the raising/creation and lowering/annihilation operators, also known
as the ladder operators collectively. The way we’ve defined these operators, we also have:

â |0〉 = 0, and n ∈ N (4.39)

From these ladder operators, we can construct any eigenstate state from the groundstate via the
relation:

|n〉 =
(â†)n√
n!
|0〉 (4.40)
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Let’s now look for the explicit form of the ground state in the x basis. We can do this by creating
a differential equation as follows:

〈x| â |0〉 = 0

⇒
√
mω

2~
〈x|
[
x̂+ i

p̂

mω

]
|0〉 = 0

⇒
[
x̂+

~
mω

∂

∂x

]
〈x|0〉 = 0

⇒
(mω
π~

)1/4

exp
{
−mω

2~
x2
}

(4.41)

Then if we want to find any of the excited states, we can simply just apply the raising operator
and close the bracket with a 〈x| to get these:

ψn(x) = 〈x| (â
†)n√
n!
|0〉 (4.42)

“Now that I have told you how to derive these wavefunctions, I’m going to tell you you won’t
need it!”

– E. Neil (2019)

We will see in a bit a general form for the wavefunctions of a quantum harmonic oscillator in the
x basis. First we note the relations:

x̂ =

√
~

2mω
(â† + â) (4.43)

p̂ = i

√
~mω

2
(â† − â) (4.44)

If we now consider the X̂ operator in the number (energy) eigen-basis, this gives us the nice
relation:

〈n′| x̂ |n〉 =

√
~

2mω
〈n′| (â† + â) |n〉

=

√
~

2mω

[
δn′,n+1

√
n+ 1 + δn′,n−1

√
n
] (4.45)

which allows us to think of these as having a matrix representation with entries specified by the
values 〈n′| x̂ |n〉.

x̂ =

√
~

2mω



0 1 . . .

1 0
√

2√
2 0

√
3

...
√

3 0
√

4
. . .

 (4.46)
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It turns out that if we try to write the eigenket |x〉 as a vector, then apply the x̂ matrix on it in
the eigenvalue equation, we find a recurrence relation that dictates the form of the coefficients
in the number basis (energy basis):

cn = 〈n|x〉

=
1√

2nn!

(mω
π~

)1/4

exp
{
−mω

2~
x2
}
Hn

(√
mω

~
x

)
(4.47)

where these Hn functions are known as Hermite polynomials.



Chapter 5

Quantum Dynamics

Thus far, we have looked into the time-independent states of a system and gone through for-
malisms of working with kets and wavefunction objects in quantum mechanics. We are now
going to look at what is known as time-evolution, which will allow us to study the dynamics of a
quantum system.

§5.1 Unitary Time-Evolution

Looking back at postulate 5 of quantum mechanics, we recall that it states:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (5.1)

The solution to this differential equation is given as:

|ψ(t)〉 = exp

{
− i
~
Ĥ(t− t0)

}
|ψ(t)〉 (5.2)

The exponential operator is in fact unitary, which leads to conservation of probability. In practice,
there are several ways to define the exponential of an operator.

1. Taylor Expansion:

exp

{
− i
~
Ĥ(t− t0)

}
= I− i

~
(t− t0)Ĥ − ~2

2
(t− t0)2Ĥ2 + . . . (5.3)

This is useful in situation where the series terminates (Ĥ ∝ 1 or 0) or the higher order
terms are effectively very small (negligible), allowing us to truncate the series.

27
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2. Energy Eigenstates:

|ψ(t)〉 =
∑
E

exp

{
− i
~
Ĥ(t− t0)

}
|E〉 〈E|ψ(t)〉

=
∑
E

exp

{
− i(t− t0)E

~

}
|E〉 〈E|ψ(t)〉

(5.4)

So we see that the energy eigenstates evolve with just a pure phase (this is also true for
eigenstates of any observable that commutes with the Hamiltonian).

§5.1.1 General 2-State Systems

Because of Hermiticity of the Hamiltonian, we find that we can actually write the most general
Hamiltonian of a 2-state system as:

Ĥ =

[
ε1 δ
δ∗ ε2

]
(5.5)

where εj ∈ R and δ ∈ C. Diagonalizing this, we get the eigen-energies are:

E± =
ε1 + ε2

2
±

√(
ε1 − ε2

2

)2

+ |δ|2 (5.6)

As for the eigenstates:

|+〉 =

[
cos θ

eiφ sin θ

]
, |−〉 =

[
−e−iφ sin θ

cos θ

]
(5.7)

where θ and φ are real parameters. Plugging this and the matrix into the eigenvalue equation,
we get that:

eiφ = δ∗/|δ| (5.8)

tan θ =
ε1 − ε2

2|δ|
−

√
1 +

(
ε1 − ε2

2|δ|

)2

(5.9)

This tells us that we can actually generically write the Hamiltonian in the energy basis as:

Ĥ =
1

2
(ε1 + ε2)

[
0 1
1 0

]
+

[
ε δ
δ∗ −ε

]
(5.10)

where ε ≡ (ε1 − ε2)/2. Now if we define:

λ =
|δ|
ε

(5.11)

⇒ tan(2θ) = λ (5.12)

From here if we consider the following limits.
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1. |δ|/ε� 1:

E+ = ε1 +
|δ|2

ε1 − ε2

E− = ε2 −
|δ|2

ε1 − ε2

(5.13)

2. |δ|/ε� 1:

E± =
ε1 + ε2

2
± |δ| (5.14)

So if we plot this, we see the energies behave with asymptotic behaviour as shown in figure 5.1
below.

|δ|

E E = |δ|

E = −|δ|

Figure 5.1: Energy profiles against |δ|

This gives rise to the no-crossing theorem of the energies.

Example 1 (Larmor Precession):

Consider a 2 state system where we have an electron in an external magnetic field ~B. The
Hamiltonian of this system is then given by:

Ĥ = −~µ · ~B

=
e

mec
~̂S · ~B

=
e

mec

~
2
~̂σ · ~B

=
e~
mec

[
Bz Bx − iBy

Bx + iBy −Bz

]
(5.15)
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We can also define an angular frequecy for this problem:

ω =
e|B|
mec

(5.16)

From here, we can always choose a convenient coordinate system such that ~B = Bz ẑ,
which gives us that:

Ĥ =
~ω
2

[
1 0
0 −1

]
(5.17)

which give us that the eigenvalues are:

E± = ±~
2

(5.18)

⇒ |ψ(t)〉 = αe−iωt/2 |+〉+ βeiωt/2 |−〉 (5.19)

This grants us that if we start at anyone one of the z eigenstates, we will remain in that
eigenstate for all time (check this for yourself!). Now consider if we start instead with
|ψ(0)〉 = (|+〉 + |−〉)/

√
2. So we check the probability of obtaining this state in time as

follows:

P
(
Sx = +

~
2

)
= |〈ψ(0)|ψ(t)〉|2

=
1

4

∣∣∣(〈+|+ |−〉)(e−iωt/2 |+〉+ eiωt/2 |−〉
)∣∣∣2

= cos2

(
ωt

2

) (5.20)

and similarly if we start with |ψ(0)〉 = (|+〉 − |−〉)/
√

2, we will get the probability:

P
(
Sx = +

~
2

)
= sin2

(
ωt

2

)
(5.21)

where the expectation value of 〈Ŝx(t)〉 is given as ~ cos(ωt)/2, and for the other 2 axes,
〈Ŝy(t)〉 = ~ sin(ωt)/2 and 〈Ŝz(t)〉 = 0. So we see that the spin in fact precesses with the
defined frequency ω. It turns out that there is a general precession frequency in quantum
mechanics called the Larmor frequency given by:

ω =
eg|B|
2mec

(5.22)

where g is called the g-factor, for which it is 1 for classical objects and ≈ 2 for electrons (g
is not exactly two for the electron. Quantum electrodynamics predicts small corrections
as a power series in the fine-structure constant α ≈ 1/137.). The previously defined
frequency is actually known as the cyclotron frequency (without the factor g/2, where a
classical charge of magnitude e will undergo circular motion in a transverse magnetic field
with that angular frequency).

Example 2:
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Now consider the experiment where we inject a beam of muons into a storage ring which
accelerates the muons around at the cyclotron frequency. Since muons are ustable, we use
this to measure 〈Ŝx〉 in the muons by looking for the decay µ− → e−+ 2ν and measuring
the direction of emitted electrons (which will allow us to then compute the muon spin).
If g = 2, we in fact see no time-dependence in the electron direction at all. However, the
experimental results produced a modulated signal with:

ωa =
(g − 2)e|B|

2mec
(5.23)

This experiment was done at Brookhaven, for which the period of this modulated oscil-
lations was measured to be ∼ 5µs, where the value stated in the paper was:

gµ − 2

2
= 0.0011659208(5)(3) (5.24)

The Standard Model of particle physics predicts a value of the muon g − 2 which is very
close to the number given above, but actually around 4 standard deviations away from
it based on the best estimates of the theoretical uncertainty, leading us to believe in new
physics to be discovered.

§5.2 General 2-State Time-Evolution

Now, we go into a generalized treatment of 2-state systems and its time-evolution which will
eventually lead us into the Heisenberg picture of quantum mechanics. We start with the Hamil-
tonian:

Ĥ =
~ω
2
~̂σ · n̂ (5.25)

Plugging this into the unitary time-evolution operator, we get:

Û(t) = exp
{
−iω

2
~̂σ · n̂t

}
(5.26)

To work this out, we first need the identity:

σ̂iσ̂j = iεijkσ̂k + Iδij (5.27)

where Einstein-summation convention is used above (you should prove this as an exercise). Using
this identity, we obtain:

~̂σ · n̂ = σ̂iσ̂jninj

= (iεijkσ̂k + Iδij)ninj
= I

(5.28)
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where we used the fact that εijkninj = 0 (since εijk is anti-symmetric and ninj is symmetric)
and ninj = 1. As such, our unitary operator simplifies to:

exp
{
−iω

2
~̂σ · n̂t

}
=

∞∑
k=0

1

k!

[
iωt

2
~̂σ · n̂

]k
=

∞∑
k=0

[
1

(2k)!
(iωt)2kI +

1

(2k + 1)!
(iωt)2k+1

(
~̂σ · n̂

)]
⇒ Û(t) = I cos

ωt

2
− i
(
~̂σ · n̂

)
sin

ωt

2

(5.29)

Example (Magnetic Resonance):

Here, we will have explicit time-variation in the Hamiltonian. First, we consider a spin-
particle in an external magnetic field which goes as:

~B = [b cos(νt), b sin(νt), B]
T

(5.30)

We choose the coordinate frame such that the Hamiltonian is:

Ĥ =
~ω
2
σ̂z +

~Ω0

2
(σ̂x cos(νt) + σ̂y sin(νt)) (5.31)

=
~
2

[
ω Ω0e

−iωt

Ω0e
iωt −ω

]
(5.32)

where again, ω is the Larmor frequency and Ω0 = e|b|/mc. Now we consider some state
|ψ(t)〉 = [a+, a−]T , we plug this into the Schrödinger’s equation, we have:

2i
da+

dt
= ωa+ + Ω0 exp{−iωt}a− (5.33)

2i
da−
dt

= Ω0 exp{iωt}a+ − ωa− (5.34)

We try the ansatz:

a±(t) = A± exp{−iλ±t} (5.35)

This grants us:[
2λ+ − ω −Ω0 exp{−i(ν − λ+ + λ−)t}

−Ω0 exp{i(ν − λ+ + λ−)t} 2λ− + ω

] [
A+

A−

]
= ~0 (5.36)

Notice that if we set λ+ = λ− + ν, the equation above is no longer time-dependent:[
2(λ− + ν)− ω −Ω0

−Ω0 2λ− + ω

] [
A+

A−

]
= ~0 (5.37)

We now assert for the existence of a solution by taking the determinant and setting it to
0:

⇒ λ− = −ν
2
±
√

Ω2
0 + (ν − ω)2 (5.38)
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Now defining Ω ≡
√

Ω2
0 + (ν − ω)2, we finally get:

a−(t) = A
(1)
− exp

{
−i
(

Ω− ν

2

)
t
}

+A
(2)
− exp

{
−i
(
−Ω− ν

2

)
t
}

(5.39)

To get these coefficients, we need initial conditions, so we choose that the initial state be
|ψ(0)〉 = |+〉. This gives us:

a−(t) = A exp

{
iωt

2

}
sin (Ωt) (5.40)

Then plugging this again into the Schrödinger’s equation and evaluating the ansatz at
t = 0, we get:

AΩ = Ω0

⇒ a−(t) =
Ω0

Ω
exp

{
iωt

2

}
sin (Ωt)

⇒ P(−) =
Ω2

0

Ω2
0 + (ω − ν)2

sin2 (Ωt)

(5.41)

which shows a resonance for obtaining the |−〉 state that occurs when ω ≈ ν and Ω0 is
small. The probability will be more sharply peaked as the strength of the rotating field
b becomes small.

So far we have solved problems in quantum mechanics with 3 different techniques.

1. Operator Methods.
2. Eigenvalue Decomposition.
3. Differential Equations.

Often, there are more than one way to solve a quantum mechanical problem but there is often a
better way to approach solving problems.

§5.3 The Heisenberg Picture

Thus far we have been using the SChrödinger picture where this is governed by:

i~
∂

∂t
|ψ(t)〉 = Ĥψ(t) (5.42)

So only the state-vectors evolve in time and not the operators. We have also seen that if we solve
this equation, we get:

ψ(t) = e−iĤt/~ψ(0) (5.43)

However, now we ask the question, “what if the Hamiltonian is time-dependent?”. We know that
time-evolution operators must always be unitary, so we know even in the time-dependent case,
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we must have an expression like:

ψ(t) = Ĥ(t)ψ(0) (5.44)

It turns out that this unitary can be explicitly expressed as:

Û(t) = exp

{
− i
~

∫ t

0

Ĥ(t)dt

}
(5.45)

given that the Hamiltonian at any 2 given times commute. Now if they don’t commute at
different times, we have to use a Dyson series:

Û(t) = I +

∞∑
n=1

(
−i
~

)n ∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn) (5.46)

The inner product of 2 states can be written equivalently as:

〈α(t)|β(t)〉 = 〈α(t)| Û†(t)Û(t) |β(t)〉
= 〈α(0)|β(0)〉

(5.47)

This grants us:

〈α(t)| Â |β(t)〉 = 〈α(t)| Û†(t)ÂÛ(t) |β(t)〉

6= 〈α(0)|β(0)〉 unless
[
Â, Ĥ

]
= 0

(5.48)

We can then write that the operator is what is time-dependent instead of the state-vectors:

〈α(t)| Â |β(t)〉 = 〈α(0)| Â(t) |α(0)〉

⇒ ÂH(t) = Û†(t)ÂSÛ(t)
(5.49)

This formalism is known as the Heisenberg picture of quantum mechanics, where the H and S
superscripts stand for Heisenberg and Schrödinger respectively. This picture allows us to better
connect to classical mechanics because there is not really a corresponding quantity to the state-
vector, but there are time-dependent observables in classical mechanics. Now consider the time
derivative of a Heisenberg operator:

d

dt
ÂH(t) =

d

dt
Û†(t)ÂSÛ(t)

=
dÛ†(t)

dt
ÂSÛ(t) + Û†(t)ÂS

dÛ(t)

dt

= − 1

i~
Ĥ
d

dt
Û†(t)ÂSÛ(t) +

1

i~
d

dt
Û†(t)ÂSÛ(t)Ĥ

= i~
[
ÂH , Ĥ

]
(5.50)
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More generally, if we observable Â already had explicit time-dependence (which does not vary
according to the Hamiltonian) in the Schrödinger picture, we have:

d

dt
ÂH(t) = i~

[
ÂH , Ĥ

]
+ Û†(t)

∂ÂS

∂t
Û(t) (5.51)

Recall that in Hamiltonian mechanics:

dA

dt
= {A,H}pq +

∂A

∂t
(5.52)

where { , } is the Poisson bracket defined as:

{f, g}qp =
∑
j

[
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

]
(5.53)

So in the early days, the procedure to quantize system was to let:

{ , } → 1

i~
[ , ] (5.54)

which was called Dirac’s quantization. However, this often fails when there really is no classical
corresponding system such as spin. It is now a good time to look at some useful commutator
identities.

1. [x̂, p̂n] = ni~p̂n−1

2.
[
x̂j , f(~̂p)

]
= i~ ∂f

∂p̂j

3. [p̂, x̂n] = −ni~x̂n−1

4.
[
p̂j , g(~̂x)

]
= −i~ ∂g

∂x̂j

Note: In the Heisenberg picture, we have:

|a; t〉 = Û†(t) |a; 0〉 (5.55)

which is the opposite of how time-evolution occurs in the Schrödinger picture (analogous
to active and passive transformations).

Example 1:

Consider the single free-particle Hamiltonian:

Ĥ =
p̂2

2m
(5.56)



CHAPTER 5. QUANTUM DYNAMICS 36

In the Heisenberg picture (dropping all the superscripts), we have:

dp̂

dt
=

1

i~

[
p̂, Ĥ

]
= 0 (5.57)

dx̂

dt
=

1

i~

[
x̂, Ĥ

]
=

1

2mi~

(
i~
∂Ĥ0

∂p̂

)
=

p̂

m
(5.58)

These results grant us that:

x̂(t) = x̂(0) +
p̂(0)

m
t (5.59)

which is the classical result for a free-particle! However, note now that:

[x̂(t), x̂(0)] = − i~t
m

⇒ ∆x(t)∆x(0) ≥ ~t
2m

(5.60)

which tells us that the uncertainty relation in the initial and current positions increase in
time.

Example 2:

Now if we don’t have a free-particle, that is a particle subject to some potential energy.
We get:

dp̂

dt
=

1

i~
[p̂, V (x̂)] = −∂V

∂x̂
(5.61)

which looks very much like Newton’s second law. But to get something that is actually
physical, we need to take expectation values which gives:

d2〈x̂〉
dt2

= −〈∂V
∂x̂
〉 (5.62)

This can be generalized to 3D to give:

d2〈x̂〉
dt2

= −〈∇xV (x̂)〉 (5.63)

which is known as the Ehrenfest’s theorem.

Now, we list some properties of Heisenberg operators.

1. Time evolution does not change the spectrum of the operator:

ÂS |a〉 = a |a〉
⇒ ÂH(t) |a; t〉 = a |a; t〉

(5.64)
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2. If we use the set {â} as a basis, then in the Heisenberg picture, we have:

|ψ〉(H)
=
∑
a

c(H)
a (t) |a(t)〉 (5.65)

where the way the coefficients and basis vectors evolve in time has to exactly cancel since
we state-vector in the Heisenberg picture remains time-independent (analogous to passive
transformations).

§5.3.1 Heisenberg Picture Time-Evolution of the QHO

Recall the Hamiltonian for the quantum harmonic oscillator:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (5.66)

In the Heisenberg picture (again dropping all the H superscripts), we have:

dp̂

dt
=

1

i~

[
p̂, Ĥ

]
= −mω2x̂2

dx̂

dt
=

1

i~

[
x̂, Ĥ

]
=

1

2mi~

(
i~
∂Ĥ0

∂p̂

)
=

p̂

m

(5.67)

⇒ x̂(t) = x̂(0) cos(ωt) +
p̂(0)

mω
sin(ωt)

p̂(t) = −mωx̂(0) sin(ωt) + p̂(0) cos(ωt)
(5.68)

With the commutation relations above, we also have that:

dâ

dt
=

√
mω

2~

[
p̂

m
− imω2x̂

mω

]
= −iωâ†

⇒ â(t) = e−iωtâ(0)

â†(t) = eiωtâ†(0)

(5.69)

And if we apply a theorem known as the Baker-Hausdorff formula, we get:[
Ĥ, x̂(0)

]
= − i~

m
p̂(0) (5.70)[

Ĥ, p̂(0)
]

= i~mω2x̂(0) (5.71)

Theorem 5.3.1. Baker-Hausdorff Theorem: For any 2 Hermitian operators Â and Ĝ,
then:

eiλĜÂe−iλĜ = Â+ iλ
[
Ĝ, Â

]
− λ2

2

[
Ĝ,
[
Ĝ, Â

]]
+ . . .+

(
(iλ)n

n!

)[
Ĝ,
[
Ĝ,
[
. . . ,

[
Ĝ, Â

]]]]
(5.72)
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§5.4 The Interaction Picture

There are actually other ways of looking at the states and operators of quantum mechanics that
have usefulness in certain circumstances. The one we will be looking at is called the interaction
picture. In this picture, we split the Hamiltonian into 2 parts:

Ĥ = Ĥ0 + V̂ (5.73)

where Ĥ0 is either time-independent, relatively simple, much smaller than V̂ or all of the above.
The interaction picture states are then written as:

|ψ(t)〉(I) = eiĤ0t/~ |ψ(t)〉(s) (5.74)

⇒ Ô(I)(t) = eiĤ0t/~Ôe−iĤ0t/~ (5.75)

⇒ i~
∂

∂
|ψ(t)〉(I) = V̂ (I) |ψ(t)〉(I) (5.76)



Chapter 6

Wave Mechanics

We are going to take a step back now and solve the Schrödinger’s equation using the method
of ordinary differential equations to get continuous function solutions. This will lead to some
very interesting insights that can be generalized to more complex systems. We will also begin
discussions on scattering theory and using the formalism developed here to guide us through
working through scattering problems.

§6.1 Probability Flux

We can think of the |ψ(x)|2 as a probability density ρ(x). Then given a general time-dependent
wavefunction, we can define a notion of probability flux. First looking that the Schrödinger
equation:

i~
∂ρ(x, t)

∂t
= i~

∂

∂t
(Ψ∗Ψ)

= i~
∂Ψ∗

∂t
Ψ + i~

∂Ψ

∂t
Ψ∗

= Ψ∗ĤΨ + ΨĤΨ∗

= − ~2

2m
∇ · [Ψ∗∇Ψ−Ψ∇Ψ∗]

(6.1)

where capital Ψ denotes the time-dependent wavefunction. Now defining a probability current
~J as:

~J ≡ ~
2im

[Ψ∗∇Ψ−Ψ∇Ψ∗] =
~
m

Im{Ψ∗∇Ψ}

⇒ ∂ρ(x, t)

∂t
+∇ · ~J = 0

(6.2)

which is the continuity equation. In general, we can write the wavefunction in terms of its

39
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probability density along with a phase:

ψ =
√
ρeiS/~

⇒ Im{Ψ∗∇Ψ} = Im

{
√
ρ∇√ρ+

i

~
ρ∇S

}
⇒ ~J =

ρ∇S
m

(6.3)

So we see that the probability current is governed by the phase of the wavefunction.

§6.2 1D Potentials

We are now going to solve the time-independent Schrödinger’s equation by means of methods in
ordinary differential equations. To do so, we will start by looking at several specific forms for
V (x) and exploring where this intuition takes us. Specifically, we start our analysis in regimes
where E < 0 which will give rise to bound-states.

§6.2.1 Delta-Function Potentials

To start, will study a potential that will illuminate facts about the continuity of the wavefunction.
This is the (attractive) Dirac delta-function potential:

V (x) = −aδ(x− x0) (6.4)

Checking continuity at the center of the delta-function:

ψ′(x0 + ε)− ψ′(x0 − ε) =

∫ x0+ε

x0−ε

2m

~2
[aδ(x− x0)− E]ψ(x) = −2ma

~2
ψ(x0) (6.5)

Which actually gives us a finite value and a very specific boundary condition for ψ′(x). For-
tunately, this still grants us that ψ(x) is continuous. Below is a table (6.1) of general facts on
continuity of the wavefunction and its derivative.

V (x) Finite aδ(x− x0) ∞
Continuity of ψ(x) Yes Yes ψ = 0
Continuity of ψ′(x) Yes No ψ′ = 0

Table 6.1: Table of Wavefunction Continuity Conditions

Additionally, we have ψ′′(x) is continuous is V (x) is, ψ′′′(x) is continuous if V ′(x) is and so on.
In general, we have that (smooth V (x) ⇐⇒ smooth ψ(x)).
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§6.2.2 Square-Well

Now we look to solving for bound-state ansatz with a model 1-d potential. This is the finite
square-well potential. Solving this parity symmetric (symmetric about x → −x) potential will
also illuminate facts about parity operators which we will be using further down the road as
well.

x

y

−V0

0−a a

Figure 6.1: Square-well potential.

Consider the potential illustrated in figure 6.1 above:

V (x) =

{
−V0, |x| < a

0, |x| > a
(6.6)

Let us look at the case where −V0 < E < 0. We define a term ε ≡ V0 − |E|. We know roughly
what the wave-vectors of the solution would be like even before we solve it, which are:

k =

√
2mε

~
, |x| < a (6.7)

κ =

√
2m|E|
~

, |x| > a (6.8)

In this problem, we are going to exploit a symmetry known as mirror reflection, which is the
symmetry of parity swaps in the coordinate variable (x → −x). we can define this parity
transformation as an operator P̂ , which has property:

P̂ †x̂P̂ = −x̂ (6.9)

It also works out that the parity operator is unitary. we note also that P̂ 2 = I, so the symmetry
group associated to P̂ is Z2. To act on kets, these transform as:

P̂ † |~x〉 = |−~x〉 (6.10)

It can be proven that if the Hamiltonian is invariant under the parity operator (Ĥ = P̂ †ĤP̂ ), then
it commutes with it. Because of this, we can find simultaneous eigenstates of the Hamiltonian
and the parity operator. To diagonalize the parity operator:

P̂ |P 〉 = P |P 〉
⇒ P̂ 2 |P 〉 = P 2 |P 〉 = |P 〉

⇒ P = ±1

(6.11)



CHAPTER 6. WAVE MECHANICS 42

where P = +1 is known as positive-parity (even), and P = −1 is known as negative-parity (odd).
So eigenstates associated to these even and odd parities would satisfy:

ψe(x) = ψe(−x) (6.12)

ψo(x) = −ψo(−x) (6.13)

So going back to our problem, we can have the even and odd wavefunction solutions to this
parity symmetric potential to be:

ψe(x) =

{
A cos(kx), |x| < a

Be−κ|x|, |x| > a
(6.14)

ψo(x) =

{
A′ sin(kx), |x| < a

B′e−κ|x|, |x| > a
(6.15)

Working through all these parity was useful because we now see that we have reduced our number
of coefficients to just 4, as opposed to 6 previously. Working with the continuity conditions on
ψ and ψ′ we get:

Even parity : (ka) tan(ka) = κa

Odd parity : (ka) cot(ka) = −κa
(6.16)

We are now going to define to variables that are functions of k, κ and a:

ξ ≡ ka, η ≡ κa (6.17)

With this we get the transcendental relations:

ξ tan ξ = η, ξ cot ξ = −η (6.18)

Furthermore, by rearranging terms in the definitions, we arrive at:

ξ2 + η2 =
2ma2

~2
V0 (6.19)

We can plot the transcendental relations and the circle equation in ξ and η above as follows
(figures 6.2, 6.3).
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Figure 6.2: Blue dotted curves: ξ tan ξ = η. Solid curves: ξ2 + η2 = 2ma2

~2 V0

Figure 6.3: Blue dotted curves: ξ cot ξ = −η. Solid curves: ξ2 + η2 = 2ma2

~2 V0

We can then check that if V0 → 0, we always find at least one even parity bound state, whereas
if V0 → ∞, we get infinite square-well potential solutions. Also we see that there will never be
an odd parity solution if:

√
2mV0a2

~2
<
π

2
, ⇒ no odd solutions. (6.20)

Scattering Off the Well

Strangely enough in quantum mechanics, scattering can occur off potential wells even when the
energy is larger than the depth of the well. Consider the case where E > 0, which would result
in transmitted and reflected portions in the rectangular symmetric potential well. It works out
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that the tranmission coefficient (probability of transmission) here works out to be:

T =

[
1 +

sin2(2k′a)

4(E/V0)(e/v0 − 1)

]−1

(6.21)

where here, k′ =
√

2m(E + V0)/~. We see that a transmission resonance occurs here when
2k′a = nπ where n ∈ N. Why this resonance occurs is because it is the case where the wavelength
is exactly such that the reflected waves are exactly in phase with the transmitted waves, leading
to constructive interference of the transmitted wave. We will be studying more on scattering
theory in the next chapter. and how we derive transmission and reflection coefficients.

§6.2.3 Bound States and Zero-Point Energies

In quantum mechanics, we always have that bound states occur only when E > V0, where
V0 = min{V (x)}. This is known as the zero-point energy.

Proof. Consider some energy eigenstate |E〉 and ψ(x) = 〈x|E〉. We know that:

〈T̂ 〉 =
1

2m
〈p̂2〉

= − ~2

2m

∫
dxψ∗(x)

d2

dx2
ψ(x)

=
~2

2m

∫
dx

∣∣∣∣dψ(x)

dx

∣∣∣∣2
(6.22)

〈V̂ 〉 =

∫
dxV (x)|ψ(x)|2

≥
∫
dxVmin|ψ(x)|2

(6.23)

⇒ E = 〈T̂ 〉+ 〈V̂ 〉 > Vmin (6.24)

Why this is true is because of the uncertainty principle, because only way to saturate the potential
inequality is to have |ψ(x)|2 = δ(x−x0) where at x0, we have V (x0) = Vmin. However, dictating
this creates an enormous uncertainty in momentum. Knowing that 〈p̂2〉 ≥ (∆p)2, this means the
kinetic energy is going to be very large so the inequality still holds.

§6.3 The Ammonia Maser

To get an application of wave mechanics and parity in a real physical system, we will now look
at the Ammonia (NH3, figure 6.4) maser.
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Figure 6.4: Ammonia molecule.

Here, we want to probe excited state of this molecule via emission lines and look at the spectral
lines (types of excitations, i.e. what kinds of motions). There are several types of motion this
molecule can undergo.

Excitation Frequency
Inversion Microwave
Rotation Far-IR
Vibration IR
Electronic Visible/UV
Nuclear Gamma

Table 6.2: Modes of Ammonia

The one we are going to study is the inversion motion, which corresponds to the molecule
inverting it’s structure. Inversion is not the same as vibration because it jumps discontinuously
across some potential barrier unlike in vibration (perturbations about some equilibrium). The
effective potential energy for this inversion mode is a 1D double-well potential (each well with
the same minimum potential energy). Here, we use the reduced mass:

µ =
3mHmN

3mH +mN
(6.25)

We will make the approximation that the potential is effectively 2 square wells of widths a, each
centered at −b and b, while the height of the middle barrier is b:

V (x) =


V0, |x| < b− a

2

0, b− a
2 ≤ |x| ≤ b+ a

2

V0, |x| > b+ a
2

(6.26)

we note that when E < V0, inversion corresponds to tunneling between the 2 wells. First consider
2 infinite-square wells (V0 →∞). This gives us the spectrum:

En =
~2k2

2m
, kn =

nπ

a
(6.27)
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with solutions:

ψ(L)
n (x) =

{√
2
a sin

[
kn(b+ a

2 + x)
]
, b− a

2 < −x < b+ a
2

0, otherwise
(6.28)

ψ(R)
n (x) =

{√
2
a sin

[
kn(b+ a

2 + x)
]
, b− a

2 < x < b+ a
2

0, otherwise
(6.29)

where the L and R superscript corresponds to the solutions where the wavefunction is localized
in either one of the left or right wells (since tunneling is impossible in this case). We now make
a defintion:

ψ(e)
n (x) =

ψ
(L)
n (x) + ψ

(R)
n (x)√

2
, ψ(o)

n (x) =
ψ

(L)
n (x)− ψ(R)

n (x)√
2

(6.30)

where these are even and odd parity functions. Now, let us lower this infinite potential barrier
to a finite one (i.e. V0 is finite). The most general form of the wave function outside the barrir
in this case would be:

ψ(x)

{
A sin(k(b+ a/2− x)), b− a

2 < x < b+ a
2

A′ sin(k(b+ a/2 + x)), b− a
2 < −x < b+ a

2

(6.31)

Symmetry still helps us here as it asserts that for even parity, we have:

even-parity : Ae = A′e (6.32)

odd-parity : Ao = −A′o (6.33)

Then inside the barrier, we have:

ψe(x) = Be cosh(κex), ψo(x) = Bo sinh(κox) (6.34)

where κ =
√

2m(V0 − E)/~2. To match these boundary conditions, we have for the even solu-
tion:

Ae sin(kea) = Be cosh(κe(b− a/2))

− keAe cos(kea) = Beκe sinh(κe(b− a/2))
(6.35)

⇒ tan(kea) =
ke
κe

cothκe(b− a/2) (6.36)

Doing the same for the odd solution, we have:

tan(koa) =
ko
κo

tanhκo(b− a/2) (6.37)

So we indeed see that as a direct result of this, we have Eo 6= Ee! More specifically, we have
that Ee < Eo (validated numerically). So this gives us an energy splitting away from the energy
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value obtained from 2 separate infinite square-wells where Ee < Eisw and Eo > Eisw. We also
observe that:

E(1)
o − E(1)

e � E
(2)
2 − E(1)

o (6.38)

where the superscripts denote the excitation of the state, 1 being the ground state. This allows
us to study the inversion energy splitting as an effective 2-level system and look at it’s time-
dependence.

Note: In the limit where V0 → 0 for the problem above, we indeed retrieve the result for
a single infinite-square well of width 2(a+ b).

Consider the case where at t = 0, the state is majority localized in the right well:

|ψ(t = 0)〉 =

∣∣∣ψ(1)
e

〉
+
∣∣∣ψ(1)
o

〉
√

2
(6.39)

Time-evolution would be rather straight forward here since these are energy eigenstates:

|ψ(t = 0)〉 =
e−iE

(1)
e t/~

∣∣∣ψ(1)
e

〉
+ e−iE

(1)
o t/~

∣∣∣ψ(1)
o

〉
√

2

= e−i(E
(1)
e +E(1)

o )t/~

e−iΩ(1)t/2
∣∣∣ψ(1)
e

〉
+ e−iΩ

(1)t/2
∣∣∣ψ(1)
o

〉
√

2

 (6.40)

where we define Ω(1) = (E
(1)
o − E(1)

e )/~. So this would give us the probability density:

|ψ(x)|2 =
(ψ

(1)
e )2 + (ψ

(1)
o )2

2
+ cos

(
Ω(1)t

)
ψ(1)
e ψ(1)

o (6.41)

This grants us that at t = 0, we get (ψ
(1)
e + ψ

(1)
o )2 and at t = π/Ω(1), we get (ψ

(1)
e − ψ(1)

o )2. So
we see that we have oscillation between the wells at a frequency:

f =
Ω(1)

2π
(6.42)

This is not a unique case where we have a ground-state superposition has an energy lower than
each ground-state by themselves. Another example of this is a Benzene ring. This implies that
the superposition state is more stable then having only consider one of the 2 parity states (Read
lecture 10 in the Feynman lectures on quantum mechanics for an explanation on this).

Now if were to do a 2-state system treatment of the Ammonia molecule, we can write its basis
states as {|ψ′L〉 , |ψ′R〉}. For V0 →∞, the Hamiltonian can be written as:

Ĥ0 =

[
E(1) 0

0 E(1)

]
(6.43)
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where E(1) is the ground-state energy of the infinite square-well. If we have a finite V0 (but still
large), then there must be off-diagonal terms, which would be the interaction terms between the
2-wells:

Ĥ0 =

[
E(1) −A
−A E(1)

]
(6.44)

where A ∈ R due to parity (proof is left to the reader, and A > 0 since we are working with a
system where the even state has a lower energy than the odd state. We have solved this 2-state
system before in general, and using those results, we get:

E± = E(1) ±A

θ =
π

4

(6.45)

⇒ |+〉 =

∣∣∣ψ(1)
L

〉
−
∣∣∣ψ(1)
R

〉
√

2
, |−〉 =

∣∣∣ψ(1)
L

〉
+
∣∣∣ψ(1)
R

〉
√

2
(6.46)

where A is a number associated to the height of the potential barrier. Indeed retrieving that the
even parity eigenstate is of lower energy. Note that this is still an approximate solution since we
are working with V0 � 1. What if we now turn on an external electric field of magnitude ε along
the axis of Nitrogen inversion? The molecule has a dipole moment:

~D =
∑
j

qj~xj (6.47)

This can be written as an operator:

D̂ =

[
−µ 0
0 µ

]
⇒ Ĥ =

[
E(1) − µε 0

0 E(1) + µε

] (6.48)

Diagonalizing this, we get:

E± = E(1) ±
√
µ2ε2 +A2

|ψ−〉 = cos θ |ψL〉+ sin θ |ψR〉 , |ψ−〉 = − sin θ |ψL〉+ cos θ |ψR〉
(6.49)

So thie grants us:

tan(2θ) =
A

µε
(6.50)

Now consider the limit where µε� A. That is, the energy eigenstates become localized in each
well. Physically, we have a polarization such that one of the states become aligned and the other
anti-aligned to the external field. We can show that:

〈ψ−| D̂ |ψ−〉 = −〈ψ+| D̂ |ψ+〉

= µ cos(2θ) = − µ2ε√
A2 + µ2ε2

(6.51)
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So we have induced a dipole moment in the molecule where it goes away as we turn off the
electric field (D → 0 as ε → 0). Consider again the parity operator introduced earlier. Recall
that this operator can only have eigenvalues ±1 by construction. Now consider eigenstates of
the parity operator |α〉 and |β〉:

〈β| x̂ |α〉 = 〈β| P̂ †x̂P̂ †P̂ |α〉
= −εαεβ 〈β| x̂ |α〉

(6.52)

where εα, εβ = ±1. From above, we get that:

〈β| x̂ |α〉 = 0 if − εαεβ = −1, εα = εβ (6.53)

〈β| x̂ |α〉 6= 0 if εα 6= εβ (6.54)

This is known as a selection rule. Going back to the Ammonia molecule, we have that:

E+ ≈ E(1)
o +A+

µ2ε2

2A

E− ≈ E(1)
e −A−

µ2ε2

2A

(6.55)

in the limit of µε� A. So we have that the permanent dipole energy is proportional to ε, where
we call the µ2/2A term the polarizability. It turns out that Ammonia has a relatively small
value of A, so we can indeed leverage this to make a beam of effectively pure |ψ+〉 ammonia
that would mimic the Stern-Gerlach experiment with silver atoms. The force on the Ammonia
molecule would then be:

~F =
µ2

2A
∇
(
ε2
)

(6.56)

An application of this is an Ammonia maser (microwave laser), by passing a beam of higher ex-
cited state Ammonia molecules |ψ+〉 through a cavity with EM fields. This would produce stim-
ulated emission of probability 1 as the Ammonia traverses the cavity, resulting in a laser.



Chapter 7

1D Quantum Scattering Theory

At this point, we move away from the study of bound-states in the wave mechanics formalism
and instead, go into the regime of scattering. Quantum scattering for single particles is a process
where the particle enters from a region of no potential, interacts with a localized potential, and
then exits the effective range of this potential off into infinity. Scattering is an important concept
and comes into play in many areas of physics (e.g. high energy physics, quantum field theories,
AMO physics, condensed matter physics, etc...).

§7.1 1-d Scattering Potentials

§7.1.1 Step-Function Potential

To start our discussions of scattering, consider the potential as shown in figure 7.1 below.

x

y

V0

0

Figure 7.1: Step-function potential.

Formally, this can be written as:

V (x) =

{
V0, x ≥ 0

0, x < 0
(7.1)

Since in everyone region, the potential is a constant, we get that the time-independent Schrödinger

50
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equation becomes:

− ~2

2m

d2

dx2
ψ(x) + (V (x)− E)ψ(x) = 0 (7.2)

⇒ ψ(x) = Aeikx +Be−ikx (7.3)

where k =
√

2m(E − V (x))/~. There are several regimes we can look at the problem here.

1. E < 0:

In this regime (classically forbidden), we have that k would be imaginary and we get that
the solutions blow up for |x| � 1. So there are no solutions here. In fact in general, there
does not exist any solution for E being less than the global minimum of the potential
Vmin(x).

2. 0 < E ≤ V0:

This grants the solution:

ψ(x) =

{
Aeikx +Be−ikx, x < 0 (k =

√
2mE/~)

Ce−κx, x ≥ 0 (κ =
√

2m(V0 − E)/~)
(7.4)

Now in order to find the coefficients A and B we need to look at the boundary conditions,
where having a second-order differential equation, we must have 2 of these. These are that
ψ(x) and ψ′(x) must be continuous at the boundary x = 0. Why this continuity must hold
comes directly from the Schrödinger equation when we integrate it:

ψ′(x0 + ε)− ψ′(x0 − ε) =

∫ x0+ε

x0−ε

2m

~2
[V (x)− E]ψ(x) (7.5)

where the right-hand side vanishes as ε → 0. So this dictates that ψ′(x) is continuous
which also implies that ψ(x) is continuous. Using these boundary conditions, we get that:{

A+B = C

ik(A−B) = −κC
(7.6)

⇒

{
B
A = ik+κ

ik−κ
C
A = 2ik

ik−κ = 1 + B
A

(7.7)

⇒
∣∣∣∣BA
∣∣∣∣ = 1 ⇒ B

A
= eiα (7.8)

Plugging this back into the solution, we have:

ψ(x) =

{
2Aeiα cos

(
kx− α

2

)
, x < 0 (k =

√
2mE/~)

2Aeiα/2 cos
(
α
2

)
eκx, x ≥ 0 (κ =

√
2m(V0 − E)/~)

(7.9)

Notice that |A|2 = |B|2, which corresponds to total reflection of the wave off the step occurs

for the plane-wave solution ( ~J = ~0).
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3. E > V0:

For this case, the wavefunction would all be classically allowable solutions (plane-waves),
which would give us:

ψ(x) =

{
Aeikx +Be−ikx, x < 0 (k =

√
2mE/~)

Ceik
′x +De−ik

′x, x ≥ 0 (k′ =
√

2m(E − V0)/~)
(7.10)

We now assume that D = 0 because we would assume no left-moving wave from x = +∞.
Applying again the boundary conditions to solve for the coefficients, we get:

{
A+B = C

k(A−B) = k′C

⇒

{
B
A = k−k′

k+k′

C
A = 2k

k+k′

⇒
∣∣∣∣BA
∣∣∣∣2 6= 1

(7.11)

Computing the probability flux, we get:

~J =

{
~k
m

(
|A|2 − |B|2

)
, x < 0

~k
m |C|

2
, x > 0

(7.12)

Noting that ∂ρ/∂t = 0 (since we are solving for energy eigenstates), implying ∇ · ~J = 0,

which means that ~J must be the same at x = 0, granting us:

∣∣∣∣BA
∣∣∣∣2 +

k′

k

∣∣∣∣CA
∣∣∣∣2 = 1 (7.13)

where the first term on the left is the reflected amplitude and the second term on the left
id the transmitted amplitude. So we can define:

R ≡
∣∣∣∣BA
∣∣∣∣2 =

(k − k′)2

(k + k′)2
, T ≡ k′

k

∣∣∣∣CA
∣∣∣∣2 =

4kk′

(k + k′)2
(7.14)

which we call the reflection and transmission coefficients respectively (as alluded to in the
previous chapter).
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§7.1.2 Rectangular Barrier Potential

x

y

V0

0−a a

Figure 7.2: Rectangular barrier potential.

Consider the potential illustrated in figure 7.2 above:

V (x) =

{
V0, |x| < a

0, |x| > a
(7.15)

For this, we will only be looking at the case where E < V0. So setting this up, we know that the
solutions will be plane-waves outside the barrier, and decaying exponentials in side it:

ψ(x) =


Aeikx +Be−ikx, x < −a (k =

√
2mE/~)

Ce−κx +Deκx |x| ≤ a (κ =
√

2m(V0 − E)/~)

Feikx +Ge−ikx, x > a (k =
√

2mE/~)

(7.16)

Applying all the continuity boundary conditions at x = −a and solving for the coefficients, we
get:

Ae−ika +Beika = Ceκa +De−κa

Ae−ika +Beika =
iκ

k

[
Ceκa +De−κa

] (7.17)

We can write this in matrix form instead to get:[
A
B

]
=

1

2

[
zeκa+ika z?e−κa+ika

z?eκa−ika ze−κa−ika

] [
C
D

]
(7.18)[

C
D

]
=

1

2

[
z?eκa+ika zeκa−ika

ze−κa+ika z?e−κa−ika

] [
F
G

]
(7.19)

⇒
[
A
B

]
=

1

4

[
zeκa+ika z?e−κa+ika

z?eκa−ika ze−κa−ika

] [
z?eκa+ika zeκa−ika

ze−κa+ika z?e−κa−ika

] [
F
G

]
≡
[
M11 M12

M21 M22

] [
F
G

] (7.20)

where the matrix entries are not explicitly computed because they are not particularly illu-
minating. Furthermore, this convention is awkward because this relates outgoing to incoming
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coefficients, when we generally want things the other way round. As such, could have instead
written: [

F
B

]
=

[
S11 S12

S21 S22

] [
A
G

]
(7.21)

where this relation matrix is known as the S-matrix. Now looking at the probability fluxes, it
works out that for x < −a, we have:

~J = Im
{
ik
(
|A|2 − |B|2

)
+ k Im

{
A∗Be−2ikx

}}
= k

(
|A|2 − |B|2

) (7.22)

Similarly on the right, we also end up with something similar:

~J = k
(
|F |2 − |G|2

)
(7.23)

By conservation of probability, we get:

|A|2 + |G|2 = |F |2 + |B|2

⇒
[
A∗ G∗

] [A
G

]
=
[
F ∗ B∗

] [F
B

]
=
[
A∗ G∗

]
S†S

[
A
G

]
(7.24)

which tells us that the S-matrix is unitary! We now note that:

F

A
=

e−2ika

cosh(2κa) + i ε2 sinh(2κa)
, where ε ≡ κ

k
− k

κ
=

1− 2E/V0√
E/V0(1− E/V0)

(7.25)

This allows us to compute the tranmission coefficient as:

T =

∣∣∣∣FA
∣∣∣∣2 =

1

cosh2(2κa) + ε2

4 sinh2(2κa)
(7.26)

which gives us 2 parameters V/E0 that tells us about the height of the barrier, and κa which
tells us about the width of it. Consider the following regimes.

1. κa� 1:

In this regime, we have:

cosh(2κa) ≈ sinh(2κa) ≈ e2κa/2

⇒ T ≈ 16e−4κa

(
V/E0 − 1

(V/E0 − 1)2 + 1

)2 (7.27)

which shows exponential sensitivity to a! An application of this approximation would be
in scanning tunneling microscopes, where the air gap between the scanning tip and the
surface is the potential barrier.
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2. V0 � E, κa� 1:

In this regime, we have:

κ ≈ k ⇒ ε ≈ κ

k

⇒ T ≈ k2

k2 + κ4a2
=

1

1 + 2mV0

~2 a2(V0/E)

(7.28)

Notice that the transmission rate now goes to 1 in the limit of an infinitely narrow barrier,
but goes to 0 as the barrier height tends to infinity.

3. a→ 0 and V0 →∞:

In this regime, we get:

T =
E

E + mg2

2~2

, g = lim
V0→∞

lim
a→0

2aV0 (7.29)

where the limit on g is taken for a→ 0 and V0 →∞. This is exactly what you would get
for a delta function potential gδ(x).

To briefly just mention the E > V0 regime, we don’t have to redo the math but just redefine
κ→ k′ = iκ. This will grant us the transmission coefficient:

T =
1

cos2(2k′a)− 1
4 sin2(2k′a)

=

[
1 +

sin2(2k′a)

4E/V0(E/V0 − 1)

]−1

(7.30)

so we see there are cases where T = 1 in this regime, which is when the sin2(2k′a)⇒ 2k′a = nπ
term vanishes. These scenarios are known as transmission resonances (will be touched on in
more detail when we get deeper into S-matrices).

§7.2 General 1-d Quantum Scattering

Now consider the most general case, where we have a potential that is a blackbox in the region
|x| < a, and zero everywhere else (illustrated in figure 7.3 below).

x

E

V (x)
−a a

Figure 7.3: Blackbox potential.
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This would give us the wavefunction:

ψ(x) =


Aeikx +Be−ikx, x < −a (k =

√
2mE/~)

something |x| ≤ a (κ =
√

2m(V0 − E)/~)

Feikx +Ge−ikx, x > a (k =
√

2mE/~)

(7.31)

We saw earlier that we can write the S-matrix just knowing A,B, F and G:[
F
B

]
=

[
S11 S12

S21 S22

] [
A
G

]
(7.32)

If G = 0, we get F = S11A ≡ t, where T = |t|2 is the transmission coefficient, and also if A = 0,

we have r′ ≡ S12G = F , where R = |r′|2 is the reflection coefficients. Doing this same procedure
also for B = 0 and G = 0, it turns out that:[

S11 S12

S21 S22

]
=

[
t r′

r t′

]
(7.33)

Note: Every entry in the S-matrix is a function of k (i.e. momentum).

We see that if E > 0, k is real which means that 0 ≤ T , R ≤ 1 and so on (conservation
of probability). However if E > 0, the free-particle Schrödinger equation does not actually
dictate if k is real of imaginary. This is the case wher k → iκ, which gives us the asymptotic
solutions:

ψ(x) =

{
Ae−κx + (rA+ t′G)e−κx, x→ +∞
(tA+ r′G)e−κx +Geκx, x→ −∞

(7.34)

In order to normalize these states, the only interesting way to do so is to let t and r to diverge
when A and G→ 0. So we see that the bound state energies correspond to poles of S(k) on the
imaginary axis. To write this out succinctly:

Bound-State Energies ⇐⇒ Poles of S(k) are on the Imaginary Axis (7.35)

Note: T +R 6= 1 for the E < 0 case since this is no longer a scattering experiment.

Now assume that S(k) has a pole at k = k0 − iγ where γ > 0. So plugging this into the energy,
we get:

E =
~2k2

2m

=
~2(k2

0 − γ2)

2m
− 2i

~2γk0

2m

≡ E0 −
iΓ

2

(7.36)
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which gives us complex energies! What does this mean? If we plug this into an energy eigenstate
with time-dependence, we get:

Ψ(x, t) ∼ e−iEt/~ψ(x)

= e−iE0t/~e−Γt/2~ψ(x)
(7.37)

which has some exponentially decaying portion. If ψ(x) is the free-particle solution eikx, then
we get:

Ψ(x, t) ∼ eik0xe−iE0t/~eγx−
Γt
2~ (7.38)

This physically corresponds to having a 2-camel-hump potential with bound states between the
humps. These however are not actual bound states since over time, these state would tunnel out
and will have behaviour like that solution above. The imaginary part of these complex wave-
vectors k = k0− iγ are actually the transmission resonances we saw in the square-well potential,
whereas the real parts correspond to the bound state energies. To see why this is, we look at the
transmission coefficient at E = E0 − iΓ/2. So we have:

t(E) ≈ Z

E − E0 + iΓ/2

⇒ T ≈ |Z|2

(E − E0)2 + Γ2/4

(7.39)

where Z is some complex number and that point is that t(E) will be dominated by the pole (de-
nominator). This is a Lorentzian distribution (appeared when we were doing magnetic resonance)
where Γ is the full-width-half-max value of the distribution.

Example:

Consider again the potential step:

V (x) =

{
V0, |x| < a

0, |x| > a
(7.40)

as seen earlier, we will have 2 wave-numbers:

k =

√
2mE

~2
, k′ =

√
2m(E − V0)

~2
(7.41)

⇒ T =
4kk′e2i(k−k′)a

e4ik′a(k − k′)2 − (k + k′)2
(7.42)

The poles of this system exists where the denominator vanishes, which give the solutions:

k = k′

(
e2ik′a − 1

e2ik′a + 1

)
or k = k′

(
e2ik′a + 1

e2ik′a − 1

)
(7.43)

We can now consider 2 regimes of k′:
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1. k′ ∈ R (E > V0):
This gives us:

k = ik′ tan(k′a) (7.44)

If E > 0, we get no solutions, but if E < 0, then we get poles and hence bound
states. This is exactly what we found before.

2. k′ ∈ C (E < V0):

Let us define k′ = iκ, which gives us:

k = −κ tanh(κa) (7.45)

These give unphysical solutions since they will either produce solutions on the neg-
ative k-axis or positive imaginary axis.

3. k ∈ C:

§7.2.1 Linear Potentials

Consider a potential:

V (x) =

{
kx, x > 0

−kx, x < 0
(7.46)

So the Schrödinger’s equation becomes:

− ~2

2m

d2

dx2
uE(x) + k|x|uE(x) = EuE(x) (7.47)

So since V (x) is an even function, we must have that the wavefunctiosn are either even or odd
functions. First let us pick some unit of length for this system, which we will define as x0. Then
we will do a change of variable from x→ x/(kx0) to get:

− ~2

2mkx0
u′′E +

|x|
x0
uE =

E

kx0
uE(x) (7.48)

and we will also define a new variable y ≡ x/x0. So we have:

− ~2

2mkx3
0

d2uE(y)

dy2
+ yuE =

E

kx0
uE(x) (7.49)

and also defining x0 ≡ (~2/mk) and ε ≡ E/kx0, we have:

d2uE
dy2

− 2(y − ε)uE = 0 (7.50)

final;y defining z ≡ 21/3(y − ε):

d2uE
dz2

− z · uE = 0 (7.51)
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This equation above is known as Airy’s equation, and the solutions are Airy functions (Ai(z), Bi(z)).
Note that z = 0 is the classical turning point, so we should expect that these solutions should
look like an oscillating functions with some envelope that either exponentially decays or grows
at the tail. The one that decays happens to be Ai(x) and since we want to look for normalizable
wavefunctions, we drop the Bi(x) solution. However, the Airy function is not symmetric. So at
x = 0 (z = z0 = −21/3ε), the Airy function (Ai(z = z0) = 0) or its derivative (A′i(z = z0) = 0)
must vanish (even or odd solutions). So physically realizable solutions must coincide with one
these conditions. To do this, we need to pick a special value of E to make this condition hold,
and this once again quantizes the energy.

Note: Some actual system with linear potentials are systems with constant gravitation
fields (mgh) and approximations of the strong nuclear force (QCD, linear quark potential).

§7.3 The WKB Approximation

We’ve been talking about wavefunction solutions to the SChrödinger equation in particular
potentials, ending (up to this point) with the linear potential. We will now be looking at a
semi-classical approximation which utilizes the linear potential. The motivation for this is as
follows. We had the standard 1D schrödinger equation as:

d2ψE
dx2

+
2m

~2
[E − V (x)]ψE = 0 (7.52)

Defining k(x) ≡
√

2m[E − V (x)]/~2, this grants us:

ψ′′E(x)− k2(x)ψE(x) = 0

⇒ ψE(x) = e
iW (x)

~
(7.53)

Plugging this into the Schrödinger’s equation, we get:

i~
d2W (x)

dx2
−
(
dW (x)

dx

)2

+ p2(x) = 0 (7.54)

where we have defined p(x) ≡ ~k(x). Now consider the limit where ~ is small (that is some
physical regime where such scales are relatively small and negligible). This give us that:

~
∣∣∣∣d2W (x)

dx2

∣∣∣∣� ∣∣∣∣dW (x)

dx

∣∣∣∣2 (7.55)

We can write an ansatz:

W (x) = W0(x) + ~W1(x) + ~2W2(x) + . . . (7.56)

which in the small ~ regime, we can drop the higher order terms in the expansion. Plugging this
ansatz into the differential equation in W (x), we get:[

−W ′0(x)2 + p(x)2
]
~0 + [iW ′′0 (x)− 2W ′0(x)W ′1(x)] ~ +O(~2) = 0 (7.57)
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We then assert that each power of ~ vanishes separately, which grants us:

W ′0(x) = ±p(x) ⇒ W ′′0 (x) = ±p′(x)

and − 2iW ′1(x) =
W ′′0 (x)

W ′0(x)
=
p′(x)

p(x)

(7.58)

This is simply a first order differential equation, which we can solve as:

− 2iW1(x) = ln p(x) + C

⇒ W1(x) = i ln
√
p(x) + C ′

⇒ ψE(x) =
A√
p(x)

exp

{
± i
~

∫ x

x0

p(x′)dx′
} (7.59)

So this approximation scheme “generalizes” the plane-wave solution where the potential varies
in space in the regime that ~ → 0 and E > V (x) locally. Let us check if this solution is valid.
That is, we check if we indeed have:

~W1(x)�W0(x)

⇒ i~ ln
√
p(x)�

∫ x

x0

p(x′)dx′

⇒ i~
2

∫ x

x0

p′(x′)

p(x′)
dx′ �

∫ x

x0

p(x′)dx′

⇒ |k′(x)| � |k(x)|2

(7.60)

Now defining λ(x) = 2π/k(x), which gives us:

λ′(x) = −2πk′(x)

k(x)2

⇒
∣∣∣∣dλ(x)

dx

∣∣∣∣� 1

(7.61)

So this tells us that for the WKB approximation to work, we need that the potential is essentially
slowly varying so that the wavelength does not vary quickly through space. To see this explicitly,
we can rearrange the equations above to get:

λ(x)

∣∣∣∣dV (x))

dx

∣∣∣∣� p(x)2

m
(7.62)

This implies that the WKB approximation definitely breaks down at classical turning points
(E − V (x)→ 0). So far, we have assumed that E > V (x), we could also consider the case where
E < V (x) (classically forbidden region). In this case, we define:

κ =

√
2m

~2
[V (x)− E]

⇒ ψE(x) =
B√
κ(x)

exp

{
±
∫ x

x0

κ(x′)dx′
} (7.63)
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This approximation looks at local regions of the wavefunction, but we can in fact patch WKB
solutions across classical turning points to get a more global picture. Let’s consider a classical
turning at x = a across a approximately linear potential with positive slope. Near this point,
we can write that V (x)− E ≈ (x− a) (linear approximation). We will thus have 3 parts of the
solution at (x < a), (x ≈ a) and (x > a). The outer 2 solutions would be WKB solutions and
the one around a would be the Airy-function solutions we saw earlier for linear potentials. All
we have to do now is match the coefficients to stitch them together. We note that for z → ∞,
the Airy functions are approximated by:

Ai(z →∞)→ 1

2
√
π
z−1/4 exp

{
−2

3
z3/2

}
Ai(z → −∞)→ 1√

π
|z|−1/4

cos

(
2

3
|z|3/2 − π

4

) (7.64)

We can actually use these approximations in the WKB approximation scheme because in the
first place for WKB, we had |k′(x)| �

∣∣k2(x)
∣∣. We were also working in the linear regime where

V (x)−E = g ·(x−a) where g > 0 which indeed gives us Airy functions, but so this grants us that
k2 ∝ −z so |z| � 1. This is essentially saying that the linear region is large enough compared to
length scales in the Airy function such that we can simply take the long-range approximations
of the Airy function as solutions. The detailed version of this argument is in Merzbacher 7.2.
This grants us the connection formulas:

x > a :

A√
κ(x)

exp

[
−
∫ x

a

dx′κ (x′)

]
+

B√
κ(x)

exp

[∫ x

a

dx′κ (x′)

]
(7.65)

x < a :

2A√
k(x)

cos

[∫ a

x

dx′k (x′)− π

4

]
− B√

k(x)
sin

[∫ a

x

dx′k (x′)− π

4

]
(7.66)

§7.4 Applications of the WKB Approximation

§7.4.1 WKB Bound States

Consider an inverted-Gaussian potential well and a particle with energy E < 0. We split this
into 3 regions, one (1) where x < −σ, the second (2) within −σ < x < σ and the last (3) being
x > σ where σ is the standard deviation of the Gaussian.

x

V (x)

−σ σ

Figure 7.4: Inverted Gaussian Potential
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The respective solutions in the WKB approximation scheme would then be:

ψ1(x) ≈ A√
κ(x)

exp

{
−
∫ b

x

dx′κ(x′)

}
(7.67)

We now use the connection formulas but now, since we are working with a downward linear
slope, we will have to flip the integration limits on them and set a to b. As such, the connection
would give us:

ψ2(x) ≈ 2A√
k(x)

cos

(∫ x

b

dx′k(x′)− π

4

)
(7.68)

To get useful results, we are going to rewrite the above equation as:

ψ2(x) ≈ 2A√
k(x)

cos

(∫ a

b

dx′k(x′)−
∫ x

a

dx′k(x′)− π

4

)
=

2A√
k(x)

[
cos

(∫ a

b

dx′k(x′)

)
cos

(∫ x

a

dx′k(x′) +
π

4

)
+ sin

(∫ a

b

dx′k(x′)

)
sin

(∫ x

a

dx′k(x′) +
π

4

)]
=

2A√
k(x)

[
sin

(∫ a

b

dx′k(x′)

)
cos

(∫ x

a

dx′k(x′)− π

4

)
− cos

(∫ a

b

dx′k(x′)

)
sin

(∫ x

a

dx′k(x′)− π

4

)]
(7.69)

Now looking at the third region, we have:

ψ3(x) ≈ A′√
κ(x)

exp

{
−
∫ a

x

dx′κ(x′)

}
(7.70)

To now match ψ3(x) to ψ2(x), we get quantization:

cos

(∫ a

b

dx′k(x′)

)
= 0

⇒
∫ a

b

dx′k(x′) = π

(
n+

1

2

)
⇒

∫ a

b

dx′
√

2m[E − V (x′)] = π~
(
n+

1

2

)
⇒

∫ a

b

dx′p(x′) = π~
(
n+

1

2

)
(7.71)

which is what we would expect for a bound state. We see that if this were a classical system,
there would be an orbit (in phase-space) between the 2 classical turning points, which could
motivate us quantum mechanically to write:∮

p(x)dx = h

(
n+

1

2

)
(7.72)

This relation is known as the Bohr-Sommerfeld quantization relation, where the closed integral
goes over the closed phase-space orbit.
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§7.4.2 WKB Tunneling

Consider some potential barrier that has a finite Vmax. The scattering relation matrix (not the
S-matrix) is given by: [

A
B

]
=

1

2

[
2θ + 1/(2θ) i(2θ − 1/(2θ))
−i(2θ − 1/(2θ)) 2θ + 1/(2θ)

] [
F
G

]
(7.73)

where θ = exp
{∫ b

a
κ(x′)dx′

}
. So we have tunneling entirely parameterized by one parameter θ.

The transmission coefficient would then be:

T =
|F |2

|A|2
=

4

(2θ + 1/2θ)2
(7.74)

In the limit where θ is large, that is when the barrier is very wide, we have the approximate
solution:

T ≈ 1

θ2
= exp

{
−2

~

∫ b

a

√
2m[V (x)− E]

}
(7.75)

Example:

We are going to look at α-decay now. We can model the potential as:

V (r) =

{
0, 0 < r < R
2Ze2

r , r > R
(7.76)

where Z is the charge of the daughter nucleus and R is the nuclear radius. Note that this
potential badly breaks the assumption of the WKB approximation at the left edge, but
we can ignore that and still get a very useful result. It works out that the transmission
coefficient follows the relation:

−1

2
lnT =

∫ ρ

R

dr′(r′)2κ(r′) =

√
2m

~

∫ ρ

R

dr′(r′)2

√
2Ze2

r
− E (7.77)

where (r′)2 pops in because this is in fact a 3D integral over 3D real-space. Using the
escape energy as a proxy for the energy, we have:

E =
1

2
mv2 =

2Ze2

ρ
(7.78)

Now, we take the limit as R → 0 because this is a good approximation to the actual
physical system, we get:

− 1

2
lnT ≈ 2πZe2

~v
(7.79)

⇒ T ≈ exp

{
−4πZe2

~v

}
(7.80)
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This could allow us to then compute a decay rate as follows:

Γ = Tf = T
( v

2R

)
(7.81)



Chapter 8

Symmetries

Symmetries in nature lead to profound facts about the physical system we are dealing with. In
physics, symmetries refer to operators that when applied to a physical system, leave an associated
quantity invariant. Symmetries fall under 2 broad categories, discrete and continuous symme-
tries. We will be touching on both of these in this chapter and see the amazing things that pop
out of such systems.

§8.1 Periodic Potentials

To start off, we are going to analyze systems with discrete symmetries. More specifically, we will
be looking at potentials that have a periodic discrete symmetry (a.k.a finite/lattice translation
symmetry):

V (x) = V (x± a) (8.1)

Real physical systems that have such symmetries are crystals, optical lattices and many others.
Consider the translation operator defined by:

τ̂(L) |x〉 = |x+ L〉
⇒ τ̂ †(L)x̂τ̂(L) = x+ L

(8.2)

These must then also obey the property that:

τ̂−1(L) = τ̂(−L)

⇒ τ̂ †(−L)x̂τ̂(−L) = x− L
⇒ τ̂ †(L)

[
τ̂ †(−L)x̂τ̂(−L)

]
τ̂(L) = x̂− L

(
I− τ̂ †(L)τ̂(L)

)
= x̂

⇒ τ̂ †(L)τ̂(L) = I

(8.3)

So the translation operator must be unitary. Now consider the momentum operator. If we apply
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the translation operator on this, we should get that nothing happens:

〈x′| τ̂ †(L)p̂τ̂(L) |x〉 = 〈x′ + L| p̂ |x+ L〉

∼ δ[(x+ L)− (x+ L′)]
~
i

∂

∂x
= 〈x′| p̂ |x〉

(8.4)

Now looking at the Hamiltonian, applying the translation operator:

τ̂ †(L)Ĥτ̂(L) = τ̂ †(L)V (x̂)τ̂(L)

= V (x̂+ a)
(8.5)

So if we indeed have a periodic potential by a, then:

τ̂ †(L)Ĥτ̂(L) = V (x̂) (8.6)

So the translation operator commutes with the Hamiltonian and they can be simultaneously
diagonalized (possible to find simultaneous eigenstates)! So let’s try to work with this by looking
at an example.

§8.1.1 The Tight Binding Approximation

Consider periodic potential wells that are separated by asymptotes (of distances between each
asymptote a) and let’s try solving for one of these potentials (generalization of the Ammonia
system to N wells). With this system, we would expect to find simultaneous eigenstates between
the Hamiltonian and the translation operator. The translation operator would take some state
|n,E〉 and transform it as follows:

τ̂(a) |n,E〉 = |n+ 1, E〉 (8.7)

The translation eigenstates would have to be some infinite sum:

|θ,E〉 =

∞∑
n=−∞

einθ |n,E〉

⇒ τ̂(a) |θ,E〉 =

∞∑
n=−∞

einθ |n+ 1, E〉 = e−iθ |θ, E〉
(8.8)

where n is the periodicity index. So the eigenvalue is simply a phase (which is expected since
these are unitary operators), which dictates that the physical states must have θ ∈ [−π, π] since
all other states would be equivalent. Now let’s see what happens when we lower the barriers.
Picking some energy E0 and assume that the barriers are still high enough such that there is
negligible overlap of the wavefunctions 2 wells apart. Rigorously, we have:

〈n| Ĥ |n〉 = E0

⇒ 〈n′| Ĥ |n〉 = −∆δn′,n±1

(8.9)
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where ∆ is some small (relative to the perfectly-separated bound state spectrum) value of energy
(does not have to be positive). This is known as the tight-binding approximation. With this, we
have:

Ĥ |n〉 = E0 |n〉 −∆ |n+ 1〉 −∆ |n− 1〉

⇒ Ĥ |θ〉 = E0 |θ〉 −∆

∞∑
n=−∞

(
einθ |n+ 1〉+ einθ |n− 1〉

)
= E0 |θ〉 −∆

(
e−inθ + einθ

)
|θ〉

= (E0 − 2∆ cos θ) |θ〉

(8.10)

So we see that this causes an energy splitting of E0 which contains a continuous spectrum of
energies parameterized by θ. This gives us a dispersion relation:

E(k) = E0 − 2∆ cos(ka) (8.11)

This is illustrated in figure 8.1 below. The wavefunction is found by:

〈x|θ〉 = 〈x| τ̂ †(L)τ̂(L) |θ〉
= e−iθ 〈x+ a|θ〉

(8.12)

So we see that up to a phase, the x-space representation is periodic. This would tell us that we
can write the θ-eigenstates in the x-basis as:

〈x|θ〉 = uk(x)e−i
θx
a (8.13)

where we have that uk(x) = uk(x + a) with the wave-number being k ≡ θ/a. This is known as
Bloch’s theorem. So we have that:

−π
a
≤ k ≤ π

a
(8.14)

where this is known as the Brillouin zone. Physically, this means that the momentum of a
particle in a periodic potential will have to be restricted to this range.

k

E(k)

E0 + 2∆

E0

E0 − 2∆

−πa
π
a

Figure 8.1: Dispersion Relation Plot
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In a finite chain of potential wells with periodic boundary conditions however, we would have:

τ̂(a) |N〉 = |1〉
⇒ 〈x| τ̂N (a) |θ〉 = 〈x|θ〉

〈x−Na| |θ〉 = 〈x|θ〉 eiNθ

⇒ θ =
2πj

N

(8.15)

where j ∈ [−N/2, N/2]. Let’s now consider a specific example of this approximation.

Example (Periodic Delta-Function Potential):

Consider the potential:

V (x) =

∞∑
n=−∞

V0δ(x− an), V0 > 0 (8.16)

We know from Bloch’s theorem that:

ψ(x) = eikxuk(x) (8.17)

However, we also know that between the delta-functions, we have:

ψ(x) = Aeiqx +Be−iqx (8.18)

since the potential is zero between the delta-functions. Comparing this to the Bloch
theorem result, we get:

uk(x) = Aei(q−k)x +Be−i(q−k)x, uk(x) = uk(x+ a) (8.19)

Using anyone one of the boundary conditions (say x = 0), we get:

A+B = Aei(q−k)a +Be−i(q−k)a

ψ′(ε)− ψ′(−ε) =
2mV0

~2
(A+B)

(8.20)

To get the left-hand side of the discontinuity equation, we note that:

ψ′(ε) = ψ′(a+ ε)eika

⇒ iq
[
A
(

1− ei(q−k)a
)

+B
(

1− e−i(q−k)a
)]

=
2mV0

~2
(A+B)

(8.21)

Combining the boundary conditions, these finally grants us:

cos(ka) = cos(qa) +
mV0

~2

sin(qa)

qa
(8.22)

which is also a transcendental equation. This dispersion relation tells us the relationship
between the momentum (corresponding to k) and energy (corresponding to q). Taking
the limit as q →∞ (energy of the particle is very large), we get:

cos(ka)→ cos(qa) (8.23)
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which grants us that we recover the free-particle solutions. If we now plot the right-hand
side as a function of qa, it will obey a periodic (sinusoidal) function which does not in
general have to be bounded by −1 and +1. So the regions where the right-hand side
exceed these bounds would be unphysical regions (since the left-hand side is bounded by
−1 and +1). These grant us what are known as energy band-gaps.

§8.2 Continuous Symmetries in Quantum Mechanics

We begin with a theorem which generalizes what we have seen in the discrete case.

Theorem 8.2.1. Symmetry operators T̂ are unitary or anti-unitary operators.

Proof. This is going to be a quick sketch of a proof that will be sufficient for our purposes.
1. It is a transformation that acts on all states of the Hilbert space.
2. T̂ leaves all physics unchanged.
3. T̂ obeys Born’s rule which implies:

|〈x|ψ〉|2 =
∣∣∣〈x| T̂ †T̂ |ψ〉∣∣∣2

⇒ T̂ †T̂ = I
(8.24)

For the Born’s rule, we actually could have that
∣∣∣〈x| T̂ †T̂ |ψ〉∣∣∣2 = |〈ψ|s〉|2, which is known

as anti-unitarity.

We now also list a fact about Hermitian operators, that is if Q̂ is a Hermitian operator, then we
can always find:

Û(a) = exp

{
− iQ̂a

~

}
(8.25)

being a unitary operator where a ∈ R.

Note: The converse that any unitary has corresponding Hermitian operator to generate
it via the exponential map is not always true.

With this, consider the translation operator over very small translations L→ ε:

〈x| τ̂(ε) |ψ〉 = ψ(x− ε) (8.26)
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Then writing the translation operator as generated by some Hermitian operator:

τ̂(L) = exp

{
− iĜL

~

}

⇒ τ̂(ε) ≈ I− iĜ

~
ε+ . . .

⇒ 〈x|ψ〉 − iε

~
〈x| Ĝ |ψ〉 = ψ(x)− εdψ

dx

⇒ Ĝ = p̂

⇒ τ̂(x) = exp

{
− ip̂x

~

}
(8.27)

The above implications are not rigorous but they can be shown rigorously by taking limits on
powers. When such Hermitian operators exist to create unitary operators via the exponential
map, they are called generators. A nice property of this is that if we have a genrator Q̂ of the
unitary ÛQ, then: [

Â, ÛQ

]
= 0 ⇒

[
Â, Q̂

]
= 0 (8.28)

So if we have a symmetry (unitary operator) that commutes with the Hamiltonian, then it implies
that there is a conserved quantity (known as a Noether charge) that is conserved. This is the
Neother’s theorem which we write formally as:

Theorem 8.2.2. Noether’s Theorem Every continuous symmetry of the Hamiltonian
implies a conserved Neother charge. That is, for a continous symmetry Ĉa parameterized
by the continous parameter a which satisfies the properties

1. ĈaĈb = Ĉa+b

2. Ĉ0 = I
3. Ĉ−1

a = Ĉ−a = Ĉ†a
then we can always find a Hermitian operator that generates (there exists a smooth con-
nection to I) this continuous symmetry which corresponds to a conserved quantity (the
symmetry has a Lie group structure).

So going back to the translation operator, we have that translational invariance of a system
implies conservation of momentum. Symmetry is going to be very important for this class and
in fact all of physics. For the rest of the class, we will be looking at gauge symmetries and
rotational symmetries. Let’s start with gauge symmetries.

§8.3 Propagators

To understand gauge symmetries, we first need to know the concept of propagators in quantum

mechanics. Suppose that we find Â such that it commutes with the Hamiltonian (
[
Â, Ĥ

]
= 0),

then both this operator and the Hamiltonian will have simultaneous eigenstates |a〉. As such, we
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can write:

|ψ(t)〉 = exp

{
− iĤ(t− t0)

~

}
|ψ(0)〉

=
∑
a

|a〉 〈a|ψ(0)〉 exp

{
− iEa(t− t0)

~

}
⇒ 〈x|ψ(t)〉 =

∑
a

〈x|a〉 〈a|ψ(0)〉 exp

{
− iEa(t− t0)

~

}
=
∑
a

〈x|a〉
∫
d3x′ 〈a|x′〉 〈x′|ψ(0)〉 exp

{
− iEa(t− t0)

~

}
⇒ ψ(x, t) ≡

∫
d3x′K(x′, t;x, t0)ψ(x, t0)

(8.29)

where we defined:

K(x′, t;x, t0) ≡
∑
a

〈x′|a〉 〈a|x〉 exp

{
− iEa(t− t0)

~

}
(8.30)

This is known as the propagator, which takes an initial state ψ(0) and propagates it in time from
t0 to t. More generally in 3D, we can replace x with ~x which grants us:

K(~x′, t; ~x, t0) ≡
∑
a

〈~x′|a〉 〈a|~x〉 exp

{
− iEa(t− t0)

~

}
(8.31)

Notice that if we take away the completeness relation, we can rewrite this as:

K(~x′, t; ~x, t0) = 〈~x′| exp

{
− iĤ(t− t0)

~

}
|~x〉 (8.32)

So we get that:

lim
t→t0

K(~x′, t; ~x, t0) = δ3(~x− ~x′) (8.33)

So K represents the wavefunction perfectly localized at ~x, for which plugging this into the
Schrödinger’s equation, we get:[

− ~2

2m
∇2 + V (~x)− i~ ∂

∂t

]
K(~x′, t; ~x, t0) = −i~δ3(~x− ~x′)δ(t− t0) (8.34)

which tells us that K(~x′, t; ~x, t0) is in fact the Green’s function with K(~x′, t; ~x, t0) = 0 if t <
t0.
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Example:

Consider a free-particle in 1D, which has the Hamiltonian:

Ĥ =
p̂2

2m
(8.35)

So the momentum commutes with the Hamiltonian and we can write:

K(x′, t;x, t0) =

∫
dp 〈x′|p〉 〈p|x〉 e−

ip2t
2m~

=
1

2π~

∫
dp exp

{
ip(x′ − x)

~
− ip2(t− t0)

2m~

}
=

√
m

2πi~(t− t0)
exp

{
im(x′ − x)2

2~(t− t0)

}
Θ(t− t0)

(8.36)

where Θ is the unit-step function.

It is useful now to look at some properties of propagators.

1. Propagator composition:

K(x′, t;x, t0) =

∫
d3x′′ 〈x′| e−

iĤ(t−t′)
~ |x′′〉 〈x′| e−

iĤ(t′−t0)
~ |x〉

=

∫
d3x′′ [K(x′, t;x′′, t′)×K(x′′, t′;x, t0)]

(8.37)

2. Quantum partition function:

Getting rid of the spatial portions by setting x = x′ and integrating over x:

G(t) ≡
∫
d3xK(x′, t;x, t0)

=

∫
d3x

∑
a

〈x|a〉 〈a|x〉 e−iEat~

=
∑
a

∫
d3x 〈a|x〉 〈x|a〉 e−iEat~

=
∑
a

e−iEat~

(8.38)

which is very much like the parition function in statistical mechanics, but where in our
case, we have β = −it/~ instead of β = 1/(kBT ) like in statistical mechanics.

3. Complex pole energy eigenvalues:
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G̃(E) = − i
~

∫ ∞
0

dtG(t)eiEt~

= − i
~

∫ ∞
0

dt
∑
a

e−iEat~e−iEt~
(8.39)

This integral does not converge as it is oscillatory unless we allow for complex energies
which would give us:

G̃(E) =
∑
a

1

E − Ea + iε
(8.40)

which gives us the all the energy eigenvalues as the complex poles.

4. Heisenberg picture:

K(x′, t;x, t0) =
∑
a

〈x′|a〉 〈a|x〉 e−
iEa(t−t0)

~

=
∑
a

〈x′| e− iĤt~ |a〉 〈a| e
iĤt0

~ |x〉

= 〈x′, t|x, t0〉

(8.41)

which grants us a transition amplitude, so we can take the absolute square of this quantity
to find the probability of a transition of the particle at x at time t0 to x′ at time t.

Example (the Moshinsky quantum race):

Consider a particle with mass m with energy E incoming from the left. It then is incident
on a shutter at x = 0 which is closed until t = 0, after which it is open and we have a
detector at the end of some distance away from the shutter. Initially, we have:

ψ(x, 0) = eikxΘ(−x) (8.42)

where the heaviside function is to ensure that the incoming plane wave is only on the left
side of the shutter at t = 0. So we have:

ψ(x, t) =

∫ ∞
−∞

d3x′Kfree(x
′, t;x, t0)ψ(x′, 0)

=

√
m

2πi~t

∫ 0

−∞
exp

{
i

~

(
m(x− x′)2

2t
+ kx′

)}
=

1

2
exp
{
ikx− ik2τ

}
erfc

(
x− kτ√

2iτ

)
, τ ≡ ~t

m

(8.43)

where k =
√

2mE/~. So we see that the wavefunction is some oscillatory function past
the shutter but before the detector, and once it hits the detector, it rapidly decays past
the step-function drop.
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Example:

Consider the electron double-slit experiment with the apertures labelled O1 and O2. At
the screen, we have the propagator written as:

〈B, t|A, 0〉 (8.44)

where A indicates the source position and B the detector screen position. There will be
a decomposition of the propagator into 2 parts, from the source to the barrier, and from
the barrier to the screen:

〈B, t|A, 0〉 =

∫ t1

0

dt 〈B, t|O1, t1〉 〈O1, t1|A, 0〉+

∫ t1

0

dt 〈B, t|O2, t1〉 〈O2, t1|A, 0〉 (8.45)

where there are 2 integrals because we noticed that there are 2 paths the electrons could
take (O1 or O2). Everywhere but the barriers and screen, we have free propagation of
the wavefunction so we get free-particle propagators:

〈O1, t1|A, 0〉 =
m

2πi~t1
exp

{
ima2

1

2~t1

}
(8.46)

where a1 is the distance from A to O1. We then have:

〈B, t|O1, t1〉 〈O1, t1|A, 0〉 =
m

4π2~2(t− t1)
exp

{
im

2~

(
a2

1

t1
− b21
t− t1

)}
(8.47)

where b1 is the distance from O1 to B. If we plot this against path-length a1 and b1, we
notice that this is an oscillatory function with period decreasing with increasing path-
lengths. So we get a very small contribution from the fast oscillating regions and only get
a significant contribution where x ≈ 0. So we get to make the approximation (t ≈ t1):

〈B, t|O1, t1〉 〈O1, t1|A, 0〉 ≈
m

4π2~2t2
exp

{
im

2~t1
(a1 − b1)(a1 + b1)

}
⇒ |〈B, t|A, 0〉|2 ∝ 1 + (l1 − l2) cos

(
m(l1 + l2)

2~t

) (8.48)

where lj = aj + bj for j ∈ {1, 2}.

The examples above don’t seem much more useful than usual time evolution we have seen thus
far, but the usefulness of the propagator comes in when we have an arbitrary number of barriers,
each with arbitrary number of slits. Then the propagator becomes extremely useful because the
answer would just be the sum over propagators describing all possible paths. What’s interesting
now is that if we take the limit of an infinite number of barriers with an infinite number of slits,
this physically corresponds to free-space propagation! This was Feynman’s insight and the key
insight which leads to the path-integral formulation of quantum mechanics. Let’s try to work
through this.

Subdividing the time into steps starting with initial time t1 and final time tN :

tj − tj−1 =
tN − t1
N − 1

(8.49)
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We can also subdivide positions from initial position x1 to final position xN to get:

〈xN , tN |x1, t1〉 =

∫
dxN−1

∫
dxN−2 . . .

∫
dx2 〈xN , tN |xN−1, tN−1〉 . . . 〈x2, t2|x1, t1〉 (8.50)

Each of these terms can be written as:

〈xj , tj |xj−1, tj−1〉 = 〈xj | exp

{
− iĤ∆t

~

}
|xj−1〉

≈ 〈xj | exp

{
− ip̂

2∆t

2m~

}
exp

{
− iV (x̂)∆t

~

}
|xj−1〉+O(∆t2)

⇒ 〈xj , tj |xj−1, tj−1〉 ≈
∫
dx′ 〈xj | exp

{
− ip̂

2∆t

2m~

}
|x′〉 〈x′| exp

{
− iV (x̂)∆t

~

}
|xj−1〉

=

∫
dx′ 〈xj | exp

{
− ip̂

2∆t

2m~

}
|x′〉 e−

iV (xj−1)∆t

~ δ(x′ − xj−1)

=

√
m

2πi~∆t

∫ 0

−∞
exp

{
i∆t

~

(
m(xj − xj−1)2

2(∆t)2
− V (xj)

)}
(8.51)

So multiplying these together, we get:

〈xN , tN |x1, t1〉 =
( m

2πi~∆t

)(N−1)/2
∫
dxN−1

∫
dxN−2 . . .

∫
dx2

× exp

 i∆t~
N−2∑
j=1

(
m(xj − xj−1)2

2(∆t)2
− V (xj)

)
(8.52)

Taking the limit as ∆t→∞, we get:

〈xN , tN |x1, t1〉 =

∫ xN

x1

D[x(t)] exp

{
i

~

∫ t

t0

dt

[
1

2
mẋ(t)− V (x(t))

]}
=

∫ xN

x1

D[x(t)] exp

{
i

~

∫ t

t0

dtL (x, ẋ)

}
=

∫ xN

x1

D[x(t)] exp

{
i

~
S(x, ẋ)

} (8.53)

where L (x, ẋ) is the Lagrangian, S(x, ẋ) is the action from classical mechanics and we de-
fined: ∫ xN

x1

D[x(t)] = lim
N→∞

( m

2πi~∆t

)(N−1)/2
∫
dxN−1

∫
dxN−2 . . .

∫
dx2 (8.54)

The above result is known as the Feynman path integral. Recall that in classical mechanics, we
get the classical equations of motion by taking the variation of the action to zero (extremizing
the action). Now in the quantum picture, comparing 2 paths S0 and S0 + δS, the propagator
becomes:

propagator ∼ exp

{
iS0

~

}
+ exp

{
i(S0 + δS)

~

}
= exp

{
iS0

~

}
(1 + exp{iδS/~}) (8.55)
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So we get this 1 plus rapidly oscillating term (if δS � ~), so we get the recovery of classical me-
chanics since we integrate over all the paths, and classical mechanics would allow us to minimize
the action “up to ~”.

Sadly in practice, it is difficult to solve the Feynman path integral analytically for most quan-
tum systems (the integral is intractable), albeit possible numerically via Monte-Carlo methods.
However, this formulation does come in useful for revealing some very interesting properties for
symmetries which is not obvious from the other formalisms we have come across (Schrödinger
and Heisenberg picture). This leads us into gauge symmetries.

§8.4 Gauge Symmetries

Given a potential V (x), we can transform it to Ṽ (x) = V (x) + V0, which is known as a gauge
transformation. This is easily done classically since the constant does not affect the Lagrangian
and hence the physics). The question then is, is this effect also true in quantum mechanics?
Well, looking at the Schrödinger’s equation, we see that taking V (x) → Ṽ (x) does affect time-
evolution: ∣∣∣ψ̃(t)

〉
= exp

{
− i
~

[
p̂2

2m
+ V (x̂) + V0

]
t

}
|ψ(0)〉

= exp

{
−iV0t

~

}
|ψ(t)〉

(8.56)

If we consider these states |ψ〉 energy eigenstates, we get:

e−i
V0t
~ |ψ(t)〉 = e−i

(E+V0)t
~ |ψ〉 =

∣∣∣ψ̃(t)
〉

(8.57)

So we simply replaced E → E + V0, which is just a shifting for the energy and has no actual
physical effect we well!

Note: This always holds true because we can always expand any arbitrary state into
energy eigenstates.

Example:

Consider sending a beam of electrons in which we split the beam into 2 beams, such that
each beam passes through conducting cages with constant potentials V1 and V2. After
exiting these cages, they exit and are recombined. Further notes, there is no electric field
inside and outside the capacitors since we take the potentials as uniform within the cages.
If we measure the intensity of electrons after they have been recombined to be:

I ∼ cos

(
1

~

∫
dt [V2(t)− V1(t)]

)
(8.58)

We see that this is a quantum mechanical result since there is an ~, which in the classical
limit of small ~, we have the oscillation occurring extremely rapidly which would then
be averaged over. So there is something more interesting going on even with constant
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potentials, and in quantum mechanics the potential is more fundamental than we expect.

Example (Gravity Interferometry):

L2

L1

A

B

C

D
Measure

Figure 8.2: Gravity interferometer set-up.

Consider that we are close to the surface of the Earth, so classically we would have the
equation of motion as z̈ = −g. Quantum mechanically, we have:[

− ~2

2m

d2

dz2
+mΦg

]
ψ(z, t) = i~

∂

∂t
ψ(z, t) (8.59)

Unlike the classical case, we cannot cancel the m’s out anymore, but write Φg = gz so
that we can have: [

− ~2

2m2

d2

dz2
+ Φg

]
ψ(z, t) = i

~
m

∂

∂t
ψ(z, t) (8.60)

Now consider sending neutrons into an interferometry set-up with a rectangular configu-
ration with lengths L2 > L1 (L2 is the width and L1 is the height) illustrated in figure
8.2. If this experiment lies on the plane surface of the Earth, we would so see effects due
to gravity. But if we rotate the experiment by an angle δ such that one arm of length L2

is higher than the other, we have:

∆Φ = mngL2 sin δ (8.61)

where mn is the mass of the neutrons. It is then not too hard to show that the change in
phase between the 2 paths would be:

∆φ = exp

{
−imngL2 sin δ

~
T

}
(8.62)

where T is the time-of-flight of the horizontal paths. This experiment was actually done
in 1975 using a table top set-up and worked out that the scales allowed non-trivial results.

Example (Electromagnetic Potential):

Consider the gauge transformation of the scalar and vector potentials:

φ→ φ+ λ(~x) (8.63)

~A→ ~A+∇Λ(~x) (8.64)
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We will use the Hamiltonian formalism since we use that in quantum mechanics. The
classical Hamiltonian would be:

H =
1

2m

[
~p− e

c
~A(~x)

]2
+ eφ(~x) (8.65)

where e is the electronic charge and c is the speed of light. Converting this into quantum
mechanics, there are in fact different ways to write the Hamiltonian since operators now
do not commute, but the key is that as long we we keep things Hermitian, it will suffice.
So we choose: [

~p− e

c
~A(~x)

]2
→ ~̂p2 +

e2

c2
~̂A2 − e

c

(
~̂p · ~̂A+ ~̂A · ~̂p

)
(8.66)

where we are also treating ~A as an operator here (this is going to be important and we
will explore this in a bit). In the Heisenberg picture, we have:

d

dt
x̂i =

1

i~

[
x̂i, Ĥ

]
=

1

m

(
p̂i −

e

c
Âi

)
(8.67)

We now define a quantity known as the kinematical momentum:

~̂Π = m
d

dt
~̂x = p̂i −

e

c
Âi (8.68)

where ~̂p is the canonical momentum which satisfies all the commutation relations we
are familiar with and the kinematical. In fact, the kinematical momentum doesn’t even
commute with itself! [

Π̂i, Π̂j

]
=

(
i~e
c

)
εijkB̂k (8.69)

However, it works out that:

m
d2

dt2
~̂x =

d

dt
~̂Π (8.70)

= e

[
~̂E +

1

2c

(
d

dt
~̂x× ~̂B − ~̂B × d

dt
~̂x

)]
(8.71)

which is the Lorentz force law. The continuity equation we get from this Hamiltonian in
this gauge would the be:

~j =
~
m

Im{ψ∗∇ψ} − e

mc
|ψ|2 ~A(~x) (8.72)

Example (Particle in a Magnetic Field):

Consider an external magnetic field ~B = Bẑ for which we can choose the vector potential
as:

~A =

−yB0
0

 (8.73)
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So this would give us the Hamiltonian:

Ĥ =
1

2m

[(
p̂x +

e

c
Bŷ
)

+ p̂2
y + p̂2

z

]
(8.74)

From the form above, we can tell that the Hamiltonian commutes with p̂x and p̂z, which
means we can find simultaneous eigenstates |E, px, pz〉. This allows us to write:

Ĥ |E, px, pz〉 =

[
p̂2
y

2m
+

p̂2
z

2m
+

1

2m

(
px +

e

c
Bŷ
)2
]
|E, px, pz〉 (8.75)

This is in fact the harmonic oscillator potential, which we can clearly see when we rewrite
this as:

Ĥ =
p̂2
x

2m
+

1

2
mω2

c (ŷ − y0)2 +
p̂2
z

2m
(8.76)

where ωc = eB/(mc). So this grants us the energy eigenstates:

En(pz) = ~ωc
(
n+

1

2

)
+

p2
z

2m
(8.77)

So now, if we had instead chosen the gauge:

~A =

−yB2xB
2
0

 (8.78)

This would result in the Hamiltonian:

Ĥ =
1

2m

[(
p̂x +

eB

2c
ŷ

)2

+

(
p̂y −

eB

2c
x̂

)2

+ p̂2
z

]
(8.79)

where we have:

Π̂x = p̂x +
eB

2c
ŷ

Π̂y = p̂y −
eB

2c
x̂

⇒
[
Π̂x, Π̂y

]
=
i~e
c
Bz = i~mωc

(8.80)

which looks very much like the canonical position and momentum commutation relation!
In fact, if we define:

Q̂ ≡ − Π̂y

~ωc
⇒

[
Q̂, Π̂x

]
= i~

(8.81)

Rewriting the Hamiltonian in terms of these operators we have defined, we get:

Ĥ =
p̂2
z

2m
+

Π̂x

2m
+

1

2
mωcQ̂

2 (8.82)
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which we again see is very much like the harmonic oscillator and we will indeed retrieve
the same energy eigenvalues! However, we find that 〈p̂x〉 is not the same in the 2 cases,
which tells us that p̂ is not gauge invariant, but Π̂ is. Now if there is a local gauge
transformation of the form:

φ→ φ (8.83)

~A→ ~A+∇Λ(~x) (8.84)

we claim that this results in a transformation of the state:

ψ(x, t)→ ψ̃(x, t) = eiθ(x)ψ(x, t) (8.85)

which we know would result in the same probabilities. However, this gets a little more
subtle when we discuss quantum dynamics:

i~
∂ψ(x, t)

∂t
=

[
p̂2

2m
+ V (x̂)

]
eiθ(x)ψ(x, t) (8.86)

Notice how the momentum operator acts on this new state:

p̂
[
eiθ(x)ψ(x, t)

]
= −i~ ∂

∂x

[
eiθ(x)ψ(x, t)

]
= eiθ(x)

[
−i~ ∂

∂x
ψ(x, t) + ~

∂θ(x)

∂x
ψ(x, t)

] (8.87)

This results in a phase shift which in no way had we specified it to be the same initially,
so this results in a strange variation in the wavefunction. To fix this, we introduce the
comparator Û(x1, x2), which satisfies that under gauge transformation:

Û(x1, x2)→ eiθ(x)Û(x1, x2)e−iθ(x) (8.88)

which allows U(x1, x2)ψ(x2) to keep the same phase as ψ(x1) (this is analogous to the
parallel transport operation in general relativity). We require that this transformation
satisfy Û(x1, x2) = Û(x2, x1) which implies also that it is unitary, which allows us to
build the covariant derivative operator:

D̂xψ(x) ≡ lim
ε→0

1

ε
[ψ(x+ ε)− U(x+ ε, x)ψ(x)] (8.89)

Notice that when we Taylor expand this comparator:

Û(x1, x2) ≈ I + i
e

~c
εÂx(x) +O(ε2) (8.90)

where we call Âx(x) the connection. This gives us:

U(x+ ε, x)→ eiθ(x+ε)U(x+ ε, x)e−iθ(x)

≈ eiθ(x+ε)
[
I + i

e

~c
εÂx(x) +O(ε2)

]
e−iθ(x)

≈ I + i
e

~c
εÂx(x) + εθ′(x) + . . .

(8.91)
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So from this, we see that we have:

Âx(x)→ Âx(x) +
~c
e
θ′(x)I (8.92)

which in turn allows us to formally define the covariant derivative as:

D̂xψ(x) =

[
∂

∂x
− i e

~c
Âx(x)

]
ψ(x)

⇒ − i~D̂xψ(x) = Π̂xψ(x)

(8.93)

In general, we have:

−i~D̂j = Π̂j (8.94)

So the punch line is that the local gauge invariance (invariance under ψ(x)→ eiθ(x)ψ(x))
implies electromagnetism. In fact, the strong and weak nuclear forces also arise from a
local (non-abelian) gauge invariance (where the comparator depends on the path from x1

to x2).

§8.4.1 The Aharonov-Bohm Effect

This is an experimental demonstration that the potential is the fundamental object in quantum
mechanics and not the ~E and ~B fields. The set-up is as follows.

x

detector

B 6= 0

V =∞

A B

Figure 8.3: The Aharonov-Bohm effect set-up.

Consider a double-slit experiment, but pass the double slit, there is a cylinder that runs into
the plane of the page such that there is only a non-trivial magnetic field within the cylinder,
asserting the potential on the surface is infinite (illustrated in figure 8.3). We use the path
integral formulation, so we write the classical Lagrangian for this being:

L =
1

2
m~̇x2 +

e

c
~̇x · ~A (8.95)
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where this form comes from the need to derive the Lorentz force law from this. Along a line
segment (~xn−1, tn−1)→ (~xn, tn), we have the action being:

S =

∫ tn

tn−1

dtL

= S0 +

∫ tn

tn−1

dt
e

c
~̇x · ~A

= S0 +
e

c

∫ ~xn

~xn−1

~A · d~s

⇒ e
i
~S = e

i
~S0 exp

{
ie

~c

∫ ~xn

~xn−1

~A · d~s

}
(8.96)

To perform this integral, we need to remember Stoke’s theorem, which grants us:∮
~A · d~s = Φ

(inside)
B (8.97)

The integral we currently have is not closed, but if we consider the path that goes back and forth
(that is ~x1 → ~xN plus ~xN → ~x1), then this path is closed. Furthermore, we note that any closed
path that does not enclose the solenoid would be zero:∫ ~xN

~x1

~A · d~s1 −
∫ ~xN

~x1

~A · d~s2 = 0 (8.98)

But if the closed path does enclose the solenoid, we get:

e

~c

[∫ ~xN

~x1

~A · d~s1 −
∫ ~xN

~x1

~A · d~s2

]
=

e

~c
ΦB (8.99)

where we took path 1 to be above path 2. The intensity of this would then be given by:

I ∼
∣∣∣∣∫ [dx]1e

− i
~S

∣∣∣∣2 +

∣∣∣∣∫ [dx]2e
− i

~S

∣∣∣∣2 + 2 Re

{∫
[dx]1e

− i
~S

∫
[dx]2e

− i
~S

}
∼ cos

(
eΦB
~c

) (8.100)

So we indeed get that what effects the experimentally measurable quantities is only the flux which
is given by the vector potential and not the magnetic field, since we only consider paths enclosing
the cylinder which would not experience a magnetic field (but a vector potential).

§8.4.2 Magnetic Monopoles (?)

As we know from classical electromagnetic theory, Maxwell’s equations are symmetric in ~E and
~B, except for that the electric field is sourced by charges. If we tried to make it more symmetric,
we could frivolously write:

∇ · ~B = 4πρM (8.101)
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where ρM are defined as the magnetic monopole charge density. Suppose we have a point mag-
netic monopole of charge eM at the origin, then:

~B =
eM
r2
r̂

⇒ ∇× ~A = r̂

[
1

r sin θ

∂

∂θ
(Aφ sin θ)− ∂

∂φ
Aθ

]
+ . . .

⇒ ~A =

[
eM (1− cos θ)

r sin θ

]
φ̂

(8.102)

We realize this is not well behaved at θ = π ( ~A→∞). One way to resolve this is to find another
solution and add them together:

~A(I) =

[
eM (1− cos θ)

r sin θ

]
φ̂, (θ < π)

~A(II) = −
[
eM (1 + cos θ)

r sin θ

]
φ̂, (θ > 0)

(8.103)

Since these both are valid solutions (both give the same ~B field), they must be related by a gauge
transformation. Notice that:

~A(II) − ~A(I) = −
(

2eM
r sin θ

)
φ̂

⇒ Λ = −2eMφ

(8.104)

We know that for such a gauge transformation, the wavefunctions are simply related by a coor-
dinate dependent phase which gives us:

ψ(II) = e
ieΛ
~c ψ(I)

= exp

{
−2ieeMφ

~c

}
ψ(I)

(8.105)

We know that wavefunctions must be single-valued, we assert that:

ψ(φ = 0) = ψ(φ = 2π)

⇒ 2eeM
~c

= ±n

⇒ eM = ±n
(
~c
2e

)
, or e = ±n

(
~c

2eM

) (8.106)

So we get that either electric charge or the magnetic charge is quantized! So we would have
a quantization of the electric charge with the existence of magnetic monopoles (which could
perhaps explain why the electron and proton have exactly the same charge, but nobody knows
this).



Chapter 9

Rotations and Angular
Momentum

Rotations are a very important concept in general and also in quantum mechanics. Furthermore,
the algebra of rotations also show up in many places that do not directly correspond to physical
rotations, but nonetheless grant us powerful tools to solve relevant systems described by the same
algebra.

§9.1 Introduction

Classically, we can treat rotations as 3× 3 matrices that are orthogonal RTR = I and preserve
the norm of vectors (‖R~v‖ = ‖~v‖). Rotations are not commutative. Furthermore, we have
that the determinant of these rotation matrices are always ±1 as seen from:

det
{
RTR

}
= det

(
RT
)
det(R) = det(R)

2
= 1

⇒ det{R} = ±1
(9.1)

Rotation matrices can be written in terms of sines and cosines in the entries and any rotation in
3-d space can be fully parameterized by 3 parameters which are often referred to as the Euler
angles. In quantum mechanics, we are concerned with generators of some unitary transformation
via the exponential map. The way we derive this is through infinitesimal translations from these
unitaries, so let’s consider an infinitesimal rotation by angle ε around the z-axis (without loss of
generality):

Rz(ε) =

1− ε2/1 −ε 0
ε 1− ε2/2 0
0 0 1

 (9.2)

84
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Considering the commutator of Rz(ε) and Ry(ε), we get:

[Rz(ε), Ry(ε)] =

 0 −ε2 0
ε2 0 0
0 0 1


= Rz(ε)− I +O(ε4)

(9.3)

As for quantum mechanics, supposed R(~n, θ) is now some unitary operator Û [R(~n, θ)] which
allows us to rotate states:

|ψ〉R = Û [R(~n, θ)] |ψ〉 (9.4)

Expanding this operator out by Taylor expansion, we get:

Û(~n, dθ) = I− i

~
Ô~ndθ + . . . (9.5)

where Ô~n is some operator that tells us about the axis of rotation. We claim that this operator
can be written as a vector of operators that act on each axis whivh let’s us write:

Û(~n, dθ) = I− i

~
( ~̂J · ~̂n)dθ + . . .

⇒ Û(~n, dθ) = exp

{
− i

~̂J · ~̂n
~

} (9.6)

We want that the commutators of these unitaries acting in each axis not to vanish, so we try
with x and y: [

Û( ˆˆ, εx), Û( ˆˆ, εy)
]

= Û( ˆˆ, εz)− I + . . .

⇒
[
I− i

~
Ĵxε−

1

2~2
Ĵ2
xε

2, I− i

~
Ĵyε−

1

2~2
Ĵ2
yε

2

]
= − i

~
Ĵyε

2

⇒
[
− i
~
Ĵxε,−

i

~
Ĵyε

]
= − i

~
Ĵyε

2

⇒
[
Ĵx, Ĵy

]
= i~Ĵz

(9.7)

or more generally, [
Ĵi, Ĵj

]
= i~εijkĴk (9.8)

These Ĵ operators are in fact angular momentum, because just like how the momentum operator
were the generators of translation in position, these the angular momentum operators are the

generators of rotations. A useful property of these operators are that
[
~̂J2, Ĵj

]
= 0, which

means that we can simultaneously diagonalize these operators. To do so, we define a new set of
operators:

Ĵ± = Ĵx ± iĴy (9.9)
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which are called the angular momentum ladder operators. These are analogous to the ladder op-
erators we saw in the quantum harmonic oscillator and are also not Hermitian. Some properties
of these operators are listed below.

1.
[
Ĵ+, Ĵ−

]
= 2~Ĵz

2.
[
Ĵz, Ĵ±

]
= ±~Ĵ±

3.
[
~̂J2, Ĵ±

]
= 0

Now to find the simultaneous eigenstates of ~̂J2 and Ĵz. To do so, we write:

~̂J |a, b〉 = a |a, b〉
Ĵz |a, b〉 = b |a, b〉

(9.10)

Now consider the action of the ladder operators we have just constructed on these states as
follows:

Ĵz

(
Ĵ± |a, b〉

)
=
([
Ĵz, Ĵ±

]
+ Ĵ±Ĵz

)
|a, b〉

=
(
±~Ĵ± + bĴ±

)
|a, b〉

= (b± ~)Ĵ± |a, b〉

(9.11)

So we see that Ĵ± |a, b〉 are Ĵz eigenstates and the action of these ladder operators simply raise
and lower the eigenvalue of Ĵz by ~ (which is why they get they’re name). If we work it out, we
also find that:

~̂J2(Ĵ± |a, b〉) = a(Ĵ± |a, b〉) (9.12)

We now state a claim.

Claim: We cannot apply the ladder operators indefinitely without destroying the state.
That is, there is a finite number of |a, b〉 eigenstates.

Proof. To show this, we consider the operator:

~̂J2 − Ĵ2
z =

1

2
(Ĵ+Ĵ− − Ĵ−Ĵ+)

=
1

2
(Ĵ+Ĵ

†
+ − Ĵ

†
+Ĵ+)

(9.13)

So the right-hand side would grant us:

〈a, b| Ĵ†+Ĵ+ |a, b〉 ∝ 〈a, b+ ~|a, b+ ~〉 ≥ 0 (9.14)

whereas the left-hand side gives us:

〈a, b| ( ~̂J2 − Ĵ2
z ) |a, b〉 = a− b2 (9.15)
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so we get that:

a− b2 ≥ 0 (9.16)

So this grants us that there must be some bmax such that:

Ĵ+ |a, bmax〉 = 0

⇒ Ĵ−Ĵ+ |a, bmax〉 = ( ~̂J2 − Ĵ2
z − ~Ĵz) |a, bmax〉 = 0

⇒ a− b2max − ~bmax = 0

⇒ a = bmax(bmax + ~)

(9.17)

A similar computation can be done for bmin, which would grant us:

a = bmin(bmin − ~) (9.18)

So we have 2 equations in terms of bmin and bmax, for which equating them grants us:

bmax = −bmin (9.19)

For which self-consistency dictates that we should be able to get from |a, bmin〉 to |a, bmax〉
using ladder operators. That implies that they are related by an integer number of ~
terms:

bmax = bmin + h~

⇒ bmax =
n~
2

(9.20)

From the result above, we further see that this gives us a quantization of b and thus a quantization
of a:

a =
~2

4
n(n+ 2) (9.21)

In the more commonly adopted notation in physics, we define the quantities j and m that
are:

j ≡ n

2
, m =

b

~

⇒
Ĵz |j,m〉 = m~ |j,m〉

~̂J2 |j,m〉 = ~2j(j + 1) |j,m〉

(9.22)

where we have that m ∈ [−j, j] and we will soon see that j can only take on integer or half-integer
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values. First, recall the operator we introduced in one of the steps earlier:

Ĵ−Ĵ+ = ( ~̂J2 − Ĵ2
z − ~Ĵz)

⇒ 〈j,m| Ĵ−Ĵ+ |j,m〉 = 〈j,m| ( ~̂J2 − Ĵ2
z − ~Ĵz) |j,m〉

⇒ 〈j,m| Ĵ−Ĵ+ |j,m〉 = ~2j(j + 1)− ~2m(m+ 1)

(9.23)

To evaluate the left-hand side, we look at the action of the ladder operators on these eigen-
states:

Ĵ+ |j,m〉 = cj,m |j,m+ 1〉 , 〈j,m| Ĵ− = 〈j,m+ 1| c∗j,m
⇒ ~2j(j + 1)− ~2m(m+ 1) = |cj,m|2

⇒ cij = ~
√
j(j + 1)−m(m+ 1) = ~

√
(j −m)(j +m+ 1)

⇒ Ĵ+ |j,m〉 = ~
√
j(j + 1)−m(m+ 1) |j,m+ 1〉 = ~

√
(j −m)(j +m+ 1) |j,m+ 1〉

(9.24)

where we rewrote the equation within the square-root for convenience as we will soon see. From
these results, we can write the matrix elements of the ladder operators in the j,m eigen-basis
as:

〈j′,m′| Ĵ± |j,m〉 = ~δj,j′δm′,m±1

√
(j ∓m)(j ±m+ 1) (9.25)

There are several things from these matrix elements. First, it is that setting j = 0 gives us the

state |0, 0〉 which is annihilated not just by the ladder operators, but also Ĵ and ~̂J2 (trivial state).
The other thing we can see is that the lowest non-trivial value of j is j = 1/2, which gives us
that m = −1/2, 1/2. This is in fact a 2-level system in m which when we work out the matrix
elements, is exactly the quantum mechanical spin- 1

2 states we have seen from before:

Ĵx =
~
2

[
0 1
1 0

]
, Ĵy =

~
2

[
0 −i
i 0

]
, Ĵz =

~
2

[
1 0
0 −1

]
(9.26)

Ĵ− =
~
2

[
0 0
1 0

]
, Ĵ+ =

~
2

[
0 1
0 0

]
(9.27)

Let’s consider the case where j = 1, so we have m = −1, 0, 1 which is a 3-level system in m. The
matrix representation of the Ĵ operators work out to be:

|1,−1〉 =

1
0
0

 , |1, 0〉 =

0
1
0

 , |1, 1〉 =

0
0
1

 (9.28)

⇒ Ĵ− = ~

0 0 0
1 0 0
0 1 0

 , Ĵ+ = ~

0 1 0
0 0 1
0 0 0


Ĵz = ~

1 0 0
0 0 0
0 0 −1

 (9.29)

And we can keep increasing the value of j by 1/2 to get larger and larger Hilbert spaces.
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§9.2 Orbital Angular

In classical mechanics, we know that orbital angular momentum is given by:

~L = ~r× ~p (9.30)

So in quantum mechanics, we can try this but with operators instead, which gives us:

~̂L = ~̂r× ~̂p (9.31)

This operator works out to satisfy the commutation relation:[
L̂i, L̂j

]
= i~εijkL̂k (9.32)

which is exactly the algebra (commutation relation) of the generators of rotation (angular mo-
mentum operators Ĵ). Now consider the operator:

I− i δφ
~
L̂z (9.33)

where δφ is some small real number. To find the action of this operator on a state in the
coordinate space representation, we take:

〈x, y, z|
[
I− i δφ

~
L̂z

]
|ψ〉 = 〈x, y, z|

[
I− i δφ

~
(p̂yx̂− p̂xŷ)

]
|ψ〉

= ψ(~x)− δφx ∂
∂y
ψ(~x) + δφy

∂

∂x
ψ(~x)

≈ ψ(x+ yδφ, y − xδφ, z)

(9.34)

which looks like a rotation about the z-axis by a small angle δφ. So as expected, we have that
these orbital angular momentum operators are indeed the generators of rotation. If we then work
out what the operator L̂z in spherical coordinates, we get:

L̂x = −i~
(

cosφ ∂
∂θ − cot θ sinφ ∂

∂φ

)
L̂y = −i~

(
− sinφ ∂

∂θ − cot θ cosφ ∂
∂φ

)
L̂z = −i~ ∂

∂φ

(9.35)

The operators for L̂x,y are a little messy, so we usually write them in terms of the ladder operators
which have nice forms in coordinates space:

〈x, y, z| L̂± |ψ〉 = −i~e±iφ
(
±i ∂
∂θ
− cot θ

∂

∂φ

)
〈x, y, z|ψ〉 (9.36)

and we also have:

〈x, y, z| ~̂L2 |ψ〉 = 〈x, y, z| L̂2
z +

1

2

(
L̂+L̂− + L̂−L̂+

)
|ψ〉

= −~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
〈x, y, z|ψ〉

(9.37)
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which is in fact the radial portion of the Laplacian operator! As such, we can write:

~̂p2

2m
= − ~2

2m
∇2 = − ~2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+

~̂L2

2mr2
(9.38)

§9.2.1 Complete Set of Commuting Observables

Now we take an aside to understand the concept of a complete set of commuting observables
(CSCO). The idea is that if we find a set of observables that all commute with each other, then
measuring these observables allows us to collapse the system to a definite state of eigenvalues
{a, b, c, . . .}, |a, b, c, . . .〉. The set of {a, b, c, . . .} eigenvalues for a CSCO are known as quantum
numbers. It is nice but not necessary that the Hamiltonian is in the CSCO we find. This is
possible because the CSCO is not unique.

For instance, in a 2-level system we can have the CSCO’s as {Ŝx, Ŝy}, {Ŝz} or { ~̂S2, Ŝz}. While
for the quantum harmonic oscillator, we could have {|n〉 〈n|} (which is an infinite set). We can
then ask the question, how do we know a given set of commuting observables is in fact complete?
Well, we can look at degeneracies. By degeneracoes, we mean that making a measurement on
each of the operators must produce a unique state with regards to their entire spectrum.

Example:

Consider a spin- 1
2 particle in a simple harmonic oscillator. To do this, we need to introduce

the direct product ⊗, which is defined as a binary operation on Hilbert spaces:

⊗ :H1 ×H2 → H1 ×H2 (9.39)

|α〉 ⊗ |β〉 7→ |α, β〉 (9.40)

where we have the short-hand notation of combining ket states on direct product Hilbert
spaces into one ket with 2 labels. A property of this direct product is that dim{H1⊗H2} =
dim{H1} dim{H2}. Back to the physical system, we supposed we don’t know about the
spin state but prepare it such that:

|ψ〉 =

(
3

5
|0〉+

4

5
|−〉
)
⊗ (α |+〉+ β |−〉) (9.41)

=
3

5
α |0,+〉+

3

5
β |0,−〉+

4

5
α |1,+〉+

4

5
β |1,−〉 (9.42)

If we then compute the probability of getting an energy with quantum number n = 0,
this works out to be:

P
(
E =

~ω
2

)
= |〈0,+|ψ〉|2 =

9

25
(|α|2 + |β|2) =

9

25
(9.43)

Which is exactly the same probability we would get with the individual system of the
QHO without spin. So this tells us that we need a measurement sensitive to the spin as
well to indeed have all the information we require. So determining a CSCO becomes an
experimental endeavour.
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§9.3 3-d Schrödinger’s Equation

Now back to rotations, we will use our new knowledge of CSCO’s to study quantum systems
in 3-dimensions. First, we assume that the system we are dealing with is spherically symmetric
(V (~r) = V (r)). In a spherically symmetric system, knowing the form of the angular momentum
operators tells us that we will have the commutator relations:[

~̂L2, Ĥ
]

= 0,
[
L̂j , Ĥ

]
= 0,

[
~̂L2, L̂j

]
= 0 (9.44)

⇒ CSCO : {Ĥ, ~̂L2, L̂z} → simultaneous eigenstates : |E, l,m〉 (9.45)

The angular momentum operators acting on these states |E, l,m〉 would pull out the eigenvalues
we have already seen earlier (~m and ~2l(l + 1). In the coordinate space representation, the
equation we have is:

− ~2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+

~̂L2

2mr2
ψE,l,m(θ, φ) = [E − V (r)]ψE,l,m(θ, φ)

⇒ − ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+ V (r)

]
ψE,l,m(r, θ, φ) = EψE,l,m(r, θ, φ)

(9.46)

This is the 3-d spherically symmetric Schröinger’s equation. We now try to find separable
solutions to this equation, which take the form:

ψE,l,m(θ, φ) = RE,l(r)Yl,m(θ, φ) (9.47)

where of course Yl,m = 〈θ, φ|l,m〉 are the famed spherical harmonics that satisfy:

−i~ ∂

∂φ
Yl,m(θ, φ) = ~mYl,m(θ, φ) (9.48)

Furthermore, the completeness relation follows from the orthogonality of the |l,m〉 states (〈l′,m′|l,m〉 =
δl,l′δm,m′):

〈θ′, φ′|θ, φ〉 = δ(φ− φ′)δ(θ − θ′)

=

∞∑
l=0

l∑
m=−l

Yl,m(θ′, φ′)Y ∗l,m(θ, φ)
(9.49)

If we do another separation of variables for these spherical harmonics, we find that the φ depen-
dence is simply a phase given by:

Yl,m(θ, φ) = T (θ)ρ(φ) = T (θ)eimφ (9.50)

where m has to take on integer values since the wavefunction has to be single-valued (ρ(φ+2π) =
ρ(φ)). From the spherical harmonics, we also have the associated Legendre polynomials Pl(cos θ)
defined as:

Yl,0(θ, φ) =

√
2l + 1

4π
Pl(cos θ) (9.51)
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Lastly on these, the spherical harmonics satisfy a nice property in the parity of m:

Yl,−m(θ, φ) = (−1)mY ∗l,m(θ, φ) (9.52)

In spectroscopy, the l labels are also referred to with letter labels {0, 1, 2, 3, 4, . . .} → {s, p, d, f, g, . . .}.

§9.3.1 Parity of Spherical Harmonics

The first thing to ask here is what does parity look like in 3-d? Well, it is simply:

P̂ |x, y, z〉 → |−x,−y,−z〉 (9.53)

⇒ P̂ |r, θ, φ〉 → |r, π − θ, φ+ π〉 (9.54)

So we have that the parity operator acting on the spherical harmonics is given by:

P̂ Yl,m(θ, φ) = P̂Pml (cos θ)eimφ

⇒ P̂ Yl,m(θ, φ) = (−1)l−|m|Pml (cos θ)eimφ(−1)meimφ

⇒ P̂ Yl,m(θ, φ) = (−1)lYl,m(θ, φ)

(9.55)

§9.4 3-d Wave Mechanics

We will now be looking at the radial portion of the 3-d wavefunction. For this, it is useful
to know some special functions. Several online resources for this are https://dlmf.nist.gov/
and http://functions.wolfram.com/. Recall that the 3-d Schrödinger’s equation for a spherically
symmetry potential is given by:

− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+ V (r)

]
ψE,l,m(θ, φ) = EψE,l,m(θ, φ) (9.56)

So the radial portion for separable solutions is given by:

− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+ (V (r)− E)

]
REl(r) = 0 (9.57)

Defining ρ ≡ kr where k2 = 2m(E − V )/~2, we have:

R′′(ρ) +
2

ρ
R′(ρ) +

[
1− l(l + 1)

ρ2

]
R(ρ) = 0 (9.58)

for which the solutions to this equation is given by spherical Bessel and Neuman functions:

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
sin ρ

ρ
(9.59)

nl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
cos ρ

ρ
(9.60)

https://dlmf.nist.gov/
http://functions.wolfram.com/
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In the limit as ρ→ 0, we have the asymptotic versions of these special functions tend to:

lim
ρ→0

jl(ρ) ≈ ρl

(2l + 1)!!
(9.61)

lim
ρ→0

nl(ρ) ≈ − (2l + 1)!!

ρl+1
(9.62)

and in the limit where ρ→∞, we have:

lim
ρ→∞

jl(ρ) ≈ 1

ρ
sin

(
ρ− lπ

2

)
(9.63)

lim
ρ→∞

nl(ρ) ≈ −1

ρ
cos

(
ρ− lπ

2

)
(9.64)

Notice that the Bessel functions jl re regular at the origin whereas the Neuman functions nl are
regular at infinity.

Example:

V (r) =

{
0, r ≤ R
∞, r > R

(9.65)

Since we have for this potential, that the boundary condition is that the wavefunction
must be finite at r = 0, we have:

REl(ρ) = Aljl(ρ) (9.66)

while the other boundary condition is that REl(ρ) = 0 at r = R, this grants us the
solution:

jl(kR) = 0

⇒ sin(kR)

kR
= 0, (l = 0)

⇒ kR = nπ, n ≥ 1

⇒ En,l=0 =
~2n2π2

2mR2

(9.67)

For other values of l we need to find these solutions numerically. With this, we have the
general solution to the time-independent 3-d Schrödinger’s equation to be:

ψn,l,m = An,ljl(knr)Yl,m(Ω) (9.68)

where the An,l coefficients are determined by normalization.

Example:

Consider the finite square-well:

V (r) =

{
0, r ≤ R
V0, r > R

(9.69)
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We are looking for bound-states 0 < E < V0, where we now define κ2 = 2m(V − E)/~2.
In the far-field limit (r →∞), if we naively choose the solution the same way we did for
the infinite square-well, we would have:

jl(iκr)→ −
i

κr
sin

(
iκr =

lπ

2

)
=

1

κr

[
cos

(
lπ

2

)
sinh(κr) + i sin

(
lπ

2

)
cosh(κr)

] (9.70)

But we see that both sinh and cosh blow up at infinity! So we instead use a linear
combination of the Bessel and Neuman functions to get:

h
(1)
l (ρ) = jl(ρ) + inl(ρ) (9.71)

h
(2)
l (ρ) = jl(ρ)− inl(ρ) (9.72)

These are known as spherical Hankel functions. These functions in the asymptotic r →∞
limit will grant us:

h
(1)
l (ρ)→ − i

−l

κr
e−κr (9.73)

h
(2)
l (ρ)→ il

κr
eκr (9.74)

for which the only physical solutions will be the first Hankel functions.

§9.4.1 Recasting to 1-d

We are going to use a trick now we have used in classical mechanics for the 2-body problem, and
we can use the mechanics we have found in the 1-d situation. The first thing we do is to replace
the radial function to take the form:

REl(r) =
uEl(r)

r
(9.75)

This grants us the equation:[
− ~2

2m

d2

dr2
+ V (r) +

l(l + 1)

2mr2

]
uEl(r) = EuEl(r) (9.76)

where if we define:

Veff (r) ≡ V (r) +
l(l + 1)~2

2mr2

⇒
[
− ~2

2m

d2

dr2
+ Veff (r)

]
uEl(r) = EuEl(r)

(9.77)
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which gives us exactly the 1-d Schrödinger’s equation we have been working with. However, note
that these uEl(r) functions satisfy the normalization:∫

dr|uEl(r)|2 =

∫
dr|REl(r)|2r2 = 1 (9.78)

Now, if we have the case where limr→0 r
2V (r) = 0 (the centrifugal term is dominant near the

origin), then we have:

d2

dr2
uEl(r) ≈

l(l + 1)

r2
uEl(r)

⇒ uEl(r) = Arl+1 +
B

rl

(9.79)

Very close to the origin, we have B → 0 to keep the wavefunction regular, so we have REl(r) ∼ rl.
There are some real physical potentials that have such a behaviour such as the Coulomb potential,
which for r � a0, the probability to find the electron ∼ (r/a0)2l.

In the Bohr model, the energy scales like En = 13.6/n2 eV (works as a good approximation for
Hydrogen). Alkali metals also have effectively a single electron due to its electronic configuration,
however the spectrum is not nicely approximated by the Bohr model especially the electrons
within the outermost shell.

Example:

Consider a potential that vanishes as r →∞. In this case, the centrifugal term vanishes
as well at long distances so we have:

d2

dr2
uE(r) = −2mE

~2
uE(r)

⇒ uE ∼ e−κr
(9.80)

if E < 0, or some exponential dependence in general. In general for such potential, we
can remove the asymptotics by having the function:

wEl(ρ) = ρ−(l+1)eρuEl(ρ) (9.81)

Example:

Consider the 3-d isotropic harmonic oscillator:

Ĥ =
~̂p2

2m
+

1

2
mω2r̂2 (9.82)

For convenience, we define E ≡ ~ωλ/2 and r ≡ ρ
√
~/(mω). This grants us:

d2u

dρ2
− l(l + 1)

ρ2
u+ (λ− ρ2)u = 0

⇒ u(ρ) = ρl+1e−ρ
2/2f(ρ)

(9.83)
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With the differential equation in ρ, we can plug in the ansatz above to get a differential
equation for f(ρ):

ρ
d2

dρ2
f(ρ) + 2

[
(l + 1)− ρ2

] d
dρ
f(ρ) + [λ− (2l + 1)] ρf(ρ) = 0

⇒ f(ρ) =

∞∑
n=0

anρ
n

(9.84)

Plugging in this ansatz, we get:∑
n

n(n− 1)anρ
n−1 + 2

∑
n

nan
[
(l + 1)ρn−1 − ρn+1

]
+ [λ− (2l + 3)]

∑
n

anρ
n+1 = 0

(9.85)

which in fact produces the recursion relation for the coefficients (where we had that we
can treat each term in n to vanishes because the equation must hold for any value of ρ):

an+2 =
2n+ 2l + 3− λ

(n+ 1)(n+ 2l + 3)
an (9.86)

We notice that we only have even coefficients left because of the form above, and produces
the asymptotic (ρ� 1 implying large n) behaviour:

lim
n→∞

an+2

an
=

2

n
≡ 1

q
, q ∈ Z (9.87)

Using this new definition of integers q, we have that in this asymptotic limit, the function
f(ρ) becomes:

f(ρ)→
∑
q

1

q!
(ρ2)q ∼ eρ

2

(9.88)

showing that the solutions blow up at infinity, which is disastrous (we know that the
wavefunction should decay at infinity)! However physically, we are looking for bound-
states which implies a quantization condition. As such, this signals to us that the sum
should in fact be truncated (terminates at some q) allowing for a well-behaved wavefunc-
tion instead. To find at what q the sum terminates, we look back at the recursion relation
and have that the numerator vanishes:

2n+ 2l + 3− λ = 0

⇒ λ = 2n+ 2l + 3

⇒ Eq,l =

(
2q + 1 +

3

2

)
~ω ≡

(
N +

3

2

)
~ω

(9.89)

which indeed grants us the harmonic oscillator energies if we define N ≡ 2q + l. This
energy relation however results in a high degree of degeneracy in q and l (there are
additionally also the m states). Another way to view these degeneracies is writing this
isotropic harmonic oscillator as:

V (~r) =
1

2
mω2(x̂2 + ŷ2 + ẑ2)

⇒ Enj =

(
nx + ny + nz +

1

2

)
~ω ≡

(
N +

1

2

)
~ω

(9.90)
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This degeneracy is often referred to as an accidental symmetry where q and l contribute
similarly to E, but is in fact due to a symmetry in the Runge-Lenz vector. This also
occurs in the Hydrogen atom where that system as energies:

Eq,l =
1

2
mc2

α2

(q + l + 1)2
(9.91)

§9.5 Spin-1/2 Revisited

To start, if we think back about orbital angular momentum, only integer values of l are al-
lowed. However, for the general solution of angular momentum operators (eigenvalues), we have
that l could be both integers and half-integers with the condition that |m| ≤ l (2l + 1 dimen-
sional Hilbert space). Let us think about the Hilbert spaces for several values of l and classical
correspondence.

1. l = 0: 1-d Hilbert space (trivial) → behaves like scalars in classical physics.

2. l = 1: 3-d Hilbert space → behaves like spatial vectors.

However above, we skipped one of them which is l = 1/2, which grants us a 2-d Hilbert space.
When we try to think about these with a classical correspondence, this is very strange because
its somewhere in between a scalar and a vector. So we can ask now, how does a spin-1/2 system
actually transform under finite rotation? Specifically, we pick rotations around the z-axis (φ
rotations). We know that the spin operators generate rotations, we can write:

|ψR〉 = Û(φ) |ψ〉 = exp

{
−i Ŝz

~
φ

}
|ψ〉 (9.92)

Let’s first check if this actually undergoes rotations:

〈Ŝx〉 → = 〈ψR| Ŝx |ψR〉

= 〈ψ| exp

{
i
Ŝz
~
φ

}
Ŝx exp

{
−i Ŝz

~
φ

}
|ψ〉

=
~
2
〈ψ| exp

{
i
Ŝz
~
φ

}[
|+〉 〈−|+ |−〉 〈+|

]
exp

{
−i Ŝz

~
φ

}
|ψ〉

=
~
2
〈ψ|
[
eiφ |+〉 〈−|+ e−iφ |−〉 〈+|

]
|ψ〉

= 〈Ŝx〉 cosφ− 〈Ŝy〉 sinφ

(9.93)

which shows that this is indeed a rotation around the z-axis. In fact in general, we can work out
that:

〈Ŝk〉 → Rkl〈Ŝl〉 (9.94)
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where Einstein sum notation is adopted above and the arrow above is the application of a
rotation. Let’s now instead consider an arbitrary state, and rotations generated by the spin-1/2
operators applied to it. This can be done by an expansion into the eigenstates:

exp

{
−i Ŝz

~
φ

}
|ψ〉 = e−iφ/2 |+〉 〈+|ψ〉+ eiφ/2 |−〉 〈−|ψ〉 (9.95)

We notice a strange artifact, that now, the state is 4π periodic since applied rotations rotate the
state by φ/2 instead of φ. We actually have seen this before when we considered a particle in a

magnetic field ~B, which gives us the Hamiltonian:

Ĥ = ~̂µ · ~B = − e

mec
~̂S · ~B (9.96)

We saw before that applying a magnetic field would cause spin particles to precess. For instance,
if ~B = Bẑ, we had that:

〈Ŝx〉 = 〈Ŝx〉 cos(ωt)− 〈Ŝy〉 sin(ωt)

|ψ(t)〉 = e−iωt/2 |+〉 〈+|ψ〉+ eiωt/2 |−〉 〈−|ψ〉
(9.97)

with ω = |e|B/(mec). So the spin system is indeed 4π periodic! This has to do with the way
we represent spins, which is a 2-component vector-like quantity but not quite a vector under
rotations.

§9.5.1 Scattering in Spin Systems

Consider a scattering process, we we have a beam of incoming particles incident on a spherically
symmetric scattering center A.

Note: The arguments we are about to make also work for non-spherically symmetric scat-
tering centers but for our purposes, it would be easier to consider spherically symmetric
ones.

It works out that geometrically, the only parameter that matters is the angle between the scat-
tered beam and the axis of the incident θ1. If we now take the scattered beam and scatter it off
another scattering center B, then we need 3 angles θ1, θ2 and φ to characterize this, where φ is
the angle between the planes that make each scattering occurrence effective 2-d.

If we instead scattered light, the scattering off scattering center B would result in some amplitude
I = I(θ2) cos2 φ and polarization. Now if we did this for quantum spin- 1

2 particles, we find that
the intensity off scattering center B follows the relation:

I = I(θ2)|cosφ| (9.98)

This weird behaviour arises because these spin objects transform uniquely and are known as
spinors.
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§9.6 Addition of Angular Momentum

We have seen that there is a distinction between spin and orbital angular momentum operators,
but they are both generators of rotation. However, the orbital angular momentum operator
generates rotations in real-coordinate space, whereas the spin angular momentum operators
generate rotations in spin-space. in general, we can describe both these spaces as a tensor
product:

|~x〉 ⊗ |s〉 ∈ H (9.99)

So rotations on this Hilbert space is given by:

D(R) = exp

{
−i
~̂L · ~n
~

φ

}
⊗ exp

{
−i

~̂S · ~n
~

φ

}
(9.100)

where we have that ~n and φ is the same, implying one single rotation in this expanded Hilbert

space. As such, we can write that the total angular momentum ~̂J , which we define as:

~̂J ≡ ~̂L⊗ I + I⊗ ~̂S (9.101)

This is usually written in the short hand notation:

~̂J = ~̂L+ ~̂S (9.102)

There are many instances where it is more convenient to work in terms of ~̂J , especially for system
with total angular momentum being conserved (e.g. the Hydrogen atom). Let’s now develop a

little formalism. To generalize, suppose we have ~̂J1, ~̂J2 acting on separate subspaces. We know
that individually, each of these satisfy the usual commutator relations:[

Ĵ1,i, Ĵ1,j

]
= i~εijkĴ1,k (9.103)[

Ĵ1, Ĵ2

]
= 0 (9.104)

So we can then define ~̂J ≡ ~̂J1 + ~̂J2. It is then easy to show that:[
Ĵi, Ĵj

]
= i~εijkĴk (9.105)

Now let us try to diagonalize this operator (that is also to ask what is the CSCO of this ob-

servable). One of them would be { ~̂J2
1 , Ĵ1,z, ~̂J

2
2 , Ĵ2,z}, which allows us to write the eigenstates as

|j1, j2;m1,m2〉.

Note (State Labels): In addition of angular momentum problems, the labels of the
eigenstates are formatted such that the labels to the left of the semicolon specify the an-
gular momenta of the system, and the labels to the right specify the basis being used. For
instance, in the state |j1, j2;m1,m2〉, the labels {j1, j2} indicate the angular momentum
numbers present in the system, whereas {m1,m2} denotes the specific eigenstate of the
current basis. Sometimes, the labels on the left are dropped for lighter notation when the
system in question has been specified.
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A problem arises in this because the Hamiltonian will not always be in this CSCO we have
chosen, because if we have couplings between these 2 subspaces, this information is not included

in an obvious way. So let’s consider another list of operators { ~̂J2, Ĵz, ~̂J
2
1 ,
~̂J2
2 ,
~̂J1 · ~̂J2}. These are

a lot of operators, so let’s narrow this down a little. First, we note that:

~̂J2 = ~̂J2
1 + ~̂J2

2 + 2( ~̂J1 · ~̂J2) (9.106)

This means that we can drop one of these since it is redundant (the dot product operator). As

such, we pick our CSCO to be { ~̂J2, Ĵz, ~̂J
2
1 ,
~̂J2
2}. The eigenstates here would thus be written as

|j1, j2; j,m〉. First, we are going back to use the ladder operators to see that we can write the
dot product term as:

~̂J1 · ~̂J2 = Ĵ1,zĴ2,z +
1

2

(
Ĵ1,+Ĵ2,− + Ĵ1,−Ĵ2,+

)
=

1

2

(
~̂J2 − ~̂J2

1 − ~̂J2
2

)
(9.107)

So this tells us the second basis grants a much nicer way to consider the couplings between the 2
subspaces. This is a very useful identity because note than in the direct sum basis, we get:

1

2

(
~̂J2 − ~̂J2

1 − ~̂J2
2

)
|j1, j2; j,m〉 =

~2

2

[
j(j + 1)− j1(j1 + 1)− j2(j2 + 1)

]
|j1, j2; j,m〉 (9.108)

§9.6.1 Clebsch-Gordan Coefficients

To move between the 2 bases we had above, we can write with the completeness relation:

|j1, j2; j,m〉 =
∑
m1,m2

|j1, j2;m1,m2〉 〈j1, j2;m1,m2|j1, j2; j,m〉 (9.109)

where 〈j1, j2;m1,m2|j1, j2; j,m〉 are known as the Clebsch-Gordan coefficients. Why these are
given a fancy name is because they are widely used and have interesting properties. One of
which, can be seen from the following derivation:

(Ĵz − Ĵ1,z − Ĵ2,z) |j1, j2; j,m〉 = 0

⇒ 〈j1, j2;m1,m2| (Ĵz − Ĵ1,z − Ĵ2,z) |j1, j2; j,m〉 = 0

⇒ ~(m−m1 −m2) 〈j1, j2;m1,m2|j1, j2; j,m〉 = 0

⇒ m = m1 +m2

(9.110)

This is known as a selection rule since it selects only specific Clebsch-Gordan coefficients that
can be non-zero:

〈j1, j2;m1,m2|j1, j2; j,m〉 6= 0 if m = m1 +m2 (9.111)

We can also see with some algebra that:

|j1 − j2| ≤ j ≤ j1 + j2 (9.112)

which is often referred to as the triangle selection rule.

Note: The triangle selection rule can also be derived by the counting of the eigenstates.
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§9.6.2 2p Hydrogen

We will now look at an actual physical system, Hydrogen. We have that the electron has

the observables {~̂L, ~̂S} (corresponding to orbital and spin angular momenta), where l = 1 and
s = 1/2. It turns out that the Hamiltonian of only the spin-orbit states is given by:

ĤSO = f(r) ~̂S · ~̂L

= f(r)( ~̂J2 − ~̂L2 − ~̂S2)
(9.113)

where f(r) is some function of r that we will get back to later. Counting the number of eigen-
states, we have 6 of these written either as |l, s;m,ms〉 or |l, s; j,m〉 (where j = 1/2, 3/2 from
the inequality we had above). So this splits the second basis into 2 sets of states:∣∣∣∣1, 1

2
;

3

2
,m

〉
,

∣∣∣∣1, 1

2
;

1

2
,m

〉
(9.114)

where the leftmost set has 4 states and that on the right has 2. The Hamiltonian acting on these
states then will be:

ĤSO |j,m〉 =
~2

2
f(r) [j(j + 1)− l(l + 1)− s(s+ 1)] |j,m〉 (9.115)

⇒ ĤSO

∣∣∣∣12 ,m
〉

= −~2f(r)

∣∣∣∣12 ,m
〉
, ĤSO

∣∣∣∣32 ,m
〉

=
~2

2
f(r)

∣∣∣∣32 ,m
〉

(9.116)

The energies can then be found by taking the expectation value:

ESO = 〈j,m| ĤSO |j,m〉 (9.117)

⇒ ESO,j =

∫ ∞
0

dr|Rn,l(r)|2r2f(r) 〈j,m| ~̂S · ~̂L |j,m〉 (9.118)

which gives us a value of ∼ 5 × 10−5 eV, which indicates an energy splitting of the energy
eigenstates of Hydrogen due to the spin-orbit coupling.

E

n = 2

2p3/2

2s1/2

2p1/2

Figure 9.1: Energy splitting from spin orbit coupling in Hydrogen.

It turns out that is true but for the “wrong reasons” because notice that we haven’t used Clebsch-
Gordan coefficients at all (it just worked out because of a happy convenience). If now we turn
on an external magnetic field B which adds the Hamiltonian term:

ĤB = µBB(L̂z + 2Ŝz) (9.119)
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this no longer allows us to treat nicely the energy eigenstates from the basis we have been
working in. So looking back at our Hydrogen system where we have the angular momentum
(l = 1, s = 1/2) as:

m = ml +ms ⇒ −3

2
≤ m ≤ 3

2
(9.120)

and

∣∣∣∣1− 1

2

∣∣∣∣ ≤ j ≤ 1 +
1

2
⇒ 1

2
≤ j ≤ 3

2
(9.121)

⇒

{ ∣∣ 3
2 ; 3

2

〉
,
∣∣ 3

2 ; 1
2

〉
,
∣∣ 3

2 ;− 1
2

〉
,
∣∣ 3

2 ;− 3
2

〉∣∣ 1
2 ; 1

2

〉
,
∣∣ 1

2 ;− 1
2

〉 (9.122)

Then to change into the basis where we can look at j,m, we use the Clebsch-Gordan coefficients
to get:

|j1, j2; j,m〉 =
∑
m1,m2

|j1, j2;m1,m2〉 〈j1, j2;m1,m2|j1, j2; j,m〉

⇒ |j,m〉 =
∑
m1,m2

|j1, j2;m1,m2〉 〈j1, j2;m1,m2|j,m〉
(9.123)

since j1 and j2 are constant specified, allowing us to drop those labels. For the top state, we
only have one non-trivial term in the sum:∣∣∣∣32 , 3

2

〉
=

∣∣∣∣1, 1

2
; 1,

1

2

〉〈
1,

1

2
; 1,

1

2

∣∣∣∣32 , 3

2

〉
=

∣∣∣∣1, 1

2
; 1,

1

2

〉 (9.124)

As for the state
∣∣ 3

2 ,
1
2

〉
, we will have contributions from ml = 1,ms = −1/2 and ml = 0,ms = 1/2.

So this is a little more tedious to find the coefficients. However, we can use the ladder operators
to help us:

Ĵ± |j,m〉 = ~
√

(j ±m)(j ±m+ 1) |j, ,m± 1〉 (9.125)

So we can find the necessary states:

Ĵ−

∣∣∣∣32 , 3

2

〉
= ~
√

3

∣∣∣∣32 , 1

2

〉
=(L̂− + Ŝ−)

∣∣∣∣1, 1

2
; 1,

1

2

〉
= ~
√

2

∣∣∣∣1, 1

2
; 0,

1

2

〉
+ ~

∣∣∣∣1, 1

2
; 1,−1

2

〉
⇒

∣∣∣∣32 , 1

2

〉
=

√
2

3

∣∣∣∣1, 1

2
; 0,

1

2

〉
+

√
1

3

∣∣∣∣1, 1

2
; 1,−1

2

〉 (9.126)

The same procedure can be done for
∣∣ 3

2 ,−
1
2

〉
and

∣∣ 3
2 ,−

3
2

〉
. As for the states with j = 1/2, there

are a few ways to do this. One of them is by orthogonality, but the other more general technique
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is again by using the ladder operators as follows:

Ĵ+

∣∣∣∣12 , 1

2

〉
= 0

⇒ (l̂+ + Ŝ+)

(
α

∣∣∣∣1, 1

2
; 0,

1

2

〉
+ β

∣∣∣∣1, 1

2
; 1,−1

2

〉)
= ~α

∣∣∣∣1, 1

2
; 0,

1

2

〉
+ ~β

√
2

∣∣∣∣1, 1

2
; 1,−1

2

〉
= 0

⇒ α+ β
√

2 = 0 and |α|2 + |β|2 = 1

⇒
∣∣∣∣12 , 1

2

〉
=

√
2

3

∣∣∣∣1, 1

2
; 0,

1

2

〉
−
√

1

3

∣∣∣∣1, 1

2
; 1,−1

2

〉
(9.127)

However, there is an ambiguity in what we have been doing because the state we found above
is true up to a sign. In general, we choose the convention where β > 0, and that the overlap
between the maximal Ĵz and maximal Ĵ1,z to be positive (same for the minimal states). For
instance, with the system we are working with we want:〈

3

2
,

3

2

∣∣∣∣1, 1

2
; 1,

1

2

〉
> 0,

〈
1

2
,

1

2

∣∣∣∣1, 1

2
; 1,−1

2

〉
> 0 (9.128)

The use of ladder operators to find Clebsch-Gordan coefficients can also be used to derive a
recursion relation between them, this is:

〈j1, j2;m1 − 1,m2|j, j〉 = −

√
(j2 +m2)(j2 −m2 + 1)

(j1 +m1)(j1 −m1 + 1)
〈j1, j2;m1,m2 − 1|j, j〉 (9.129)

where all these coefficients are real. These come in handy every once in awhile and is good to
keep at the back of your mind. Going back to the physics of the Hydrogen system, let’s first
summarize what we have so far:∣∣∣∣32 , 3

2

〉
=

∣∣∣∣1, 1

2
; 1

1

2

〉
(9.130)∣∣∣∣32 , 1

2

〉
=

√
2

2

∣∣∣∣1, 1

2
; 0,

1

2

〉
+

√
1

3

∣∣∣∣1, 1

2
; 1,−1

2

〉
(9.131)∣∣∣∣12 , 1

2

〉
=

√
2

3

∣∣∣∣1, 1

2
; 0,

1

2

〉
−
√

1

3

∣∣∣∣1, 1

2
; 1,−1

2

〉
(9.132)∣∣∣∣32 ,−1

2

〉
=

√
1

3

∣∣∣∣1, 1

2
; 0,

1

2

〉
+

√
2

3

∣∣∣∣1, 1

2
; 0,−1

2

〉
(9.133)

From these, we can compute the energy by first invoking a result from perturbation theory that
we haven’t yet seen but will just take for true for now:

EB,j,m ≈ 〈j,m|µBB(L̂z + 2Ŝz) |j,m〉 (9.134)

So for each of our states, we have:

EB, 32 ,
3
2

= 2~µBB, EB, 32 ,
1
2

=
2

3
~µBB (9.135)
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Doing this for the other eigenstates, we finally find that there is a nice closed form energy relation
in this perturbative regime:

EB,j,m =
m

3
(2j + 1)~µBB (9.136)

So this implies a further energy splitting of the 2p states of Hydrogen as illustrated in figure 9.2
below.

E

n = 2

2p3/2
m = − 3

2 ,−
1
2 ,

1
2 ,

3
2

2s1/2
m = − 1

2 ,
1
2

2p1/2
m = − 1

2 ,
1
2

Figure 9.2: Energy splitting from spin orbit coupling in Hydrogen.

§9.7 Angular Momentum and Reducible Representations

We just saw that we can change the basis of angular momentum we are working in:

|l, s;ml,ms〉 → |j,m〉 (9.137)

This corresponds to the representations that we can write as:

l ⊗ s = j ⊕m

⇒ 1⊗ 1

2
=

3

2
⊕ 1

2

(9.138)

where the numbers denote the angular momentum quantum numbers relevant to that basis. In

general, if we have 2 angular momentum operators ~̂J1 + ~̂J2, then the Hilbert space H decomposes
as:

j1 ⊗ j2 = |j1 − j2| ⊕ (|j1 − j2|+ 1)⊕ . . .⊕ (j1 + j2) (9.139)

To understand this notation better, we will look a little into representation theory and define
what the Direct product and sum are formally.

§9.7.1 Direct Sums and Products

Suppose we have 2 vector spaces VA and VB where by their dimensions are m and n which basis
vectors {ê1, . . . êm} and {f̂1, . . . f̂n} respectively. There are 2 ways to “combine” these vector
spaces into a larger one, one of which is the direct sum denoted as VA ⊕ VB (with dimensions
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m + n). The vectors in this new space are then written as v ⊕ w ∈ VA ⊕ VB . In matrix
representation, direct sum of vectors just stack them, for example (m = 2, n = 3):

~v =

[
v1

v2

]
, ~w =

w1

w2

w3

 (9.140)

⇒ ~v ⊕ ~w =
[
v1 v2 w1 w2 w3

]T
(9.141)

The direct sum of operators on the direct summed vector space would act on direct sum vectors
as follows:

(Â⊕ B̂)(v ⊕ w) = (Âv ⊕ B̂w) (9.142)

As such, the matrix representation of these operators are block diagonal matrices, where the
diagonal blocks are the matrix representations of the individual operators:

Â =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

...
an1 an2 . . . ann

 , B̂ =


b11 b12 . . . b1nm
b21 b22 . . . b2m
...

. . .
...

bm1 bm2 . . . bmm


⇒ Â⊕ B̂ =

[
Â 0̂

0̂ B̂

] (9.143)

Alternatively, the other way to expand the vector space is via the direct product (a.k.a. the
tensor product) denoted as VA ⊗ VB (with dimensions m × n). So back to the example we had
earlier with m = 2, n = 3, the matrix representation of direct product of vectors v⊗w ∈ VA⊗VB
will be:

~v ⊕ ~w =
[
v1w1 v1w2 v1w3 v2w1 v2w2 v2w3

]T
(9.144)

The operators on a direct product space will generally have dense matrix representations, since
their construction would be:

Â =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

...
an1 an2 . . . ann

 , B̂ =


b11 b12 . . . b1nm
b21 b22 . . . b2m
...

. . .
...

bm1 bm2 . . . bmm



⇒ Â⊗ B̂ =


a11B̂ a12B̂ . . . a1nB̂

a21B̂ a22B̂ . . . a2nB̂
...

. . .
...

an1B̂ an2B̂ . . . annB̂


(9.145)

Note: Tensor products written as a matrix operation are referred to as Kronecker prod-
ucts.
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§9.7.2 Groups and Representation Theory

We begin by stating the definition of a group.

Definition 9.7.1. Groups A group G is a set of elements and a binary operation “•” which
satisfies the following.

1. Closure: a • b ∈ G

2. Associativity : (a • b) • c = a • (b • c)

3. Identity : ∃I s.t. I • a = a • I = a

4. Inverses: ∃a−1 s.t. a−1 • a = a • a−1 = I

An example of a group is GL(N,C) which is the called the general linear group (the group of
invertible N ×N complex matrices). In fact, we can represent any arbitrary group by mapping
group elements into matrices. To be concrete, we can define a representation.

Definition 9.7.2. Representations: A representation is a map:

R : G→ GL(N,C) (9.146)

which preserves the group, meaning that the group binary operation is maintained by the
map:

a • b = c ⇒ R(a)R(b) = R(c) (9.147)

The dimension of R is then dim{R} = N .

A trivial example is the map R(g) = 1 for all g ∈ G. This is valid but not a faithful representation
where a faithful representation is a bijective map. Representations in general are not unique. To
see this, consider the group Z2 = {1, a} where we must have a • a = 1. A faithful representation
would be:

R(1)→ IN×N (9.148)

R(a)→ ÂN×N (9.149)

such that A2 = I. But we see there are actually an infinite number of possible representations
then, since first of all, we can map each of these into N × N matrices where N is an arbitrary
size.

Why however, should we as physicists care about representation theory? In physics, we do
encounter many groups, mostly commonly the group of symmetries. The reason we care about
these is because we want to understand their action on physical objects. So indeed, the states we
act in would correspond to a specific representation of these groups by construction, and that’s
why we care.
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Example:

Consider the rotation group SO(3) which has elements R that satisfy det{R} = 1 and
RTR = I in 3-dimensions (as per the definition of SO(3)). In classical mechanics, we
can think of several types of physical quantities and how they transform under rotation.
These quantities would be vectors (e.g. coordinates of position ~r):

~r → R~r (9.150)

tensors, such as the inertia tensor:

I → RIRT (9.151)

and scalars such as energy:

E → E (9.152)

where the arrows indicate how they transform under the rotation group elements. The
way we represent how vectors transform under these rotations is known as the fundamental
representation of the group (scalars transform as the trivial representation). As for tensor
of rank-2, they could be transformed by 9 × 9 matrix (9-dimensional representation).
Consider again the inertia tensor from classical mechanics. Recall that it is commonly
denoted as:

Iij =

∫
dV ρ(~r)(r2δij − rirj) (9.153)

which is known as a dyadic tensor (2 vectors stuck together). So this would be a direct
product of 2 3-vectors 3 ⊗ 3. The hope, is that we can decompose this into having a
block diagonal structure of smaller elements that we can direct sum instead. In fact this
is possible from representation theory by the decomposition:

3⊗ 3 = 5⊕ 3⊕ 1 (9.154)

which is exactly what we have seen with angular momentum in quantum mechanics!

Any representation of a direct product space that can be decompose into a direct sum of smaller
(dimesionality) representations is known as a reducible representation. It is irreducible otherwise.
The general problem of finding all such decompositions and irreducible representations for a
given group is known as plethysm. Now back to quantum mechanics and angular momentum,
we consider what is known as the Wigner D-Matrix, whose elements are defined as:

D
(j)
m′,m(R) = 〈j,m′| exp

{
−i

~̂J · n̂
~

φ

}
|j,m〉 (9.155)

These are in fact the matrix elements of the rotation matrix in the {j,m} basis. Notice that there
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is no j′, but this is because
[
~̂J2, ~̂J

]
= 0, so sticking in a ~̂J2 operator inside the bracket:

〈j′,m′| exp

{
−i( ~̂J · ~n)φ

~

}
~̂J2 |j,m〉 = ~2j(j + 1) 〈j′,m′| exp

{
−i( ~̂J · ~n)φ

~

}
|j,m〉

= ~2j′ (j′ + 1) 〈j′,m′| exp

{
−i( ~̂J · ~n)φ

~

}
|j,m〉

(9.156)

we see that it just pulls out a number and doesn’t “affect” the unitary rotation operator. Can-
celling out the Wigner D-matrix elements on both sides, we are left with:

~2j(j + 1) = ~2j′ (j′ + 1) ⇒ j = j′ (9.157)

So indeed we get that if we had j′, it would simply equate to j. Then if we had the angular

momentum operator ~̂J1 + ~̂J2 with j1 = j2 = 1 (each j having 3 m states), this would grant us
a 9 × 9 Wigner D-matrix for which is in fact reducible in the way exactly done for the inertia
tensor in classical mechanics in the example above. The resulting Wigner D-matrix of a direct
sum of irreducible representations would then be a block diagonal matrix of 1×1, 3×3 and 5×5
(j = 0, j = 1, j = 2 where j = j1 + j2) blocks:

Tensor Product Representation Direct Sum Decomposition

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •


→



•
• • •
• • •
• • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •


(9.158)

where the • indicates a non-trivial entry and all zeros in the matrix are excluded for clarity.

§9.8 Vector Operators

Let’s start by a motivation for what we are about to do. If we are interested in matrix elements,
tensor products of matrices generally have a huge number of matrix elements, but if we find
rotational symmetries, we can work with much fewer matrix entries and their symmetry relations.
To do this in quantum mechanics, this may get a little confusing as we would have matrix
representations of the operator observables, and also the group elements. However, we will be
careful to make things explicit as we go along.

Since observables are promoted to operators in quantum mechanics, we now want to think
about multi-index operator objects. Let’s start with vector operators. A vector operator is
simply appending operators into an array/list just as you would with classical variables (e.g.

~̂x = {x̂, ŷ, ẑ}). It would be good from now on to adopt index notation (including Einstein sum
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notation unless otherwise specified). We can then ask if a quantum vector operator has the same
transformation properties as classical vectors. Recall that rotations of quantum states can be
written as:

|α〉 → D̂(R) |α〉

⇒ 〈Ô〉 = 〈α| Ô |α〉 → 〈α| D̂†(R)ÔD̂(R) |α〉
(9.159)

where once again, we have that D̂(R) is the Wigner D-matrix. However, we want that in the
appropriate limit, we retrieve classical mechanics from quantum mechanics. Classically, we would
have:

〈Vi〉 → Rij〈Vj〉 (9.160)

Since we require the above relation to hold for any state |α〉, we arrive at the operator iden-
tity:

D̂†(R)V̂iD̂(R)→ Rij V̂j (9.161)

Now consider an infinitesimal rotation, we have:

D̂(R) = I− iε

~
( ~̂J · n̂)

⇒ V̂i −
iε

~

[
V̂i, ~̂J · n̂

]
= Rij V̂j

(9.162)

where ε � 1. If we then consider the case where n̂ = ẑ, use the result of the classical rotation
matrix for infinitesimal rotations to get:

R(ẑ, ε) = δij − εεijz

⇒ V̂i −
iε

~

[
V̂i, Ĵk

]
= (δij − εεijk)V̂j

⇒
[
V̂i, Ĵk

]
= i~εijkV̂j

(9.163)

which is the usual relation for angular momentum operators. This commutation relation can be
taken as a definition for a vector operator. As for scalar operators, since we would have for a
scalar operator K̂:

〈K̂〉 → 〈K̂〉

⇒ D̂†(R)K̂D̂(R)→ K̂

⇒
[
K̂, Ĵi

]
= 0

(9.164)

Note: In quantum mechanics, ~̂U · ~̂V is a scalar operator but we have that in general,

~̂U · ~̂V 6= ~̂V · ~̂U , since operators do not always commute.
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Now generalizing the idea we have just gone through, we consider a rank-3 tensor (rank indicating
the number of indices) operator T̂ijk. This would classically transform as:

Tijk → Ri,i′Rj,j′Rk,k′Ti′j′k′ (9.165)

We call such a tensor written as above a Cartesian tensor, since we use Cartesian coordinates
to label its components. Although a Cartesian tensor may be familiar to work with (since they
are just generalizing Cartesian vectors), it is often hard to work with regarding rotations. It
turns out that rotations of Cartesian tensors are reducible (can be decomposed it into different
smaller objects which each rotate differently). To see this, consider a simple example of the
dyadic tensor.

§9.8.1 The Dyadic Tensor and the Spherical Basis

Consider what is known as the dyadic tensor T̂ij = ÛiV̂j , which is basically 2 vectors put together.
We now want to ask how this transform under rotations:

D̂†(R)T̂ijD̂(R) → ? (9.166)

First, we write out the dyadic tensor explicitly:

ÛiV̂j =
1

3
( ~̂U · ~̂V )δij +

1

2
(ÛiV̂j − Ûj V̂i) +

(
ÛiV̂j + Ûj V̂i

2
− 1

3
( ~̂U · ~̂V )δij

)
(9.167)

where this form is obtained from considering the symmetry properties of each object. Now if
we look at the transformation properties of each of these terms, the first term transforms like a
scalar, the second like a vector ( result of a cross product), and the last like traceless-symmetric
tensor. Knowing that, the dyadic tensor looks suspiciously like the sum of angular momentum,
where we again have the decomposition:

1⊗ 1 = 0⊕ 1⊕ 2 (9.168)

This allows us to employ the machinery we have already developed in angular momentum to
isolate the components with a specific j (|j1, j2;m1,m2〉 → |j1, j2; j,m〉). What would be the
change of basis for operators then? Consider the basis known as the spherical basis defined by
the unit basis vectors:

ê1 = − x̂+ iŷ√
2
, ê0 = ẑ, ê−1 =

x̂− iŷ√
2

(9.169)

(These might look familiar as they are actually the polarization basis vectors for light propaga-
tion). These obey orthonormality relation ê∗a · êa′ = δa,a′ . Vectors in general can then be written
as:

~x = ê∗qxq (9.170)

where the expansion coefficients are defined as xq = êq · ~x.
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Note: The hats on the spherical basis elements denote unit vectors, not operators. This
notation may by confusing since spherical tensors are not strictly defined for quantum
operators, but also used in classical mechanics. However, the rest of these notes will only
be using hats for operators unless otherwise specified.

The spherical basis greatly simplifies the mathematical treatment of certain problems. To see
this, consider the example of radiative transition below.

Example:

Consider now a radiative transitions in Hydrogenic atoms. We will ignore the spin in this
system for now which gives the eigenbasis |n, l,m〉. Although these quantum numbers
are conserved for the system in isolation, the electron can undergo radiative transitions
(photon emission which changes the state of the electron). Photon emissions can be
treated via a multipole expansion. The dipole transition matrix element (probability
amplitude for a dipole transition) is proportional to:

〈n′, l′,m′| ~̂r |n, l,m〉 (9.171)

Suppose we look at the transition from the 3d state to the 2p state. This grants 45 total
possible transitions since the 3d states have 2l + 1 = 5 levels and the 2p has 2l + 1 = 3,
while there are 3 coordinates {x, y, z} which gives us 5 × 3 × 3 = 45. These are a lot of
matrix elements, so let’s instead consider the expansion in the spherical basis which will
greatly reduce the number of non-trivial matrix elements:

ra = êa · ~r (9.172)

a being an index a ∈ {−1, 0, 1}. Now looking at each coordinate of the spherical basis,
we have:

r1 = −x+ iy√
2

= −r sin θeiφ√
2

=

√
4π

3
rY 1

1 (θ, φ)

(9.173)

where r =
√
x2 + y2 + z2. Repeating this manipulation for r0 and r−1, we find that:

ra = rY a1 (θ, φ)

√
4π

3
(9.174)

which tells us that this basis has components proportional to spherical harmonics! So in
this basis, we have:

〈n′, l′,m′| r̂a |n, l,m〉 =

∫ ∞
0

r3R∗n′,l′(r)Rn,l(θ, φ)dr

×
√

4π

3

∫
Y ∗l′,m′(Ω)Y1,a(Ω)Yl,m(Ω)dΩ

(9.175)
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where we have inserted a complete set of position eigenstates
∫
|r〉 〈r| d3r to get this

relation. In our context, the integral over 3 spherical harmonics is written as:∫
Y ∗l′,m,′(Ω)Y1,a(Ω)Yl,m(Ω)dΩ =

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

× 〈l′,m′|1, l; a,m〉 〈1, l; 0, 0|l, 0〉

(9.176)

Using this, it turns out as alluded to earlier that a lot of these 45 terms are trivial due
to implicit selection rules coming from the dependence on Clebsch-Gordan coefficients.
Specifically, this is due to the selection rule that m′ = m + a. This will be done more
rigorously in the next section.

So what we have seen from the example above is that in the position space representation (kets
contracted with 〈r, θ, φ|), the spherical basis coordinates transform under rotations like spherical
harmonic functions! In general, the triple spherical harmonics angular integral shows up often
in atomic physics and satisfies a nice relation:

∫
Y ∗l3,m3

(Ω)Yl2,m2
(Ω)Yl1,m1

(Ω)dΩ =

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
〈l3,m3|l1, l2;m1,m2〉 〈l1, l2; 0, 0|l3, 0〉

(9.177)

§9.8.2 Rotations and Spherical Harmonics

Now let’s see the selection rules in the example of radiative transition above at play explicitly.
We will then generalize this to selection rules of general spherical tensors. From the example
above, we now know that:

Y ml (θ, φ) = 〈θ, φ|n, l,m〉 = 〈n̂|n, l,m〉

and |n̂〉 = D̂(θ, φ) |ẑ〉 =
∑
l′,m′

D̂(θ, φ) |l′,m′〉 〈l′,m′|ẑ〉

⇒ 〈l,m|n̂〉 =
∑
l′,m′

〈l,m| D̂(θ, φ) |l′,m′〉 〈l′,m′|ẑ〉

(9.178)

where n̂ can be thought of in terms of its spherical coordinate definition (vector function of
{θ, φ}). The inner product furthest to the right in the last expression above is in fact a specific
spherical harmonic, as we can see from:

〈l′,m′| L̂z |ẑ〉 = m′ 〈l′,m′|ẑ〉
= 〈l′,m′| (x̂p̂x − ŷp̂y) |ẑ〉 = 0

⇒ m′ = 0

⇒ 〈l′,m′|ẑ〉 = Y 0
l (0, φ)

(9.179)

where we let L̂z act on the bra and then the ket states it was sandwiched in to get the result
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above since it is Hermitian. This, with some algebra grants us:

D
(l)
m,0(θ, φ) =

√
4π

2l + 1
Y ml (θ, φ)∗ (9.180)

Now consider again the joint eigenstates under rotation ~̂J1, ~̂J2 in the separable basis:

〈j1, j2;m′1,m
′
2| D̂(R) |j1, j2;m1,m2〉 = 〈j1;m′1| D̂1(R) |j1;m1〉 〈j2;m′2| D̂2(R) |j2;m2〉

= D
(j1)
m′1,m1

(R)D
(j2)
m′2,m2

(R)
(9.181)

This however still produces a dense matrix since the operator representations here are Kro-
necker products. So we want now to change our basis into irreducible representations as we
have been doing. The way to do this in practice is of course by utilizing the Clebsch-Gordan
coefficients:

〈j1, j2;m′1,m
′
2| D̂(R) |j1, j2;m1,m2〉 =

∑
j,m,m′

Cj,m
′

m′1,m
′
2
〈j1, j2; j,m′| D̂(R) |j1, j2; j,m〉Cj,mm1,m2

(9.182)

where Cj,mm1,m2
= 〈j1, j2;m1,m2|j1, j2; j1, j2; j,m〉 are the Clebsch-Gordan coefficients. Now con-

sider the case where we are looking at orbital angular momentum such that j1,2 = l1,2 and we
pick m1 = m2 = 0. We just saw that when we have the m value being 0, the Wigner D-matrix
elements are just spherical harmonics:

D
(l1)
m′1,0

(R)D
(l2)
m′2,0

(R) =
4π√

(2l1 + 1)(2l2 + 1)

(
Y
m′1
l1

(θ, φ)Y
m′2
l2

(θ, φ)
)∗

=
∑
l′,m′

Cl
′,m′

m′1,m
′
2
Cl
′,0

0,0

√
4π

2l′ + 1
Y m

′

l′ (θ, φ)∗
(9.183)

So we get an identity that relates the Wigner D-matrices as a sum over spherical harmonics with
Clebsch-Gordan coefficients. We will now employ the orthogonality of spherical harmonics:∫

dΩ(Y m
′

l′ )∗Y ml = δm,m′δl,l′ (9.184)

to get another specific triple spherical harmonic integral identity:∫
dΩ(Y m

′

l′ )∗Y m1

l1
Y m2

l2
=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1, l2; 0, 0|l1, l2, l, 0〉 〈l1, l2;m1,m2|l1, l2, l,m〉

(9.185)

So now, we going back to the physical system we were working with in the example of Hydrogenic
photon transitions above, to get the relations:

〈n′, l′,m′| r̂a |n, l,m〉 ∼
∫
dΩ(Y m

′

l′ )∗Y m1

l1
Y m2

l2

∼ 〈l, 1;m, a|l, 1; l′,m′〉
(9.186)
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So this grants us selection rules:

|l − 1| ≤ l′ ≤ l + 1, m′ = a+m (9.187)

So for the 3d→ 2p transition, we have l′ = 1, l = 2 so that 1 ≤ (l′ = 1) ≤ 3 which gives us only
9 matrix elements compared to the 45 we saw earlier!

§9.8.3 Spherical Tensors

Spherical tensors are another set of objects that resemble tensors, but have nice transformation
properties under rotation. Specifically, these are irreducible tensor operators of order/rank k as

a set of 2k + 1 operators T̂
(k)
q with q ∈ {−k,−k + 1, . . . , k − 1, k}. It is also useful to know

that any tensor can be decomposed into the direct sum of spherical tensors. Spherical tensors
are the generalization of spherical vectors ~̂r (which happen to just be vectors), which as we saw
earlier transforms just as Y m1 would under rotation (l = 1). Now consider a totally general
rotation:

|n̂′〉 = D̂(R) |n̂〉 (9.188)

which differs from what we saw earlier (ẑ rotation to some vector n̂). The spherical harmonic
here would then be:

Y ml (n̂′) = 〈n̂|l,m〉

= 〈n̂| D̂(R)−1 |l,m〉

=
∑
l′,m′

〈n̂|l′,m′〉 〈l′,m′| D̂(R)−1 |l,m〉

=
∑
m′

Y m
′

l (n̂)D
(l)
m,m′(R)∗

(9.189)

where we had that D̂(R)−1 = exp
{
i ~̂J · n̂/~

}
. Now generalizing this to tensors (rank-k), we want

to rotate these as follows:

D̂(R)†T̂ (k)
q D̂(R) =

k∑
q′=−k

D
(k)
q,q′(R)∗T̂

(k)
q′ (9.190)

where q replaces the index a we had on spherical vectors earlier, and k is a new index which aids
in the generalization. That is, these spherical tensors transform (2k+ 1)-dimensional irreducible
representations of the rotation group. These are slightly different from the usual tensors we
have encountered, where here the rank is specified by this superscript k and defined how they
transform under rotations. Now considering infinitesimal rotations, we get that spherical tensors
follow the commutation relations:[

Ĵz, T̂
(k)
q

]
= ~qT̂ (k)

q ,
[
Ĵ±, T̂

(k)
q

]
= ~

√
(k ± q)(k ± q ± 1)T̂

(k)
q±1 (9.191)
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These give rise to the selection rules from 〈α′, j′,m′| T̂ (k)
q |α, j,m〉, which satisfy:

|j − k| ≤ j′ ≤ j + k, m′ = q +m (9.192)

similar to what we saw before. Spherical tensors transform just as Y ml as well but with l = k
and m = q. To better grasp what these objects are, let us look at an example that will hopefully
make things clearer. We start with a claim.

Claim: ~̂U · ~̂V is a rank-0 spherical tensor.

This is shown be proving
[
Ĵz, ~̂U · ~̂V

]
= 0 since we know that rank-0 spherical tensors do not

transform under rotations at all (D̂ (0) = I). It turns out that rank-1 spherical tensors V̂i are
simply vectors, which follow the commutation relations:[

V̂i, Ĵj

]
= i~εijkV̂k (9.193)

However, this is not the commutation relation that we had for spherical tensors, so we need an
appropriate transformation to get those relations. Consider then a linear combination of the
vectors:

V̂−1 =
V̂x − iV̂y√

2
, V̂0 = V̂z, V̂1 = − V̂x + iV̂y√

2
(9.194)

analogous to what we saw for defining coordinates of the spherical basis (here, V̂q = T̂
(k=1)
q ).

The commutator of this with Ĵz will give:[
Ĵz, V̂z

]
= 0,

[
Ĵz,∓

V̂x ± iV̂y√
2

]
= ∓~

(
V̂x ± iV̂y√

2

)
(9.195)

which now does indeed satisfy the first spherical tensor relation. If we hadn’t added the appro-
priate signs and the 1/

√
2 normalization, we would get:[

Ĵ±, V̂z

]
= ∓~

(
V̂x ± iV̂y

)
(9.196)

which is indeed almost what we want but with a missing minus sign and square-root of 2 (com-
pared to the second spherical tensor relation with q = 0). So this grants us that the spherical
basis definition fixes the normalization that grants us the definition of vectors as rank-1 spherical
tensors:

V̂−1 =
V̂x − iV̂y√

2
, V̂0 = V̂z, V̂1 = − V̂x + iV̂y√

2
(9.197)

rewritten for clarity. As for rank-2 spherical tensors, we first claim that any 2-index Cartesian
tensor can be written as:

T̂ij = Eδij + Âij + Ŝij (9.198)
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where Âij is anti-symmetric and Ŝij is a traceless-symmetric tensor (
∑
i Sii = 0). Writing this

grants us several nice properties of the components.

1. E = 1
3

∑
i Tii

2. Aij = 1
2 (Tij − Tji)

3. Sij = 1
2 (Tij + Tji)− Eδij

Now consider how each of these terms transform under classical rotations.

Eδij → RimRjnEδmn = [RTR]ijE = E (9.199)

Aij transforms as a rank-1 spherical tensor (9.200)

Sij → RimRjnSmn(remains symmetric)

Sii → RimRjnSmn = δmnSmn = Smm = 0
(9.201)

For the first few components in the subscript q, we have:

T
(0)
0 = E

T
(1)
0 = Axy, T̂

(1)
±1 = ∓ 1√

2
(Ayz ± iAzx)

T
(2)
0 =

√
3

2
Szz, T̂

(2)
±1 = ∓ (Szx ± iSzy)

T
(2)
±1 = ∓ (Szx + iSzy)

T
(2)
±2 =

1

2
(Sxx − Syy ± 2iSxy)

(9.202)

where we dropped the hats here since these statements hold for general tensors even for non-
operator classical observables. In the case of dyadic rank-2 spherical tensors UiVj (refer back to
equation 9.167), the above relations become:

T
(0)
0 = −

~U · ~V
3

=
U1V−1 + U−1V1 − U0V0

3

T (1)
q =

(
~U × ~V

)
q

i
√

2
, q = −1, 0, 1

T
(2)
0 =

U1V−1 + U−1V1 + 2U0V0√
6

T
(2)
±1 =

U0V±1 + U±1V0√
2

T
(2)
±2 = U±1V±1

(9.203)

In the case where both of the spherical vectors in a dyadic rank-2 spherical tensors are Cartesian
coordinate vectors in the spherical basis (9.169), these would give rise to the rank-2 spherical
tensors as l = 2 spherical harmonics written as:

T (2)
q = r2

√
8π

15
Y q2 (θ, φ) (9.204)
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where the conversion from Cartesian to spherical coordinates was done to produce this. Now
consider the following example to see how this expression above could be applied.

Example:

Consider the potential where we have:

V̂ (x, y, z) = V0T̂xy = V0x̂ŷ (9.205)

We can see that this is a rank-2 tensor since it is a dyadic tensor (2 vectors put together).
Decomposing this, we can see that:

E =
1

3

∑
i

r̂ir̂i =
1

3
r̂2 (9.206)

Aij = 0 (9.207)

Sij = r̂ir̂j −
1

3
δij r̂

2 (9.208)

If we write all these out, we get that:

〈r, θ, φ| T̂ (2)
q |ψ〉 = r2

√
8π

15
Y q2 (θ, φ) 〈r, θ, φ|ψ〉 (9.209)

which is the quantum mechanical operator analog to what we have for classical spherical
tensors above. So this grants us:

V̂ (x, y, z) = V0
i

2

(
T̂

(2)
−2 − T̂

(2)
2

)
(9.210)

The selection rules then tell us that |l − 2| ≤ l′ ≤ l + 2 or another way to write this is
|∆l| ≤ 2. Furthermore, we have m′ = m± 2 (or ∆m = ±2). There is one more selection
rule due to parity symmetry of this system, since x̂ŷ = (−x̂)(−ŷ). Since we have the
parity operator acts as:

P̂ Y ml (θ, φ) = (−1)lY ml (θ, φ)

⇒ ∆l = even

⇒ |∆l| = 0, 2

(9.211)

where ∆ = l′ − l.

§9.8.4 Combinations of Spherical Tensors

We want to now know how to combine spherical tensors to get a new spherical tensor. In fact,
for an object like the dyadic tensor where we’re combining two rank-1 spherical tensors, it’s a
straightforward way to derive the components in terms of Ûi and V̂i. This process turns out
to just be once again the addition of angular momentum. That is, given 2 spherical tensors
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X
(k1)
q1 , Z

(k2)
q2 , then:

T (k)
q =

∑
q1,q2

〈k1, k2; q1, q2|k1, k2; k, q〉X(k1)
q1 Z(k2)

q2 (9.212)

where 〈k1, k2; q1, q2|k1, k2; k, q〉 are the Clebsh-Gordan coefficients following the selection rules:

|k1 − k2| ≤ k ≤ k1 + k2, m = m1 +m2 (9.213)

Also, the inverse of this is then:

X(k1)
q1 Z(k2)

q2 =
∑
q1,q2

〈k1, k2; k, q|k1, k2; q1, q2〉T (k)
q (9.214)

§9.8.5 The Wigner-Eckart Theorem

We start of by simply stating the theorem.

Theorem 9.8.1. Wigner-Eckart Theorem: Given a spherical tensor operator T̂
(k)
q in the

basis {|α, j,m〉}, the Wigner-Ekhert theorem states that these can be computed via the
relation:

〈α′, j′,m′| T̂ (k)
q |α, j,m〉 = 〈j, k;m, q|j, k; j′,m′〉 〈α

′, j′| |T̂ (k)| |α, j〉√
2j′ + 1

(9.215)

where α is just a place holder for any other quantum number that does not have to do with
angular momentum. The double line 〈. . .| | . . . | |. . .〉 indicates a “reduced matrix element”.

In the theorem above, j′ = j + k and in the language of angular momentum, we have m′ as the
magnetic quantum number associated to j′, m to j and q to k. These reduced matrix elements
introduced in the theorem are actually defined by the statement of the theorem itself.

What this statement means, is that |j,m〉 and |j,m′〉 are related by rotations, and the dependence
on the magnetic quantum numbers {m,m′, q} are fully captured in terms of Clebsch-Gordan
coefficients, 〈j, k;m, q|j, k; j′,m′〉. The power of this theorem is that it greatly reduces the number
of entries required to explicitly compute. This theorem also immediately implies the selection
rules as a corollary:

|j − k| ≤ j′ ≤ j + k, m′ = m+ q (9.216)

Now we prove the Wigner-Eckart theorem as follows. We remember that 〈α′, j′| |T̂ (k)| |α, j〉 is a
reduced matrix element (as denoted by the double lines).

Proof. First recall the identity:

〈α′, j′,m′|
[
Ĵ±, T̂

(k)
q

]
|α, j,m〉 = 〈α′, j′,m′| ~

√
(k ± q)(k ± q ± 1)T̂

(k)
q±1 |α, j,m〉 (9.217)
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Acting with the raising and lowering operators to the right and left states, we get:√
(j′ ±m′)(j′ ∓m′ + 1) 〈α′, j′,m′ ∓ 1| T̂ (k)

q |α, j,m〉

=
√

(j ∓m)(j ±m+ 1) 〈α′, j′,m′| T̂ (k)
q |α, j,m± 1〉

+
√

(k ∓ q)(k ± q + 1) 〈α′, j′,m′| T̂ (k)
q±1 |α, j,m〉

(9.218)

This rewriting is in fact the Clebsch-Gordan recurrence relation. That is, the matrix

elements 〈α′, j′,m′| T̂ (k)
q |α, j,m〉 satisfy the Clebsch-Gordan recurrence relation and is

proportional to the Clebsch-Gordan coefficients (for addition j + k → j′). Explictly, we
have:

〈α′, j′,m′| T̂ (k)
q |α, j,m〉 = c(α, α′, j, j′, k) 〈j, k;m, q|j, k; j′,m′〉 (9.219)

where c(α, α′, j, j′, k) is the constant of proportionality. The expression above is close to
the formula in the theorem. It works out that the factor 1/

√
2j′ + 1 in the theorem is a

normalization factor (varies in different texts), such that:∣∣∣〈α′, j′| T̂ (k) |α, j〉
∣∣∣2 =

∑
m,m′,q

∣∣∣〈α′, j′,m′| T̂ (k)
q |α, j,m〉

∣∣∣2 (9.220)

Example:

Consider the spherical components of the operator ~̂J , where we have:

Ĵ
(1)
±1 = ∓ 1√

2
Ĵ± (9.221)

Ĵ
(1)
0 = Ĵz (9.222)

To find 〈j| |Ĵ (1)| |j〉 (only has diagonal entries), we first pick q = 0 and apply the Wigner-
Ekhert theorem to get:

〈j,m′| Ĵ (1)
0 |j,m〉 = 〈j,m′| Ĵz |j,m〉 = ~mδm,m′ (9.223)

= 〈j, 1;m, 0|j, 1; j,m〉 〈j| |Ĵ
(1)| |j〉√

2j + 1
(9.224)

Since j is arbitrary, we cannot look this coefficient up in a table, but so we introduce the

Wigner 3j-symbol

[
j1 j2 j
m1 m2 −m

]
defined as:

〈j1, j2;m1,m2|j1, j2; j,m〉 = (−1)j1−j2+m
√

2j + 1

[
j1 j2 j
m1 m2 −m

]
(9.225)

These have the properties that
1. they are invariant under cyclic permutation of columns;
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2. any other column permutation gives a factor of (−1)j1+j2+j ;

3.

[
j1 j2 j
−m1 −m2 −m

]
= (−1)j1+j2+j

[
j1 j2 j
m1 m2 m

]
;

4. they satisfy the Racah formula.
Apart from a phase factor, Racah’s W-coefficients are equal to Wigner’s 6j-symbols which
in general, is very messy. However, in specific cases like the current example, the Racah
formula simplifies the Clebsch-Gordan coefficient that we need to something nice:[

j 1 j
m 0 −m

]
= (−1)1−j−m m√

j(j + 1)(2j + 1)

⇒ 〈j| |Ĵ (1)| |j〉 = ~(2j + 1)
√
j(j + 1)

(9.226)

Another very useful theorem in practice is known as the replacement theorem, and its stated
below.

Theorem 9.8.2. Replacement Theorem: Given the matrix elements of some spherical
tensor 〈α′, j′,m′| X̂(k))q |α, j,m〉 and we wanted to write this in terms of the matrix el-

ements of another spherical tensor of the same rank 〈β′, j′,m′| Ẑ(k))q |β, j,m〉, then we
have the relation:

〈α′, j′,m′| X̂(k)
q |α, j,m〉 =

(
〈α′, j′| |X̂(k)| |α, j〉
〈β′, j′| |Ẑ(k)| |β, j〉

)
〈β′, j′,m′| Ẑ(k))q |β, j,m〉 (9.227)

as long as the angular momentum quantum numbers j and m are the same.

This relation is always true, but not always useful (sometimes ends up being trivial). For instance,

consider if we choose Ẑ
(k)
q as the operator ~̂J , this operator only connects j′ = j making the

relation for other cases trivial. However, given some vector operator ~̂V and try to relate it with

~̂J . This gives:

〈α′, j′,m′| V̂ (1)
q |α, j,m〉 =

(
〈α′, j′| |V̂ (1)| |α, j〉
〈β, j| |Ĵ (1)| |β, j〉

)
〈β, j,m′| Ĵ (1))q |β, j,m〉 (9.228)

where β′ = β and j′ = j now for the Ĵ operator since all other entries would be trivial. We now
use the identity:

~̂U · ~̂V = Û
(1)
0 V̂

(1)
0 − Û (1)

1 V̂
(1)
−1 − Û

(1)
−1 V̂

(1)
1 (9.229)

This grants us:

〈α′, j′,m′| ~̂J · ~̂V |α, j,m〉 = 〈α′, j′,m′|
[
Ĵ

(1)
0 V̂

(1)
0 − Ĵ (1)

1 V̂
(1)
−1 − Ĵ

(1)
−1 V̂

(1)
1

]
|α, j,m〉

= cj,m 〈α′, j| |V̂ (1)| |α, j〉
(9.230)

where the last line results from the Wigner-Ekhert theorem and cj,m is some relational constant

https://en.wikipedia.org/wiki/Racah_W-coefficient
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dependent on j and m. If we then pick ~̂V = ~̂J , we get:

〈α′, j′,m′| ~̂J2 |α, j,m〉 = 〈α, j,m| ~̂J2 |α, j,m〉

= cj 〈α, j| | ~̂J (1)| |α, j〉
(9.231)

But we know that 〈α, j,m| ~̂J2 |α, j,m〉 = ~2j(j + 1), which grants us:

〈α′, j′,m′| V̂ (1)
q |α, j,m〉 =

(
〈α′, j′,m′| ~̂J · ~̂V |α, j,m〉

~2j(j + 1)

)
〈j,m′| |Ĵ (1)

q | |j,m〉 (9.232)

This result is known as the projection theorem.

Example:

Let’s us study the Landé g-factor. Consider the Hydrogen atom in an external magnetic
field ~B = Bẑ. This gives a contribution to the Hamiltonian:

Ĥ1 =
eB

2mec

(
L̂z + 2Ŝz

)
(9.233)

implying to the spin and orbital angular momentum of the atom. Assuming B is small
such that we can adopt |j,m〉 as eigenstates (perturbation theory), we then now want to
compute expectations of this Hamiltonian. If we take the dot product:

~̂L · ~̂J = ~̂L · (~̂L+ ~̂S)

= ~̂L2 +
1

2

(
~̂J2 − ~̂L2 − ~̂S2

) (9.234)

And similar:

~̂S · ~̂J = ~̂S2 +
1

2

(
~̂J2 − ~̂L2 − ~̂S2

)
(9.235)

Then the matrix elements would simply be:

〈j,m| ~̂L · ~̂J |j,m〉 =
~2

2
[j(j + 1) + l(l + 1)− s(s+ 1)] (9.236)

〈j,m| ~̂S · ~̂J |j,m〉 =
~2

2
[j(j + 1) + s(s+ 1)− l(l + 1)] (9.237)

Then if we want to know 〈j,m| L̂z |j,m〉, we use the projection theorem to get:

〈j,m| L̂(1)
0 |j,m〉 =

(
〈j,m| ~̂L · ~̂J |j,m〉

~2j(j + 1)

)
〈j,m| Ĵ (1)

0 |j,m〉

=
~m

j(j + 1)
[j(j + 1) + l(l + 1)− s(s+ 1)]

(9.238)
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We can do a similar procedure for 〈j,m| Ŝ(1)
0 |j,m〉, and plug the results in to get the

energy correction which is the expectation value of Ĥ1:

E1 = 〈Ĥ1〉 = gJ
eB

2mec
~m (9.239)

where gJ =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(9.240)

where gJ is the Landé g-factor.

§9.8.6 Electric Multipole Expansions

Consider the expansion of the potential analogous to mutlipole expansions done in classical
mechanics (V (~r) = qU(~r) = q

∑
l

∑
m fl,m(r)Yl,m(Ω)), assuming an external electric/magnetic

field (no sources leading to Laplace’s equation):

1

r

d2

dr2
(rfl,m(r))− l(l + 1)

r2
fl,m(r) = 0 (9.241)

⇒ fl,m(r) =

√
4π

2l + 1
cl,mr

l (9.242)

where we dropped the r−(l+1) dependence as we want a solution well-behaved near the origin.
We then define:

V (~̂r) ≡
∞∑
l=0

l∑
m=−l

cl,mQ̂
(l)
m (9.243)

where Q̂ml is the electric mutlipole operator which is in fact a spherical tensor of rank (l). The
matrix elements of these tensors are given by:

〈~r′| Q̂ml |~r〉 = q

√
4π

2l + 1
rlY ml (θ, φ)δ(~r − ~r′) (9.244)

The multipoles are thus given by:

Q̂
(0)
0 = q, ~̂Q1 = q~̂r, Q̂

(2)
2 =

q

2
(3ẑ2 − ~̂r2), . . . (9.245)

For N particle systems, these multipole operators can be expressed as a collective multipole
moment which is simply the sum of the individuals ones:

〈
~~r′1, . . . , ~̂r

′
N

∣∣∣ Q̂ml ∣∣∣~~r1, . . . , ~̂rN

〉
=

√
4π

2l + 1

N∑
n=1

qnr
l
nY

m
l (θn, φn)δ(~rn − ~r′n) (9.246)
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Since these are spherical tensors, we can apply the Wigner-Ekert theorem on them to get:

〈α′, l2,m2| Q̂(l)
m |α, l1,m2〉 = 〈l1, l;m1,m|l1, l; l2,m2〉

〈α′, l2| |Q̂(l)| |α, l1〉√
2l2 + 1

(9.247)

where 〈α′, l2| |Q̂(l)| |α, l1〉 = q
√

2l1 + 1 〈l1, l; 0, 0|l1, l; l2, 0〉
∫ ∞

0

rl+2R∗α′,l2(r)Rα,l1(r) (9.248)

These result in the selection rules:

〈l1, l; 0, 0|l1, l; l2, l〉 = 0 if l1 + l2 − l = odd (9.249)

|l1 − l2| ≤ l ≤ l1 + l2 (9.250)

If we consider the case where l1 = l2, then we have:

0 ≤ l ≤ 2l1 and 〈l1, l; 0, 0|l1, l; l1, l〉 = 0 if 2l1 − l = odd (9.251)

⇒ 〈l1| |Q̂(l)| |l1〉 = 0 unless l = 0, 2, . . . , 2l1 (9.252)

Let’s look at a few examples of what this tells us.

1. For the Hydrogen groundstate (n = 1, l = 0), we have that there are only l = 0 multipoles.

2. For any orbital angular momentum eigenstate has no electric dipole moment.

3. Deuteron has been experimentally observed to have a quadrupole moment, which implies
l 6= 0.



Chapter 10

The Fine Structure of
Hydrogen

As a closing chapter to this semester, we will be continuing our analysis on Hydrogen. Specifically,
we will be looking into a more realistic treatment of its spectrum by including several physical
corrections to the simplified model we have been working with. To do so, we employ a powerful
tool known as perturbation theory. To address the fine structure that arises in Hydrogen, it turns
out that we only need knowledge of first-order, time-independent, non-degenerate perturbation
theory. This is far from the most general means of perturbation theory, but will already grant
us interesting insights to a very real and extensively studied physical system. More perturbation
theory will indeed be covered in the next semester of graduate quantum mechanics.

§10.1 First-Order Time-Indepedent Perturbation Theory

We start by assuming a Hamiltonian which is of the form:

Ĥ = Ĥ(0) + λδĤ (10.1)

for which we have that Ĥ(0) is a Hamiltonian that is exactly solvable (e.g. the quantum harmonic
oscillator), λ is a small continuous parameter and δĤ is the perturbation Hamiltonian. What
we want to find then is: (

Ĥ(0) + λδĤ
)
|n〉 = En |n〉 (10.2)

To solve this, we expand in the small parameter λ, that is:

En = E(0)
n + λE(1)

n +O(λ2) + . . . (10.3)

|n〉 =
∣∣∣n(0)

〉
+ λ

∣∣∣n(1)
〉

+O(λ2) + . . . (10.4)

⇒
(
Ĥ(0) + λδĤ

)(∣∣∣n(0)
〉

+ λ
∣∣∣n(1)

〉
+ . . .

)
=
(
E(0)
n + λE(1)

n + . . .
)(∣∣∣n(0)

〉
+ λ

∣∣∣n(1)
〉

+ . . .
)

(10.5)
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For which if we compare the first order terms in λ, we get:

E(1)
n =

〈
n(0)

∣∣∣ δĤ ∣∣∣n(0)
〉

(10.6)

Note: This only holds for non-degenerate spectrums or if we have degenerate states that
we can still uniquely label (a CSCO that includes δĤ).

We will now apply this to Hydrogen (Hydrogenic atoms, where the nuclear charge is arbitrary
and called Z), which although has a huge amount of degeneracy, does have a CSCO we know
with δĤ = Ĵz in it. This system as:

V (r) = −Ze
2

r
, ψ(r, θ, φ) = Rn,l(r)Y

m
l (θ, φ) (10.7)

for which the wavefunctions are analytically solvable with associated Laguerre polynomials Lqp(ρ)
or the confluent hypergeometric functions F (a, c, p):

Rn,l(r) ∼ F1

(
−n+ l + 1, 2l + 2,

2zr

na0

)
e−zr/(na0) (10.8)

where a0 = ~2/(mee
2) is the Bohr radius. It works out that te energy eigenvalues work out to

be:

En = −1

2
mc2

Z2α2

n2
= −Z

2

n2
Ry (10.9)

where α = e2/(~c) is known as the fine structure constant and Ry = e2/(2a0) is known as
the Rydberg atom radius. These energy are degenerate with a degeneracy n2 that comes from∑
l(2l + 1) since only n is specified. However, this is an idealized model and there are indeed

corrections to the energy spectrum if we wanted to be precise. Some of these are

1. relativistic corrections;
(a) magnetic coupling;
(b) Lamb shift;
(c) relativistic Kinetic term;
(d) Darwin term;

2. finite size nucleus correction;
3. nuclear spin coupling (hyperfine correction).

We are going to start with the finite nuclear size correction.

§10.1.1 Finite Nuclear Size Corrections

We are going to model the nucleus here as a sphere of radius r0, with constant charge density.
This gives us the potential:

V (r) =

−
Ze2

r , r ≥ r0;

Ze2

2r0

[(
r
r0

)2

− 3

]
, r < r0

(10.10)
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So, it would be appropriate to treat the perturbation to the Hamiltonian as:

δĤ =

0, r ≥ r0;

Ze2

2r0

[(
r
r0

)2

− 3 + 2r0
r

]
, r < r0

(10.11)

Starting with the ground state of the unperturbed Hamiltonian |n, l,m〉 = |1, 0, 0〉, the wave-
function can be written down as:

ψ1,0,0(r, θ, φ) = 2

√
Z3

4πa3
0

e−Zr/a0 (10.12)

So the first order correction to the energy would be given as:

E
(1)
1,0,0 = 〈1, 0, 0| δĤ |1, 0, 0〉

=

∫ r0

0

r2 2Z4e2

r2
0a

3
0

[(
r

r0

)2

− 3 +
2r0

r

]
e−2Zr/a0dr

≈ 4

5

Z4r2
0

a2
0

(
e2

2a0

)
=

4

5
Z2E

(0)
1,0,0

(
r0

a0

)2

(10.13)

which turns out to be an extremely small correction since a0 ∼ 10−10m and r0 ∼ 10−15m. Now,
let us move on to the relativistic correction.

§10.1.2 Relativistic Corrections and the Feynman-Hellmann Theorem

In order to account for the correction, we need to change the kinetic energy term in the Hamil-
tonian to:

T̂ = c
√
p̂2 +m2c2 −mc2 (10.14)

We have that the electron speed is about v/c ∼ α, and so we do a series expansion around this
to get:

T̂ ≈ p̂2

2me
− p̂4

8m2
ec

2
(10.15)

which grants us that the perturbation Hamiltonian is given as:

δĤrel = − p̂4

8m2
ec

2
(10.16)

⇒ E
(1)
n,l = − 〈p̂

4〉
8m2

ec
2

(10.17)
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To solve this, are are going to do a mathematical rewriting trick as follows:〈
δĤrel

〉
= − 1

2mec2

〈(
p̂2

2me

)2
〉

= − 1

2mec2

〈(
Ĥ(0) +

Ze2

r

)2
〉

= − 1

2mec2

[
(E(0)

n )2 + 2E(0)
n Ze2

〈
1

r

〉
+ Z2e4

〈
1

r2

〉]
(10.18)

to get the 1/r expectation, we can exploit the Virial theorem 2〈T 〉 = −〈V 〉 to give us:〈
1

r

〉
= − 2

Ze2
E(0)
n (10.19)

As for the 1/r2 term, we use the Feynman-Hellmann theorem which is stated as follows.

Theorem 10.1.1. Feynman-Hellmann Theorem: Given a Hamiltonian dependent on a
continuous parameter λ, we have that :

dEλ
dλ

= 〈Eλ|
d

dλ
Ĥ |Eλ〉 (10.20)

Proof. Starting from the expectation value:

Eλ = 〈Eλ| Ĥ |Eλ〉 (10.21)

We take the derivative with respect to λ and collect terms to get:

dEλ
dλ

= 〈Eλ|
dĤ

dλ
|Eλ〉+ Eλ

d

dλ

(
〈Eλ|Eλ〉

)
(10.22)

Since 〈Eλ|Eλ〉 = 1 is just a constant, its derivative vanishes leaving us with:

dEλ
dλ

= 〈Eλ|
dĤ

dλ
|Eλ〉 (10.23)

This theorem is purely a mathematical theorem, so λ can be taken to be any continuous param-
eter in the Hamiltonian that is convenient. This then allows us to apply this theorem to our
Hamiltonian, by first considering the Hamiltonian in position space:

〈~r| Ĥ |n, l,m〉 = − ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
ψn,l,m(r)− Ze2

r
ψn,l,m(r) (10.24)

for which if we take the derivative with respect to λ = l, this gives us:〈
1

r2

〉
=

1

a2
0n

2(l + 1/2)
(10.25)
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where n = q + l+ 1. So in total, we get that the expectation of the perturbative Hamiltonian is
given by:

〈δĤrel〉 =
Z4e2

mec2n3a0

(
3

4n
− 1

l + 1
2

)
Ry =

Z4

n3
α2 (10.26)

which again is indeed a very small correction to the Hamiltonian.

§10.1.3 The Fine Structure of Hydrogen

From here on out, we will actually be working with Hydrogen and working out all the first-order
corrections to its spectrum, which means us setting Z = 1 and including the electron spin, giving
us the eigenstates |n, l,m,ms〉. We will assert that all the necessary corrections to the spherically
symmetric Hamiltonian can be written as:

Ĥfine = Ĥ(0) + δĤrel + δĤSO + δĤD (10.27)

where δĤSO is the perturbation due to spin-orbit coupling and δĤD is the Darwin correction
term. Starting with the spin-orbit term, we have:

δĤSO =
e2

2m2
ec

2r3
~̂L · ~̂S (10.28)

This can be nicely solved in the |n, l, s; j,ml,s〉 basis with the rewriting of the perturbation

Hamiltonian into ~̂J2 − ~̂L2 − ~̂S2 where ~̂J = ~̂L + ~̂S which we are now familiar with doing. This
works out to also give a correction of order α2.

Finally for the Darwin term, we actually need to know the full relativistic Hamiltonian which
produces a phenomenon known as zitterbewegung (i.e. trembling motion) that affects the motion
of the particles with spin. However, we will simply state the Hamiltonian here as:

δĤD = − πe
2~2

2m2
ec

2
δ(~r) (10.29)

⇒ 〈δĤD〉 =
πe2~2

2m2
ec

2
|ψ(0)|2 (10.30)

which is indeed 0 unless l = 0 (s-orbitals). This works out to give us a order of magnitude
correction of the size mec

2α4. To deeper explore the fine structure, we consider the specific
energy spectrum where n = 2. Starting with the 2s state (n = 2, l = 0), we get:

〈δĤrel〉 = −13

64
α2Ry (10.31)

〈δĤD〉 =
1

8
α2Ry (10.32)

〈δĤSO〉 = 0 (10.33)
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As for the 2p state (n = 2, l = 1), we get:

〈δĤrel〉 = − 7

192
α2Ry (10.34)

〈δĤD〉 = 0 (10.35)

〈δĤSO〉 =

{
− 1

24α
2Ry, j = 1

2

− 1
48α

2Ry, j = 3
2

(10.36)

Getting the spin-orbit for this state required finding the term 〈1/r3〉 by using Kramer’s relations,
which is not particularly enlightening so is not presented here. Combining all these corrections,
we get:

∆E2s = − 5

64
α2Ry (10.37)

∆E2p,j=1/2 = − 5

64
α2Ry (10.38)

∆E2p,j=3/2 = − 1

64
α2Ry (10.39)

The first 2 corrections work out to be the same which is only by coincidence and known as an
accidental degeneracy. Although, such accidental symmetries barely are accidental in theoretical
physics, but full relativistic quantum mechanics utilizing the Dirac equation has to be done in
order to get these relations out explicitly. In reality however, the degeneracies do not show up
because we are missing something known as the Lamb shit which is actually a perturbation of
order O(α3), however this cannot be dealt with without knowing relativistic quantum mechanics,
so it will not be covered here. It is a very small correction (∼ 1GHz, with the standard energy
splitting in Hydrogen being ∼ 2000 THz). We can however, do a hyperfine correction due to the
proton spin.

§10.1.4 Hyperfine Corrections

The proton magnetic moment is given by:

µ̂I =
gpµn
~

~̂I (10.40)

where gp is the g-factor for the proton (≈ 5.6) and µn is the nuclear magneton where µn =
e~/(2mp) which is much smaller than the Bohr magneton. This magnetic moment adds 3 cor-
rections to the Hamiltonian:

~̂µI · ~̂L, ~̂µI · ~̂S,
8πgpe

2

3mempc2
δ(~r)~̂I · ~̂S (10.41)

where the last correction term is called the contact term (refer to Cohen-Tannoudji for more
information on this). For this analysis, we will be looking at n = 1 Hydrogen, which have the
fine structure corrections:

〈δĤrel〉 = −5

8
α2Ry

〈δĤD〉 =
1

2
α2Ry

(10.42)
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Consider the electron-nucleon spin coupling, which admit the states |i, s;mi,ms〉 (4 of these
states). For the 1s state, we get that the nuclear spin-orbit coupling term and the nuclear-
electron spin coupling terms vanish. This leaves us with the contact term, which we can take
the expectation to get:

〈δĤhf,c〉 =

[
2

3~2

gpme

mp

(
1 +

me

mp

)−3

α2Ry

]
〈~̂I · ~̂S〉 ≡ A〈~̂I · ~̂S〉 (10.43)

where the “hf, c” subscript denote the hyperfine, contact perturbation Hamiltonian. Defining

the operator ~̂F = ~̂I + ~̂S, we can do the standard change of basis into the irreducible basis to
get:

~̂I · ~̂S =
1

2

(
~̂F 2 − ~̂I2 − ~̂S2

)
(10.44)

⇒ 〈δĤhf,c〉 =

{
A~2

4 , f = 1

− 3A~2

4 , f = 0
(10.45)

where A is the complicated constant defined in the expectation value formula above. This
correction is actually very useful for astronomy and astrophysics.

§10.2 Relativistic Quantum Mechanics (Motivations)

To some extent, we can deal with relativistic quantum mechanics by amending the Schrödinger
equation into something that is more “relativity friendly”. Some of these equations include the
Klein-Gordon equation and the Dirac equation. The full answer however, is the formalism of
quantum field theory (QFT). To understand this, we need to know about fields.

Definition 10.2.1. Field: A field F = F (~x, t) is a function of space and time that takes on
values everywhere. This is as opposed to particles that are localized objects that are fixed in
space.

To say that a particle is fixed in time implies the measured quantity of position, not the wave-
function. The question that brings us to quantum field theory is how to quantize classical fields?
To summarize these ideas in a table (by Sid Coleman), we have

Single-Particle Many-Particle
Classical Classical Mechanics Continuum Mechanics
Quantum Quantum Mechanics Quantum Field Theory

N → ∞

Table 10.1: N -body extension to quantum and classical mechanics.

There is also another classification that we want to think about and that is adding relativity to
our theories.
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Non-Relativistic Relativistic
Classical Classical Mechanics Spatial Relativity
Quantum Quantum Mechanics Quantum Field Theory

v/c → 1

Table 10.2: Relativistic extension to quantum and classical mechanics.

To see the necessity for relativitic quantum mehcanics, we consider the equations E = mc2 and
∆x∆p ≥ ~/2. Imagine trapping a particle within ∆x and using E ≈ pc, we get:

∆E∆x ≥ ~c (10.46)

So if ∆E ≥ mc2, new particles can in fact be created in this trap! This has only been resolved
in the formalism of QFT, and it is in fact the most accurate scientific theory in human history.
There is of course limits on the creation or annihilation of particles, because we cannot violate
conservation laws. To fix this, QFT asserts that particle creation comes in particle-antiparticle
pairs (e.g. creation of electron-positron (e− and e+) pair). To more rigorously see the need for a
relativistic quantum theory, consider the propagation with the free particle Hamiltonian:

U(~x, t) = 〈~x| eiĤt |~x = 0〉

=

∫
d3p

(2π)3
〈~x| eiĤt |~p〉 〈~p| |~x = 0〉 =

( m

2πit

)3/2

e
im~x
2t

(10.47)

This is non-zero for space-like propagation, which fails in the theory of relativity! What if we
instead change the Hamiltonian to:

Ĥ =

√
~̂p2 +m2c2

⇒ U(~x, t) =

∫
d3p

(2π)3
exp
{
−ict

√
p2 +m2c2

}
exp{i~p · ~x}

⇒ U(~x, t) ∼ exp{−m|x|}

(10.48)

which is better since it is exponentially suppressed, but not completely resolved! How QFT
comes in to fix this, is insisting on causality by considering the order of measurements which
immediately dictates the need for particle creation. As such, we see that QFT is absolutely
necessary to resolve the difference between special relativity and quantum mechanics. In fact,
QFT is the most accurate physical theory of our universe we have to date!
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Appendix A

Gaussian Integrals

The best way to go about solving Gaussian integrals is to define a function of α:

I(α) =

∫
dx exp

(
−αx2

)
=

√
π

α
(A.1)

Then to get more Gaussian integrals with polynomial factors, we can take derivatives:

d

dα
I(α) = −

∫
dxx2 exp

(
−αx2

)
=

√
π

α
= −

√
π

2α3/2
(A.2)

And more generally, we have: ∫
dxxn exp

(
−αx2

)
=

(n+ 1)!!
√
π

2n/2α(n+1)/2
(A.3)
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